‘Q

Oracle VM
VirtualBox®

Programming Guide and
Reference

Version 5.2.10
(©) 2004-2018 Oracle Corporation

http://www.virtualbox.org

Contents

1 Introduction
1.1 Modularity: the building blocks of VirtualBox
1.2 Two guises of the same “Main API”: the web service or COM/XPCOM
1.3 About webservicesin general
1.4 Runningthewebservice
1.4.1 Command line options of vboxwebsrv
1.4.2 Authenticating at web servicelogon
2 Environment-specific notes
2.1 Using the object-oriented web service (OOWS)
2.1.1 The object-oriented web service for JAXWS.
2.1.2 The object-oriented web service for Python
2.1.3 The object-oriented web service for PHP
2.2 Using the raw web service with any language
2.2.1 Raw web service example for Java with Axis
2.2.2 Raw web service example for Perl
2.2.3 Programming considerations for the raw web service
2.3 Using COM/XPCOMdirectly
2.3.1 Python COMAPI e ettt e
2.3.2 Common Python bindings layer
233 CH++COMAPI
2.3.4 Event queue ProCesSing v v v v v v v v vt e e e e e
2.3.5 Visual Basic and Visual Basic Script (VBS) on Windows hosts
2.3.6 Chbinding to VirtualBox APT
3 Basic VirtualBox concepts; some examples
3.1 Obtaining basic machine information. Reading attributes
3.2 Changing machine settings: Sessions
3.3 Launching virtual machines
3.4 VirtualBoX eVENtS it e e e e e e e e e e e e e e e e e
4 The VirtualBox shell
5 Classes (interfaces)
5.1 IAdditionsFacility e e e
5.1.1 Attributes
5.2 IAdditionsStateChangedEvent (IEvent)
5.2.1 Attributes e
5.3 IAppliance e e e e e e

5.3.1 Attributes e
5.3.2 addPasswords e e e e
5.3.3 createVFSEXplorer e e e
5.3.4 getMediumldsForPasswordIld
5.3.5 getPasswordlds
5.3.6 getWarnings e e e e e e e
5.3.7 importMachines

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

Contents

5.3.8 Interpret e e e e e e e e 56
5.3.9 read e 56
5.3.10 Write e e e e e e e e e 56
TAudioAdapter o e e e e e e 57
5.4.1 Attributes 57
5.4.2 getProperty e e 58
543 setProperty e 58
[AudioAdapterChangedEvent (IEvent) oo v v v v ... 58
5.5.1 Attributes 58
IBIOSSettings v v v v i e 59
5.6.1 Attributes e e e e e 59
IBandwidthControl e 60
5.7.1 Attributes e 60
5.7.2 createBandwidthGroup 60
5.7.3 deleteBandwidthGroup 61
5.7.4 getAllBandwidthGroups e 61
5.7.5 getBandwidthGroup 61
BandwidthGroup v i it e e e e e 61
5.8.1 Attributes 61
IBandwidthGroupChangedEvent (IEvent) 62
5.9.1 Attributes 62
ICPUChangedEvent (IEVENt) v v v v i it e e e e e e et e e e e e 62
5.10.1 Attributes e e 62
ICPUExecutionCapChangedEvent (IEvent) 62
5.11.1 Attributes 62
ICanShowWindowEvent (IVetoEvent) v v v v v v v v v e e 63
5.12.1 Attributes e 63
ICertificate o o e e e e e e 63
5.13.1 Attributes e 63
5.13.2 isCurrentlyExpired oo 65
5.13.3 queryInfo. e e e e e 65
IClipboardModeChangedEvent (IEvent) 65
5.14.1 Attributes e 66
IConsole o e e 66
5.15.1 Attributes e 66
5.15.2 addDiskEncryptionPasswordottt 68
5.15.3 addDiskEncryptionPasswords 69
5.15.4 attachUSBDevice i i i it ie et 69
5.15.5 clearAllDiskEncryptionPasswords 69
5.15.6 createSharedFolder 69
5.15.7 detachUSBDevice 70
5.15.8 findUSBDeviceByAddress i 70
5.15.9 findUSBDeviceByld e 70
5.15.10 getDeviCeACtiVity v i i i i e e e e 71
5.15.11 getGuestEnteredACPIMode 71
5.15.12 getPowerButtonHandled 71
S5 13 pause L e e e e e e e e e e e e e 71
5.15.14 powerButton Lo e 71
5.15.15 powerDown L e 72
51516 powerUp o o vt e e e e e e 72
5.15.17 powerUpPaused e 72
5.15.18 removeDiskEncryptionPassword 73
5.15.19 removeSharedFolder 73

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

Contents

5.15.20 reset e e e e e e e e e e e 73
5.15.21 resumeo e e e e e e e e e e e e 73
5.15.22 sleepButton e e 73
5.15.23 teleport e e e e e e e e e e e e e e e 74
IDHCPServer i et e e e e e e e e e e e e e 74
5.16.1 Attributes e e 74
5.16.2 addGlobalOption 75
5.16.3 addVmSlotOption 75
5.16.4 getMacOptionS. v v v i v e e e e e e e e e e e e e e 75
5.16.5 getVmSIotOptions v vt i e e e e e e e 76
5.16.6 removeVmSlotOptions 76
5.16.7 setConfiguration e 76
5.16.8 Start e e e e e e e e e e 76
5.16.9 StOP . . . v o i i e e e e e e e e e e e e 77
IDITECIOTY . . & v o o e 77
5.17.1 Attributes e e e e e e 77
5.17.2 close e e 77
5.17.3 read e e 77
IDisplay o o e e e e e 77
5.18.1 Attributes e 78
5.18.2 attachFramebuffer. 78
5.18.3 completeVHWACommand 78
5.18.4 detachFramebuffer 78
5.18.5 detachScreens 78
5.18.6 drawToSCreen o v v v ittt e e e e e e e 79
5.18.7 getScreenResolution. 79
5.18.8 invalidateAndUpdate 80
5.18.9 invalidateAndUpdateScreen 80
5.18.10 notifyHiDPIOutputPolicyChange 80
5.18.11 notifyScaleFactorChange 80
5.18.12 queryFramebuffer 80
5.18.13 querySourceBitmapol 81
5.18.14 setScreenLayout Lo 81
5.18.15 setSeamlessMode e e e 81
5.18.16 setVideoModeHint e 81
5.18.17 takeScreenShot e 82
5.18.18 takeScreenShotTOATIray v v v v v v v it e e 83
5.18.19 viewportChanged e 83
IDisplaySourceBitmap i i i e e e e e e e e e e 83
5.19.1 Attributes e e 83
5.19.2 queryBitmapInfo. 84
IDnDBase e e e e 84
5.20.1 Attributes e e e e e 84
5.20.2 addFormatsttt e e e e e 84
5.20.3 isFormatSupported 85
5.20.4 removeFormats L 85
IDnDModeChangedEvent (IEvent) v v ... 85
5.21.1 Attributes e e e e e e 85
IDnDSource (IDNDBAsE) v v v v i e e e e e e e e e e e e e 85
5.22.1 draglsPending i i e e e e 85
5.22.2 drop ... e e 86
5.22.3 receiveData e e 86
IDnDTarget (IDNDBASE) . . . v v v v v v i e e e e e e e e e e e e e e e 86

5.24

5.25

5.26

5.27

5.28

5.29

5.30

5.31

5.32

5.33

5.34

5.35

5.36

Contents

5.23.1 cancel e e e e 86
5.23.2 drop e e 86
5.23.3 enter e e e e e e e e e e e e e e 87
5.23.4 leave e e e e e 87
5.23.5 move e e e e e e e e e e e e e e e 88
523.6 sendData e e e e 88
IEmulatedUSB e e e e e e e 88
5.24.1 Attributes e e e e e e e e e e e 88
5.24.2 webcamAttach e 89
5.24.3 webcamDetach 89
IEVENT . . o o o e e e e e e e e e e e e e e e e e e e 89
5.25.1 Attributes e e e e e e e e 90
5.25.2 setProcessed e e 90
5.25.3 waitProcessed e e e e e e 90
IEventListener i e e e e e e e e e e e e e e e e e 91
5.26.1 handleEvent e e e e 91
IEventSource e e e e e e e e e e e e e 91
5.27.1 createAggregatoro i e e e e e e e 91
5.27.2 createlistener e e e e e e 91
5.27.3 eventProcessedt e e e e e 91
5.27.4 fireEvent e e e e e e 92
5.27.5 getEvent oL e 92
5.27.6 registerListener e 92
5.27.7 unregisterListenero 93
[EventSourceChangedEvent (IEvent) 93
5.28.1 Attributes e e e e e e e e e e 93
[ExtPack (IExtPackBase) o i v i it it e e e e 93
5.29.1 queryObject e e 94
IEXtPackBase o i i e e e e e e e e e e e 94
5.30.1 Attributes e e e e e e e e e e 94
5.30.2 queryLicense e e e e e e e e e e e e 95
[ExtPackFile (IExtPackBase) v v i v v it e e e e e e e 96
5.31.1 Attributes e e e e e e e 96
5.31.2 install. e e e e 96
[EXtPackManager v v v v v ittt e e e e e e e e e e 96
5.32.1 Attributes e e e e e e e e e e e 96
5322 cleanup. e e 97
5.32.3 find e e 97
5.32.4 isExtPackUsable 97
5.32.5 openExtPackFile 97
5.32.6 queryAllPlugInsForFrontend 97
5.32.7 wuninstall e 98
IExtPackPlugIn e e e e e e e 98
5.33.1 Attributes e e e e e e e e 98
[ExtraDataCanChangeEvent (IVetoEvent) 98
5.34.1 Attributes e e e e e e e e e 99
[ExtraDataChangedEvent (IEvent), 99
5.35.1 Attributes e e e e e e 99
IFile . . e e e 99
5.36.1 Attributes e e e e e e e e e 100
5.36.2 cloSe e e e e e 101
5.36.3 queryInfo. e e e 101
5.36.4 querySize e e e e e 101

5.37

5.38

5.39

5.40

541

5.42

5.43

5.44

5.45

5.46

5.47

5.48

5.49

5.50

5.51

Contents

5.36.5 read e e e 101
5.36.6 readAt e e e e e 101
5.36.7 Se€EK. i e e e e e e 102
5.36.8 SetACL o i e e e e e e 102
5.36.9 setSize e e e e e e e 102
5.36.10 Write o e e e e e e e e e e e e 102
5.36.11 WriteAt o e e e e e e e e e 103
IFramebuffer. e e 103
5.37.1 Attributes e e e e e e e e 103
5.37.2 getVisibleRegion 104
5.37.3 notify3DEVENt oo e e e e e e e e e 105
5.37.4 mnotifyChange 105
5.37.5 motifyUpdate e 105
5.37.6 notifyUpdatelmage i 106
5.37.7 processVHWACommandt 106
5.37.8 setVisibleRegion e 106
5.37.9 videoModeSupported 107
[FramebufferOverlay (IFramebuffer) 107
5.38.1 Attributes e e e e e e e e 108
5.38.2 move e e e e e e e e e e 108
IFsObjInfo o e 108
5.39.1 Attributes e e e e e e e e 108
IGuest e e e e e e e 110
5.40.1 Attributes e e e e e e e e e e e e 111
5.40.2 createSession e e e e e e e e e e e 112
5.40.3 findSession e e e 112
5.40.4 getAdditionsStatus e e 113
5.40.5 getFacilityStatus L 113
5.40.6 internalGetStatiStiCs v« v v v i e e e e e e e e e e e e 113
5.40.7 setCredentials i e e e 114
5.40.8 updateGuestAdditions. e 114
IGuestDirectory (IDirectory) v v v v v i i i e e e e e e e 115
5.41.1 Attributes e e e e e e 115
IGuestDnDSource (IDNDSOUICE) . . . v v v v v e e e e e e e e e e e e e 115
5.42.1 Attributes e e e e e e e e e 115
IGuestDnDTarget (IDnDTarget) v o v v v v i vttt e e 115
5.43.1 Attributes e e e e e e e e e 115
IGuestFile (IFile) o o e e e 115
5441 Attributes e e e e e e e 116
IGuestFileEvent (IGuestSessionEvent) o v v v v v v v v i 116
5.45.1 Attributes e e e e e e e e e 116
IGuestFileIOEvent (IGuestFileEvent) v v v v v v v .. 116
5.46.1 Attributes e e e e e 116
IGuestFileOffsetChangedEvent (IGuestFilelOEvent) 116
5.47.1 Attributes e e e e e e e e e 117
IGuestFileReadEvent (IGuestFileIOEvent) v v v v v v v v v v . 117
5.48.1 Attributes e e e e e e e e e 117
IGuestFileRegisteredEvent (IGuestFileEvent) 117
5.49.1 Attributes e e e e e e e e 117
IGuestFileStateChangedEvent (IGuestFileEvent) 117
5.50.1 Attributes e e e e e e e e e e 117
IGuestFileWriteEvent (IGuestFileIOEvent)« v v v v v v v v o .. 118
5.51.1 Attributes e e e e e e e e e 118

5.52

5.53

5.54

5.55

5.56

5.57

5.58

5.59

5.60

5.61

5.62

5.63

5.64

5.65

5.66

5.67

Contents

IGuestFsObjInfo (IFsObjInfo)o i i ittt 118
5.52.1 Attributes e e e e e e e e e 118
IGuestKeyboardEvent (IEvent) it 118
5.53.1 Attributes e e e e e e e e 118
IGuestMonitorChangedEvent (IEvent) v ... 119
5.54.1 Attributes e e e e e e 119
IGuestMouseEvent (IReusableEvent) 119
5.55.1 Attributes e e e e e e e e e e e 120
IGuestMultiTouchEvent (IEvent) v v v v v i e e e e e e e e 120
5.56.1 Attributes e e e e e e e 120
IGuestOSType v i it e e e e e e e 121
5.57.1 Attributes e e e e e e e e 121
IGuestProcess (IPTOCESS) . v v v v v v e e e e e e e e e e e e e 125
5.58.1 Attributes e e e e e e e e 125
IGuestProcessEvent (IGuestSessionEvent) 125
5.59.1 Attributes e e e e e 125
IGuestProcessIOEvent (IGuestProcessEvent) 125
5.60.1 Attributes e e e e e e e e e 125
IGuestProcessInputNotifyEvent (IGuestProcessIOEvent) 126
5.61.1 Attributes e e e e e e 126
IGuestProcessOutputEvent (IGuestProcessIOEvent) 126
5.62.1 Attributes e e e e e e e 126
IGuestProcessRegisteredEvent (IGuestProcessEvent) 126
5.63.1 Attributes e e e e e e e e e e 127
IGuestProcessStateChangedEvent (IGuestProcessEvent) 127
5.64.1 Attributes e e e e e e e 127
IGuestPropertyChangedEvent (IMachineEvent) 127
5.65.1 Attributes e e e e e e e e 127
IGuestScreenInfo e e e 128
5.66.1 Attributes e e e e e e e e e e 128
IGUESESESSION o e e e e e e e e e e e e e e e e 129
5.67.1 Attributes e e e e e e 129
5.67.2 close e e e e e 131
5.67.3 directoryCopy . . . v v v e e e e e e e e e e e 131
5.67.4 directoryCopyFromGuest e 131
5.67.5 directoryCopyToGuUesSt v v i i e e e e e 132
5.67.6 directoryCreate it e e e e e 132
5.67.7 directoryCreateTemp o v v v v it i it e 132
5.67.8 directoryEXists 133
5.67.9 directoryOpen e e e e e 133
5.67.10 directoryREMOVE i i i e e e e e e e e e 134
5.67.11 directoryRemoveRecursive 134
5.67.12 environmentDoesBaseVariableExist 135
5.67.13 environmentGetBaseVariable 135
5.67.14 environmentScheduleSet 135
5.67.15 environmentScheduleUnset. 135
5.67.16 fileCOpy v v i i it e e e e 136
5.67.17 fileCopyFromGuest v v i it it 136
5.67.18 fileCopyToGUESt« v v v vttt e e e e e e 136
5.67.19 fileCreateTemp« v v v v vt et e e e e e e e e 137
5.67.20 fileEXiStS v e e e e e e e e e e e e e e 137
5.67.21 fileOpen o i e e e 138
5.67.22 fileOpenEX o v v it e e e e e e 138

5.68

5.69

5.70

5.71

5.72

5.73

5.74

5.75

Contents

5.67.23 fileQuerySize e 139
5.67.24 fsObJEXIStS o o v i e e e e e 139
5.67.25 fsObjMove e e 139
5.67.26 fsObjQueryInfo e 140
5.67.27 fsObjRemove e e e 140
5.67.28 fsObjRename e 140
5.67.29 fsObjSetACL o o i e e e e e 141
5.67.30 processCreate v v v v v i it e e e e 141
5.67.31 processCreateEX o . i e e e e e e 142
5.67.32 processGet e e e e e e e e 143
5.67.33 symlinkCreate 143
5.67.34 symlinkExXists 143
5.67.35 symlinkRead 144
5.67.36 waitFor e 144
5.67.37 waitForArray e 144
IGuestSessionEvent (IEvent) v v i i vt i it e e e 144
5.68.1 Attributes e e e 144
IGuestSessionRegisteredEvent (IGuestSessionEvent) 145
5.69.1 Attributes e 145
IGuestSessionStateChangedEvent (IGuestSessionEvent) 145
5.70.1 Attributes e e 145
IGuestUserStateChangedEvent (IEvent) 145
5.71.1 Attributes e e e 146
THOSt . . . o o e e e e e e 146
5.72.1 Attributes e 146
5.72.2 addUSBDeviceSource v v i 148
5.72.3 createHostOnlyNetworkInterface 149
5.72.4 createUSBDeviceFilter, 149
5.72.5 findHostDVDDIIiVe v v it i e e e e e e e 149
5.72.6 findHostFloppyDrive e 149
5.72.7 findHostNetworkInterfaceByld 150
5.72.8 findHostNetworkInterfaceByName 150
5.72.9 findHostNetworkInterfacesOfType 150
5.72.10 findUSBDeviceByAddress oo 150
5.72.11 findUSBDeviceByld e 150
5.72.12 generateMACAddress i i i e 151
5.72.13 getProcessorCPUIDLeaf 151
5.72.14 getProcessorDescription Lo 151
5.72.15 getProcessorFeature L oL oo 151
5.72.16 getProcessorSpeed e 152
5.72.17 insertUSBDeviceFilter e 152
5.72.18 removeHostOnlyNetworkInterface 152
5.72.19 removeUSBDeviceFilter i 153
5.72.20 removeUSBDeviceSourceottt 153
[HostNameResolutionConfigurationChangeEvent (IEvent) 153
5.73.1 Attributes e 153
[HostNetworkInterface o i v v i it e e e ettt 153
5.74.1 Attributes e e e e e e e e 153
5.74.2 DHCPRedIiSCOVET v v v vt e i e i e e e e e e e e e e e e 155
5.74.3 enableDynamicIPConfig. 155
5.74.4 enableStaticIPConfig 155
5.74.5 enableStaticIPConfigV6 155
[HostPCIDevicePlugEvent (IMachineEvent) 156

5.76

5.77

5.78

5.79

5.80

Contents

5.75.1 Attributes e 156
IHostUSBDevice (IUSBDEVICE) . . v v v v v v e e e e e e e e e e e e e e e e e e 156
5.76.1 Attributes e 156
IHostUSBDeviceFilter (IUSBDeviceFilter) o v v 157
5.77.1 Attributes e e e e 157
[HostVideoInputDevice v v v v i e e e e e e e e e e e e 157
5.78.1 Attributes e 157
IInternalMachineControl 157
5.79.1 authenticateExternal, 158
5.79.2 autoCaptureUSBDevices it 158
5.79.3 beginPowerUp i e e 158
5.79.4 beginPoweringDown 158
5.79.5 captureUSBDevice 158
5.79.6 detachAllUSBDevices i, 159
5.79.7 detachUSBDevice 159
5.79.8 ejectMedium e e e e e e e 159
5.79.9 endPowerUp o i i i e e e e 159
5.79.10 endPoweringDOWn e e e 160
5.79.11 finishOnlineMergeMedium 160
5.79.12 lockMedia e 160
5.79.13 onSessionEnd e 160
5.79.14 pullGuestPropertieso e 160
5.79.15 pushGuUeStPIoperty o v v v i i i i i 161
5.79.16 reportVmStatistics oL 161
5.79.17 runUSBDeviceFilters 162
5.79.18 unlockMedia e 162
5.79.19 updateState e e e e e 162
IInternalSessionControl o i e . 163
5.80.1 Attributes e 163
5.80.2 accessGuesStProperty.o o e e e e 163
5.80.3 assignRemoteMachine, 164
5.80.4 cancelSaveStateWithReason 164
5.80.5 enableVMMStatistics e e 164
5.80.6 enumerateGuestProperties oo 164
5.80.7 onAudioAdapterChange. 165
5.80.8 onBandwidthGroupChange 165
5.80.9 onCPUChange it 165
5.80.10 onCPUExecutionCapChange 165
5.80.11 onClipboardModeChange 165
5.80.12 onDnDModeChange v i i e 166
5.80.13 onMediumChange e 166
5.80.14 onNetworkAdapterChange 166
5.80.15 onParallelPortChange 166
5.80.16 onSerialPortChange 167
5.80.17 onSharedFolderChange 167
5.80.18 onShowWindow e 167
5.80.19 onStorageControllerChange 167
5.80.20 onStorageDeviceChange 168
5.80.21 onUSBControllerChange 168
5.80.22 onUSBDeviceAttach 168
5.80.23 onUSBDeviceDetach i 169
5.80.24 onVRDEServerChange i vt unn.. 169
5.80.25 onVideoCaptureChange 169

5.81

5.82

5.83

Contents

5.80.26 onlineMergeMedium e 169
5.80.27 pauseWithReason, 170
5.80.28 reconfigureMediumAttachments 170
5.80.29 resumeWithReason 170
5.80.30 saveStateWithReason 170
5.80.31 uninitialize e e e 171
5.80.32 updateMachineState 171
IKeyboard e e 171
5.81.1 Attributes e 171
581.2 putCAD 172
5.81.3 putScancode e e e e e e 172
5.81.4 putScancodes e e e e 172
5.81.5 releaseKeys. o o i e e 172
IKeyboardLedsChangedEvent (IEvent) 172
5.82.1 Attributes e 173
IMachine e e e e e 173
5.83.1 Attributes e 173
5.83.2 addStorageController 187
5.83.3 addUSBController e 187
5.83.4 adoptSavedState. 188
5.83.5 applyDefaults 188
5.83.6 attachDevice e 188
5.83.7 attachDeviceWithoutMedium 190
5.83.8 attachHostPCIDevice, 191
5.83.9 canShowConsoleWindow 191
5.83.10 cloneToo e e 192
5.83.11 createSharedFolder 192
5.83.12 deleteConfig e e 192
5.83.13 deleteGUEStPIOPEIty . . . v v v v v v i i e e e e e e e e e e e e 193
5.83.14 deleteSnapshot o 193
5.83.15 deleteSnapshotAndAllChildren 194
5.83.16 deleteSnapshotRange 195
5.83.17 detachDevice. e e 195
5.83.18 detachHostPCIDevice oo v v i 196
5.83.19 discardSavedStateo e 197
5.83.20 discardSettings e e e e e 197
5.83.21 enumerateGuestPropertieso el 197
5.83.22 exportTo e 198
5.83.23 findSnapshot 198
5.83.24 getBootOrder 198
5.83.25 getCPUIDLeaf ittt 199
5.83.26 getCPUIDLeafByOrdinal 199
5.83.27 getCPUPIOperty v v i v v i ittt e e i e 200
5.83.28 getCPUStatus o v v v it e e e 200
5.83.29 getEffectiveParavirtProvider 200
5.83.30 getExtraData e e e e e 200
5.83.31 getExtraDataKeys e 200
5.83.32 getGuestPropertyo e 201
5.83.33 getGuestPropertyTimestampo v v o 201
5.83.34 getGuestPropertyValue 201
5.83.35 getHWVirtExProperty o e 201
5.83.36 getMedium e e e e e 202
5.83.37 getMediumAttachment, 202

10

5.84

5.85

Contents

5.83.38 getMediumAttachmentsOfController 202
5.83.39 getNetworkAdapter e 203
5.83.40 getParallelPort 203
5.83.41 getSerialPort e e 203
5.83.42 getStorageControllerBylnstance 203
5.83.43 getStorageControllerByName 204
5.83.44 getUSBControllerByName 204
5.83.45 getUSBControllerCountByType 204
5.83.46 hotPlugCPU e e 204
5.83.47 hotUnplugCPU i e e 204
5.83.48 [aunchVMPIocess v v v v v v it it e e e e e e e e 205
5.83.49 lockMachine 206
5.83.50 mountMedium e e 207
5.83.51 nonRotationalDevice 208
5.83.52 passthroughDevice, 208
5.83.53 queryLogFilename e 209
5.83.54 querySavedGuestScreenInfo 209
5.83.55 querySavedScreenshotInfo, 210
5.83.56 readlog e 210
5.83.57 readSavedScreenshotToArray v v v v v v vt v i 210
5.83.58 readSavedThumbnailToArray v v v v v v v v i i oo n 210
5.83.59 removeAllCPUIDLEAVES+ v v v v v v e e e e e e e e e e e 211
5.83.60 removeCPUIDLeaf 211
5.83.61 removeSharedFolder, 211
5.83.62 removeStorageController 211
5.83.63 removeUSBController 212
5.83.64 restoreSnapshot e 212
5.83.65 saveSettings e e e e e e e e 212
5.83.66 saveState e e e e e e 213
5.83.67 setAutoDiscardForDevice oo 213
5.83.68 setBandwidthGroupForDevice 214
5.83.69 setBootOrder. v v v i i e e e e e e e e e e e 214
5.83.70 setCPUIDLeaf i i it et e e e 215
5.83.71 setCPUPIOPEeIty v v v v vt ittt i et e e e 215
5.83.72 setExtraData e 215
5.83.73 setGuestProperty e e e e e 216
5.83.74 setGuestPropertyValue 217
5.83.75 setHWVirtExProperty vt i it 217
5.83.76 setHotPluggableForDevice 217
5.83.77 setNoBandwidthGroupForDevice 218
5.83.78 setSettingsFilePath 218
5.83.79 setStorageControllerBootable 219
5.83.80 showConsoleWindow 219
5.83.81 takeSnapshot 219
5.83.82 temporaryEjectDeviceo 220
5.83.83 unmountMedium L e 220
5.83.84 unregister e e e 221
IMachineDataChangedEvent (IMachineEvent) 222
5.84.1 Attributes e 222
IMachineDebugger e 223
5.85.1 Attributes e 223
5.85.2 detectOS e e e 225
5.85.3 dumpGuestCore e e e e e e e e e 225

11

5.86

5.87

5.88

5.89

5.90

Contents

5.85.4 dumpGuestStack e 226
5.85.5 dumpHostProcessCore v v i 226
5.85.6 dumpStats e e e e e e 226
5.85.7 getRegister L. 226
5.85.8 getRegisters 226
5.85.9 getStats e e 227
5.85.10 info e e e 227
5.85.11 injectNMI 227
5.85.12 loadPlugln e e e e e 227
5.85.13 modifyLogDestinationsttt 227
5.85.14 modifyLogFlags e 227
5.85.15 modifyLogGroups« c v i i e e e e e e 228
5.85.16 queryOSKernellLog i i i i i 228
5.85.17 readPhysicalMemory 228
5.85.18 readVirtualMemory o . it i e e e 228
S.85.19 resetStats e e e e e e e e e e e e e e e e e 228
5.85.20 setRegister L. e 229
5.85.21 setRegisters e e e e e 229
5.85.22 unloadPlugIn 229
5.85.23 writePhysicalMemory e 229
5.85.24 writeVirtualMemory i i e e e 230
IMachineEvent (IEVent) v o i v i e e e e e e e e e e 230
5.86.1 Attributes e 230
IMachineRegisteredEvent (IMachineEvent) 230
5.87.1 Attributes e 230
IMachineStateChangedEvent (IMachineEvent) 230
5.88.1 Attributes e 231
IManagedObjectRef e 231
5.89.1 getlnterfaceName e 231
5.80.2 release e 231
IMedium e e e e 231
5.90.1 Attributes e e 233
5.90.2 changeEncryptiono e 238
5.90.3 checkEncryptionPassword 238
5904 cloneTo o o i e e e 239
5.90.5 cloneToBase e e 239
5.90.6 close e e 240
5.90.7 compact e e e e e 240
5.90.8 createBaseStorage 241
5.90.9 createDiffStorage e 241
5.90.10 deleteStorage i e e e e e 241
5.90.11 getEncryptionSettings i e 242
5.90.12 getProperties e e e 242
5.90.13 getProperty e e 243
5.90.14 getSnapshotlds 243
5.90.15 lockRead 243
5.90.16 lockWrite e 244
5.90.17 mergeTo L e e 245
5.90.18 refreshState e 246
5.90.19 reset e e e e e e e e e e e 246
5.90.20 T€SIZ€ e e e e e e e e e e e 246
5.90.21 setlds e e e 247
5.90.22 setlocation oo u e e e e e e e e e e e 247

12

Contents

5.90.23 setProperties e e 247
5.90.24 SetPropertyo e e 248
5.91 IMediumAttachment i e 248
5.91.1 Attributes e e e e e e e e e 251
5.92 IMediumChangedEvent (IEvent) i i i i v ... 252
5.92.1 Attributes e e e e e e e 252
5.93 IMediumConfigChangedEvent (IEvent) 253
5.93.1 Attributes e e e e e e e e e e e e 253
5.94 IMediumFormat e e e e e e e e e e 253
5.94.1 Attributes e e e e e e e e e 253
5.94.2 describeFileEXtensions v it it e e e e e e e 254
5.94.3 describeProperties 254
5.95 IMediumRegisteredEvent (IEvent) v v v v ittt i 254
5.95.1 Attributes e e e e e e e e e e 255
5,96 IMOUSE . . . v v v i i e 255
5.96.1 Attributes e e e e e 255
5.96.2 putEventMultiTouch. 256
5.96.3 putEventMultiTouchString 257
5.96.4 putMouseEvent o 257
5.96.5 putMouseEventAbsolute 258
5.97 IMouseCapabilityChangedEvent (IEvent) 258
5.97.1 Attributes e e e e e e e e e 258
5.98 IMousePointerShape e 259
5.98.1 Attributes e e e e e e e e e e e e 259
5.99 IMousePointerShapeChangedEvent (IEvent) 260
5.99.1 Attributes e e e e e e e e 260
5.100 INATENZINE i i e et e e e e e e e e e e e e e e e e e 261
5.100.1 Attributes e e e e e e e e e e e e 261
5.100.2 addRedirect e e e e 263
5.100.3 getNetworkSettings o i i e 263
5.100.4 removeRedirect e e 264
5.100.5 setNetworkSettingst e 264
5.101 INATNetwork o e e e e e e e e e 264
5.101.1 Attributes e e e e e e e e e e e e 264
5.101.2 addLocalMapping v i i it e e e e 266
5.101.3 addPortForwardRule, 266
5.101.4 removePortForwardRule 266
5.101.5 start e e e e e e e e e e e e e e e 266
5.101.6 StOP « « v v o v e e e e e e e e e e e e e e e e e 266
5.102 INATNetworkAlterEvent (INATNetworkChangedEvent) 267
5.102.1 Attributes e e e e e e e e e e e 267
5.103 INATNetworkChangedEvent (IEvent) 267
5.103.1 Attributes e e e e e e e e e e 267
5.104 INATNetworkCreationDeletionEvent (INATNetworkAlterEvent) 267
5.104.1 Attributes e e e e e e e e e e e e e 267
5.105 INATNetworkPortForwardEvent (INATNetworkAlterEvent) 267
5.105.1 Attributes e e e e e e e e e e e e 267
5.106 INATNetworkSettingEvent (INATNetworkAlterEvent) 268
5.106.1 Attributes e e e e e e e e e e e 268
5.107 INATNetworkStartStopEvent (INATNetworkChangedEvent) 269
5.107.1 Attributes e e e e e e e e e e e e 269
5.108 INATRedirectEvent (IMachineEvent) v v v v i .. 269
5.108.1 Attributes e e e e e e e e e e e 269

13

Contents

5.109 INetworkAdapter e 270
5.109.1 Attributes e e e e e e e e e e e e e e 270
5.109.2 getProperties oo e 272
5.109.3 getPropertyo . e e e e 273
5.109.4 setPropertyo e e e e e e e e e 273

5.110 INetworkAdapterChangedEvent (IEvent) 273
5.110.1 Attributes e e e e e e e e e e e 273

5.111 IPCIAAAress o i i e e e e e e e e e e e e 273
5.111.1 Attributes e e e e e e e e e e e e e 274
5.111.2 aslong o . o e e e e e e e e e e e e e e e e 274
5.111.3 fromLONg v v v e e e e e e e e e e e e e e e e e e 274

5.112 IPCIDeviceAttachment o v v i i it et e e e e e 274
5.112.1 Attributes e e e e e e e e e e e 274

5.113 TParallelPort e e e e e e e e e e 275
5.113.1 Attributes e e e e e e e e e e e 275

5.114 IParallelPortChangedEvent (IEvent) v v v v v v v v e .. 276
5.114.1 Attributes e e e e e e e e e e 276

5.115 IPerformanceCollector i i e e e e e 276
5.115.1 Attributes e e e e e e e e e e e 277
5.115.2 disableMetrics e e e e e e e 277
5.115.3 enableMetrics e e e e e e 278
5.115.4 getMetriCs v it e e e e e e e e e 278
5.115.5 queryMetricsData oL 278
5.115.6 setupMetriCs v v i vt e e e e e e e e e e e 279

5.116 IPerformanceMetriC v v v v i e e e e e e e e e e e e e 280
5.116.1 Attributes e e e e e e e e e e 280

5.117 IProCesS i i e 281
5.117.1 Attributes e e e e e e e e e e e 281
5.117.2 read e e e e e e 282
5117.3 terminate. o i e e e e e e e e e e e e e e 282
5.117.4 waitFor e e e e e e e e e e e e e 282
5.117.5 waitForArray e e e e e 282
5.117.6 WIIte o v et e e e e e e e e e e e e e e e e e e e 283
5.117.7 WIIteAITAY . . .« o v v v it e e e e e e e e e e e e 283

S. 118 IProgress v v v i i e e e e e e e e e e e 283
5.118.1 Attributes e e e e e e e e e e 284
5.118.2 cancel e e e 286
5.118.3 setCurrentOperationProgress 286
5.118.4 setNextOperation v v v v v v e 286
5.118.5 waitForAsyncProgressCompletion 286
5.118.6 waitForCompletion 287
5.118.7 waitForOperationCompletion 287

5.119 IProgressEvent (IEvent) o i i i i i et e e 287
5.119.1 Attributes e e e e e e e e e e e 287

5.120 IProgressPercentageChangedEvent (IProgressEvent) 287
5.120.1 Attributes e e e e e e e e e e e e 288

5.121 IProgressTaskCompletedEvent (IProgressEvent) 288
5.121.1 Attributes e e e e e e e 288

5.122 IReusableEvent (IEVent) v v v i i it e e e e e e e e 288
5.122.1 Attributes e e e e e e e e e e e e 288
5.122.2 TEUSE o i o e e e e e e e e e e e e e e e e e e e 288

5.123 IRuntimeErrorEvent (IEvent) i i i i 288
5.123.1 Attributes e e e e e e e e e e e e 289

14

Contents

5.124 ISerialPort v i e e e e e e e e e e e e 290
5.124.1 Attributes e 290
5.125 ISerialPortChangedEvent (IEvent) i i i v v v v ... 291
5.125.1 Attributes e 291
5.126 ISeSSion e e e e e e e e e e e e e e 291
5.126.1 Attributes e 292
5.126.2 unlockMachine e 293
5.127 ISessionStateChangedEvent (IMachineEvent) 293
5.127.1 Attributes L 293
5.128 ISharedFolder e 293
5.128.1 Attributes e 294
5.129 ISharedFolderChangedEvent (IEvent)o v ... 295
5.129.1 Attributes 295
5.130 IShowWindowEvent (IEvent) o v v v v v v i e e e e e et e 295
5.130.1 Attributes e 296
5.131 ISmapshot e e 296
5.131.1 Attributes e e 297
5.131.2 getChildrenCount i i 298
5.132 ISnapshotChangedEvent (ISnapshotEvent) 298
5.132.1 Attributes e 298
5.133 ISnapshotDeletedEvent (ISnapshotEvent) 298
5.133.1 Attributes e e e 298
5.134 ISnapshotEvent (IMachineEvent) 299
5.134.1 Attributes e 299
5.135 ISnapshotRestoredEvent (ISnapshotEvent) 299
5.135.1 Attributes 299
5.136 ISnapshotTakenEvent (ISnapshotEvent) 299
5.136.1 Attributes e e 299
5.137 IStateChangedEvent (IEvent) o o v v v v v vttt i i 299
5.137.1 Attributes 300
5.138 IStorageController e e 300
5.138.1 Attributes e e 300
5.139 IStorageControllerChangedEvent (IEvent) 301
5.139.1 Attributes e 301
5.140 IStorageDeviceChangedEvent (IEvent) 302
5.140.1 Attributes e 302
5.141 ISystemProperties o i e e e e e e e e e e 302
5.141.1 Attributes e e e e e e e e e 302
5.141.2 getDefaultloCacheSettingForStorageController 307
5.141.3 getDeviceTypesForStorageBus 307
5.141.4 getMaxDevicesPerPortForStorageBus 308
5.141.5 getMaxInstancesOfStorageBus 308
5.141.6 getMaxInstancesOfUSBControllerType. 308
5.141.7 getMaxNetworkAdapters oo 308
5.141.8 getMaxNetworkAdaptersOfType 308
5.141.9 getMaxPortCountForStorageBus 309
5.141.10getMinPortCountForStorageBus 309
5.141.11getStorageControllerHotplugCapable 309
5.142 TTOKEN o o i e e e e e e e e e e e e e e e e e e e 309
5.142.1 abandon 309
51422 dummy e e e e e 309
5.143 IUSBController it e e e e e e e 310
5.143.1 Attributes e 310

15

Contents

5.144 TUSBControllerChangedEvent (IEvent) 310
5.144.1 Attributes e e e e e e e e e e e e 310
5.145 TUSBDEVICE o i i e 310
5.145.1 Attributes e e e e e e e e e e e e e 310
5.146 TUSBDeviceFilter i i e e e e e e e 312
5.146.1 Attributes e e e e e e e e e 313
5.147 TUSBDevViceFilters o i e e e e e e e e e e e e e 315
5.147.1 Attributes e e e e e e e e e e e e 315
5.147.2 createDeviceFilter e 315
5.147.3 insertDeviceFilter 315
5.147.4 removeDeviceFilter e 316
5.148 IUSBDeviceStateChangedEvent (IEvent) 316
5.148.1 Attributes e e e e e e e e e 316
5.149 IUSBProxyBackend 316
5.149.1 Attributes e e e e e e e e e e e e 317
5.150 IUnattended e 317
5.150.1 Attributes e e e e e e e e e e e e 317
5.150.2 constructMedia e e e e 322
5.150.3 detectIsoOS e e e e e e e 322
5.150.4 done e e e e e e 322
SA505 prepareo e e e e e e e e 322
5.150.6 reconfigureVM e e e e e e 322
5.151 IVBoxSVCAvailabilityChangedEvent (IEvent) 322
5.151.1 Attributes e e e e e e e e e e 322
5.152 IVBoxSVCRegistration v i v i i i it e e e e e 323
5.152.1 getVirtualBoX i i e e e e e e 323
5.153 IVESEXPIOTer o o it i e e e e e e e 323
5.153.1 Attributes e e e e e e e e e e e 323
5.153.2 cd e e e e e e e 323
51533 cdUpP i e e 323
5.153.4 entryList e e 324
5.153.5 eXiStS e e e e e e e e e e e e e e e e e e 324
5.153.6 TEMOVE v v o i e 324
5.153.7 update e e e e 324
5154 IVRDESEIVET o i o i e 324
5.154.1 Attributes e e e e e e e e e e e 324
5.154.2 getVRDEProperty i it e e 325
5.154.3 setVRDEProperty i it e 325
5.155 IVRDEServerChangedEvent (IEvent) 326
5.155.1 Attributes e e e e e e e e e e e e 326
5.156 IVRDEServerInfo e e e 326
5.156.1 Attributes e e e e e e e e 326
5.157 IVRDEServerInfoChangedEvent (IEvent) 328
5.157.1 Attributes e e e e e e e e e e 328
5.158 IVetoEvent (IEvent) v v v i i i e e e e e e e e e e e e e 328
5.158.1 addApproval e 328
5.158.2 addVeto e e e e e 328
5.158.3 getApprovalso e e e e 329
5.158.4 getVetos e e e e 329
5.158.5 isApproved e e e e e e e 329
5.158.6 isVetoed e e e e 329
5.159 IVideoCaptureChangedEvent (IEvent) 329
5.159.1 Attributes e e e e e e e e e e e e 329

16

Contents

5.160 IVIrtualBoX v v v o e e e e e e e e e e e e e e e e e e 329
5.160.1 Attributes e e 330
5.160.2 checkFirmwarePresent, 333
5.160.3 composeMachineFilename 333
5.160.4 createApplianceo e 334
5.160.5 createDHCPSEeIver v v v i e e e e e e e e e e e e e e 334
5.160.6 createMachine e e 334
5.160.7 createMedium e e e e 335
5.160.8 createNATNetwork 336
5.160.9 createSharedFolder 337
5.160.10createUnattendedInstaller 337
5.160.11findDHCPServerByNetworkName 337
5.160.12findMachine e 337
5.160.13findNATNetworkByName v v i v v .. 338
5.160.14getExtraData« v v i e e e e e e e e e e e e e e e e e 338
5.160.15getExtraDataKeys o 338
5.160.16getGuestOSType v it e e e e e 338
5.160.17getMachineStates e 338
5.160.18getMachinesByGroupso v it i e 339
5.160.19penMachine e e 339
5.160.200penMedium e e e e 339
5.160.21registerMachine e 340
5.160.22removeDHCPServer e 341
5.160.23removeNATNetwork 341
5.160.24removeSharedFolder 341
5.160.25setExtraData e e e 341
5.160.26setSettingsSecreto e e e e e e e e e e e 342

5.161 IVirtualBoxClient i i i e e e e e e e 342
5.161.1 Attributes e e 342
5.161.2 checkMachineError e 343

5.162 IVirtualBoxErrorInfo 343
5.162.1 Attributes e e e e e e e e 343

5.163 IVirtualBoxSDS i e e e e e e e e e e e 344
5.163.1 deregisterVBOXSVC e 345
5.163.2 registerVBoxSVC 345

5.164 IVirtualSystemDescription i . e e e e e e e e e 345
5.164.1 Attributes e 345
5.164.2 addDescription 345
5.164.3 getDescription e e 346
5.164.4 getDescriptionByType 348
5.164.5 getValuesByType i i i i it e e e e e e 348
5.164.6 setFinalValues 348

5.165 TWebsessionManager v v v v v vt i i e e e e e 349
5.165.1 getSessionObject e 349
5.165.2 logoff e 349
5.165.3 10gon e e 349

Enumerations (enums) 350

6.1 APICMoOdE o o e e e e 350

6.2 AccessMode e e 350

6.3 AdditionsFacilityClass e e e e 350

6.4 AdditionsFacilityStatus e e e e e e 350

6.5 AdditionsFacilityType i i e e e e e e 351

6.6 AdditionsRunLevelType e 351

17

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54
6.55
6.56
6.57
6.58
6.59

Contents

AdditionsUpdateFlag e 351
AudioCodecType i i e e e e e e e e e e 352
AudioControllerType o o o i e e e e e 352
AudioDriverType o o e e e e e e e e e e e e 352
AuthType e e e e 352
AutostopType L e e e e 353
BIOSBootMenuMode i e e e e e e e 353
BandwidthGroupType« o o e 353
BitmapFormat e e e e e e e e e e e 353
CPUPropertyType o i e e e e e e e e e e 354
CertificateVersion v v i i it e e e e e e e e e e 354
ChipsetType v o o e e e e e e e e e e e e e e e e e e 355
CleanupMode o e e e e e 355
ClipboardMode e e e e 355
CloneMode e e e 355
CloneOptions v v v vt e e e e e e e e e e e e e e e 355
DataFlags o v o e e e e e e e e e e 356
DataType o o o e e e e e e e e e e e e e e e e 356
DeviCeACtIVILY o« v i e e e e e e e e e e e e 356
DeviceType v v i e e e e e e e e e e e e e e e 356
DhepOpt o e e e e 357
DhepOptEncoding o o oo i i e e e e 359
DirectoryCopyFlags i i e e e 359
DirectoryCreateFlag o e e 359
DirectoryOpenFlag e e e e 359
DirectoryRemoveRecFlag e 359
DnDACHON o e e e e e e e e e e e 360
DNDMoOdE e e e e e e e e e e e e 360
EXportOptions o v i i e e e e e e e 360
FaultToleranceState i i i i i e e e e e e e 360
FileAccessMode e e 361
FileCopyFlag« e e e e e e e e 361
FileOpenAction o o o i i it it i e e e 362
FileOpenEXFlags i i i e e e e e 362
FileSeekOrigin e 362
FileSharingMode e e e 362
FileStatus e e 363
FirmwareType i e e e e e e e 363
FramebufferCapabilities 363
FsObjMoveFlags i i i e e e 363
FsObjRenameFlag 0 e e e 364
FSODITYPE . . . o o o o e e e e e e e e e e 364
GraphicsControllerType o o i i i e 364
GuestMonitorChangedEventType 364
GUeStMONItOrStatus . . . « v v v v v i e e e e e e e e e e e e e e e e e e 365
GuestMouseEventMode e e 365
GUEeSLSeSSIONSTAtUS v v v v i e e e e e e e e e e e e e e e 365
GuestSessionWaitForFlag 365
GuestSessionWaitResult e 366
GuestUserState i it e e e e e e e 366
HWVirtExPropertyType o 0 i it i e e e e 368
HostNetworkInterfaceMediumType v v i i i i i i v e .. 368
HostNetworkInterfaceStatus v vt i v i it e 369

18

Contents

6.60 HostNetworkInterfaceType o o v v i i e e e e e e
6.61 ImportOptionS vt v i i i e e e e e e e e e e e
6.62 KeyboardHIDType i i i e e e
6.63 KeyboardLED e e e e
6.64 LockType o o v i e e e e
6.65 MachineState i e e e e e e e e e
6.66 MediumFormatCapabilities
6.67 MediumState e e e e e e
6.68 MediumType v v e e e e e e e e e e e e
6.69 MediumVariant e e e e e
6.70 MouseButtonState e e e e e e
6.71 NATAliasMode o e e e e e e e
6.72 NATProtocol o i e e e e e
6.73 NetworkAdapterPromiscModePolicy
6.74 NetworkAdapterType v v i v e e e e e e e e e e e e e e e
6.75 NetworkAttachmentType oo i i i i
6.76 ParavirtProvider e e e e e e
6.77 PathStyle e
6.78 PointingHIDType
6.79 PortMode e e
6.80 ProcessCreateFlag i i e
6.81 ProcessInputFlag
6.82 ProcessInputStatus oL Lo e e e e e e
6.83 ProcessOutputFlag e
6.84 ProcessPriority e e e e e e e e e e e e e
6.85 ProcessStatus e e e
6.86 ProcessWaitForFlag e
6.87 ProcessWaitResult e e e
6.88 ProcessorFeature e e
6.89 Reason e e e
6.90 SCOpe. e e e
6.91 ScreenLayoutMode e
6.92 SesSiONState e e e e e e e e
6.93 SessionType e e e e
6.94 SettingSVersion i e e e e
6.95 StorageBus. e e e e e e e e e e
6.96 StorageControllerType i i it
6.97 SymlinkReadFlag e
6.98 SymlinkType e e
6.99 TouchContactState i i i i it e e e e e e
6.100 USBConnectionSpeed v v i i i e e e e e e e e
6.101 USBControllerType v v i it e i e e e e e e e e e e e
6.102 USBDevViceFilterACtion v v v i i i e e e e e e e e
6.103 USBDeVICeState o v v v vt e e e e e e e e e e e e e
6.104 VBoxEventType e
6.105 VESTYPE o o i e e e e e e e e e e
6.106 VirtualSystemDescriptionType v v v v v v i e e e e e e e
6.107 VirtualSystemDescriptionValueType

Host-Guest Communication Manager

7.1 Virtual hardware implementation

7.2 Protocol specification e
7.2.1 Requestheader,
7.2.2 CONNECL v ittt i e e e e

19

Contents

7.2.3 DIiSCONNECE v v vt e it e e e e e e e e e e
724 Call32and Call64
7.25 Cancel e
7.3 Guestsoftwareinterface
7.3.1 Theguestdriverinterface.
7.3.2 Guest application interface
7.4 HGCM Service Implementation

RDP Web Control

8.1 RDPWeb features i i i e e

8.2 RDPWebreference @ i i i i i e e e
8.2.1 RDPWebfunctions. o i v i i it et e e e e
8.2.2 Embedding RDPWeb inan HTMLpage

8.3 RDPWebchangelog. i
8.3.1 Version 1.2.28 e e e e e
8.3.2 Version 1.1.26 e e e e e
8.3.3 Version 1.0.24 e e e e

Drag and Drop
9.1 BasiCCONCEPLS . . . v v v v v i et e e e e e e e e e e e e e e e e
9.2 Supported formats e

10 VirtualBox external authentication modules

11 Using Java API

11.1 IntroducCtion i i it e e e e e e e e e e e e e e
11.2 ReqUirements v v v i v it et e e e e e e e e e e e e
11.3 Example o e e e e e e e

12 License information

13 Main API change log

13.1 Incompatible API changes with version5.x
13.2 Incompatible API changes with version5.0
13.3 Incompatible API changes with version4.3
13.4 Incompatible API changes with version4.2
13.5 Incompatible API changes with version4.1
13.6 Incompatible API changes with version4.0
13.7 Incompatible API changes with version3.2
13.8 Incompatible API changes with version 3.1
13.9 Incompatible API changes with version3.0
13.10 Incompatible API changes with version2.2
13.11 Incompatible API changes with version 2.1

20

1 Introduction

VirtualBox comes with comprehensive support for third-party developers. This Software Devel-
opment Kit (SDK) contains all the documentation and interface files that are needed to write
code that interacts with VirtualBox.

1.1 Modularity: the building blocks of VirtualBox

VirtualBox is cleanly separated into several layers, which can be visualized like in the picture
below:

VirtualBox GUI VBoxManage

VirtualBox Main API

VirtualBox
RDP
Server Virtual
Devices

binary
Portability compatible

o VirtualBox hypervisor s

cross platform I
. .)) 3" Party
abstraction layer Windows, Linux, OS X, Solaris, FreeBSD plug-in

Resource
Monitor
Windows

Kernel mode

The orange area represents code that runs in kernel mode, the blue area represents userspace
code.

At the bottom of the stack resides the hypervisor — the core of the virtualization engine, con-
trolling execution of the virtual machines and making sure they do not conflict with each other
or whatever the host computer is doing otherwise.

On top of the hypervisor, additional internal modules provide extra functionality. For example,
the RDP server, which can deliver the graphical output of a VM remotely to an RDP client, is a
separate module that is only loosely tacked into the virtual graphics device. Live Migration and
Resource Monitor are additional modules currently in the process of being added to VirtualBox.

What is primarily of interest for purposes of the SDK is the API layer block that sits on top of
all the previously mentioned blocks. This API, which we call the “Main API”, exposes the entire
feature set of the virtualization engine below. It is completely documented in this SDK Reference
— see chapter 5, Classes (interfaces), page 52 and chapter 6, Enumerations (enums), page 350
- and available to anyone who wishes to control VirtualBox programmatically. We chose the
name “Main API” to differentiate it from other programming interfaces of VirtualBox that may
be publicly accessible.

With the Main API, you can create, configure, start, stop and delete virtual machines, retrieve
performance statistics about running VMs, configure the VirtualBox installation in general, and

21

1 Introduction

more. In fact, internally, the front-end programs VirtualBox and VBoxManage use nothing but
this API as well — there are no hidden backdoors into the virtualization engine for our own front-
ends. This ensures the entire Main API is both well-documented and well-tested. (The same
applies to VBoxHeadless, which is not shown in the image.)

1.2 Two guises of the same “Main API”: the web service or
COM/XPCOM

There are several ways in which the Main API can be called by other code:

1. VirtualBox comes with a web service that maps nearly the entire Main API. The web ser-
vice ships in a stand-alone executable (vboxwebsrv) that, when running, acts as an HTTP
server, accepts SOAP connections and processes them.

Since the entire web service API is publicly described in a web service description file (in
WSDL format), you can write client programs that call the web service in any language with
a toolkit that understands WSDL. These days, that includes most programming languages
that are available: Java, C++, .NET, PHP, Python, Perl and probably many more.

All of this is explained in detail in subsequent chapters of this book.

There are two ways in which you can write client code that uses the web service:

a) For Java as well as Python, the SDK contains easy-to-use classes that allow you to use
the web service in an object-oriented, straightforward manner. We shall refer to this
as the “object-oriented web service (OOWS)“.

The OO bindings for Java are described in chapter 11, Using Java API, page 403, those
for Python in chapter 2.1.2, The object-oriented web service for Python, page 29.

b) Alternatively, you can use the web service directly, without the object-oriented client
layer. We shall refer to this as the “raw web service”.

You will then have neither native object orientation nor full type safety, since web
services are neither object-oriented nor stateful. However, in this way, you can write
client code even in languages for which we do not ship object-oriented client code; all
you need is a programming language with a toolkit that can parse WSDL and generate
client wrapper code from it.

We describe this further in chapter 2.2, Using the raw web service with any language,
page 30, with samples for Java and Perl.

2. Internally, for portability and easier maintenance, the Main API is implemented using the
Component Object Model (COM), an interprocess mechanism for software components
originally introduced by Microsoft for Microsoft Windows. On a Windows host, VirtualBox
will use Microsoft COM; on other hosts where COM is not present, it ships with XPCOM,
a free software implementation of COM originally created by the Mozilla project for their
browsers.

So, if you are familiar with COM and the C++ programming language (or with any other
programming language that can handle COM/XPCOM objects, such as Java, Visual Basic or
C#), then you can use the COM/XPCOM API directly. VirtualBox comes with all necessary
files and documentation to build fully functional COM applications. For an introduction,
please see chapter 2.3, Using COM/XPCOM directly, page 36 below.

The VirtualBox front-ends (the graphical user interfaces as well as the command line),
which are all written in C++, use COM/XPCOM to call the Main API. Technically, the web
service is another front-end to this COM API, mapping almost all of it to SOAP clients.

If you wonder which way to choose, here are a few comparisons:

22

1 Introduction

Web service COM/XPCOM

Pro: Easy to use with Java and Python with the Con: Usable from languages where

object-oriented web service; extensive support COM bridge available (most languages

even with other languages (C+ +, .NET, PHP, on Windows platform, Python and C+ +

Perl and others) on other hosts)

Pro: Client can be on remote machine Con: Client must be on the same host
where virtual machine is executed

Con: Significant overhead due to XML Pro: Relatively low invocation overhead

marshalling over the wire for each method call

In the following chapters, we will describe the different ways in which to program VirtualBox,
starting with the method that is easiest to use and then increase complexity as we go along.

1.3 About web services in general

Web services are a particular type of programming interface. Whereas, with “normal” program-
ming, a program calls an application programming interface (API) defined by another program
or the operating system and both sides of the interface have to agree on the calling convention
and, in most cases, use the same programming language, web services use Internet standards
such as HTTP and XML to communicate.!

In order to successfully use a web service, a number of things are required — primarily, a web
service accepting connections; service descriptions; and then a client that connects to that web
service. The connections are governed by the SOAP standard, which describes how messages
are to be exchanged between a service and its clients; the service descriptions are governed by
WSDL.

In the case of VirtualBox, this translates into the following three components:

1. The VirtualBox web service (the “server”): this is the vboxwebsrv executable shipped with
VirtualBox. Once you start this executable (which acts as a HTTP server on a specific
TCP/IP port), clients can connect to the web service and thus control a VirtualBox installa-
tion.

2. VirtualBox also comes with WSDL files that describe the services provided by the web ser-
vice. You can find these files in the sdk/bindings/webservice/ directory. These files are
understood by the web service toolkits that are shipped with most programming languages
and enable you to easily access a web service even if you don’t use our object-oriented
client layers. VirtualBox is shipped with pregenerated web service glue code for several
languages (Python, Perl, Java).

3. A client that connects to the web service in order to control the VirtualBox installation.

Unless you play with some of the samples shipped with VirtualBox, this needs to be written
by you.

'In some ways, web services promise to deliver the same thing as CORBA and DCOM did years ago. However, while
these previous technologies relied on specific binary protocols and thus proved to be difficult to use between diverging
platforms, web services circumvent these incompatibilities by using text-only standards like HTTP and XML. On the
downside (and, one could say, typical of things related to XML), a lot of standards are involved before a web service
can be implemented. Many of the standards invented around XML are used one way or another. As a result, web
services are slow and verbose, and the details can be incredibly messy. The relevant standards here are called SOAP
and WSDL, where SOAP describes the format of the messages that are exchanged (an XML document wrapped in
an HTTP header), and WSDL is an XML format that describes a complete API provided by a web service. WSDL in
turn uses XML Schema to describe types, which is not exactly terse either. However, as you will see from the samples
provided in this chapter, the VirtualBox web service shields you from these details and is easy to use.

23

1 Introduction

1.4 Running the web service

The web service ships in an stand-alone executable, vboxwebsrv, that, when running, acts as
a HTTP server, accepts SOAP connections and processes them — remotely or from the same
machine.

Note: The web service executable is not contained with the VirtualBox SDK, but instead
ships with the standard VirtualBox binary package for your specific platform. Since the
SDK contains only platform-independent text files and documentation, the binaries are
instead shipped with the platform-specific packages. For this reason the information
how to run it as a service is included in the VirtualBox documentation.

The vboxwebsrv program, which implements the web service, is a text-mode (console) pro-
gram which, after being started, simply runs until it is interrupted with Ctrl-C or a kill command.

Once the web service is started, it acts as a front-end to the VirtualBox installation of
the user account that it is running under. In other words, if the web service is run under
the user account of userl, it will see and manipulate the virtual machines and other data
represented by the VirtualBox data of that user (for example, on a Linux machine, under
/home/userl/.config/VirtualBox; see the VirtualBox User Manual for details on where this
data is stored).

1.4.1 Command line options of vboxwebsrv

The web service supports the following command line options:

e --help (or -h): print a brief summary of command line options.

e --background (or -b): run the web service as a background daemon. This option is not
supported on Windows hosts.

e --host (or -H): This specifies the host to bind to and defaults to “localhost”.
e --port (or -p): This specifies which port to bind to on the host and defaults to 18083.
e --ssl (or -s): This enables SSL support.

e --keyfile (or -K): This specifies the file name containing the server private key and the
certificate. This is a mandatory parameter if SSL is enabled.

e --passwordfile (or -a): This specifies the file name containing the password for the
server private key. If unspecified or an empty string is specified this is interpreted as an
empty password (i.e. the private key is not protected by a password). If the file name
- is specified then then the password is read from the standard input stream, otherwise
from the specified file. The user is responsible for appropriate access rights to protect the
confidential password.

e --cacert (or -c): This specifies the file name containing the CA certificate appropriate for
the server certificate.

e --capath (or -C): This specifies the directory containing several CA certificates appropriate
for the server certificate.

e --dhfile (or -D): This specifies the file name containing the DH key. Alternatively it can
contain the number of bits of the DH key to generate. If left empty, RSA is used.

e --randfile (or -r): This specifies the file name containing the seed for the random num-
ber generator. If left empty, an operating system specific source of the seed.

24

1 Introduction

e --timeout (or -t): This specifies the session timeout, in seconds, and defaults to 300 (five
minutes). A web service client that has logged on but makes no calls to the web service
will automatically be disconnected after the number of seconds specified here, as if it had
called the IWebSessionManager: : logoff () method provided by the web service itself.

It is normally vital that each web service client call this method, as the web service can
accumulate large amounts of memory when running, especially if a web service client does
not properly release managed object references. As a result, this timeout value should not
be set too high, especially on machines with a high load on the web service, or the web
service may eventually deny service.

e --check-interval (or -i): This specifies the interval in which the web service checks
for timed-out clients, in seconds, and defaults to 5. This normally does not need to be
changed.

e --threads (or -T): This specifies the maximum number or worker threads, and defaults
to 100. This normally does not need to be changed.

e --keepalive (or -k): This specifies the maximum number of requests which can be sent
in one web service connection, and defaults to 100. This normally does not need to be
changed.

e --authentication (or -A): This specifies the desired web service authentication method.
If the parameter is not specified or the empty string is specified it does not change the
authentication method, otherwise it is set to the specified value. Using this parameter is a
good measure against accidental misconfiguration, as the web service ensures periodically
that it isn’t changed.

e --verbose (or -v): Normally, the web service outputs only brief messages to the console
each time a request is served. With this option, the web service prints much more de-
tailed data about every request and the COM methods that those requests are mapped to
internally, which can be useful for debugging client programs.

e --pidfile (or -P): Name of the PID file which is created when the daemon was started.

e --logfile (or -F) <file>: If this is specified, the web service not only prints its output
to the console, but also writes it to the specified file. The file is created if it does not exist;
if it does exist, new output is appended to it. This is useful if you run the web service
unattended and need to debug problems after they have occurred.

e --logrotate (or -R): Number of old log files to keep, defaults to 10. Log rotation is
disabled if set to 0.

e --logsize (or -S): Maximum size of log file in bytes, defaults to 100MB. Log rotation is
triggered if the file grows beyond this limit.

e --loginterval (or -I): Maximum time interval to be put in a log file before rotation is
triggered, in seconds, and defaults to one day.

1.4.2 Authenticating at web service logon

As opposed to the COM/XPCOM variant of the Main API, a client that wants to use the web
service must first log on by calling the IWebsessionManager::logon() API that is specific to the
web service. Logon is necessary for the web service to be stateful; internally, it maintains a
session for each client that connects to it.

The IWebsessionManager::1logon() API takes a user name and a password as arguments,
which the web service then passes to a customizable authentication plugin that performs the
actual authentication.

25

1 Introduction

For testing purposes, it is recommended that you first disable authentication with this com-
mand:

VBoxManage setproperty websrvauthlibrary null

Warning: This will cause all logons to succeed, regardless of user name or password.
This should of course not be used in a production environment.

Generally, the mechanism by which clients are authenticated is configurable by way of the
VBoxManage command:

VBoxManage setproperty websrvauthlibrary default|null|<library>

This way you can specify any shared object/dynamic link module that conforms with the
specifications for VirtualBox external authentication modules as laid out in section VRDE au-
thentication of the VirtualBox User Manual; the web service uses the same kind of modules as
the VirtualBox VRDE server. For technical details on VirtualBox external authentication modules
see chapter 10, VirtualBox external authentication modules, page 401

By default, after installation, the web service uses the VBoxAuth module that ships with
VirtualBox. This module uses PAM on Linux hosts to authenticate users. Any valid user-
name/password combination is accepted, it does not have to be the username and password
of the user running the web service daemon. Unless vboxwebsrv runs as root, PAM authenti-
cation can fail, because sometimes the file /etc/shadow, which is used by PAM, is not read-
able. On most Linux distribution PAM uses a suid root helper internally, so make sure you test
this before deploying it. One can override this behavior by setting the environment variable
VBOX_PAM_ALLOW_INACTIVE which will suppress failures when unable to read the shadow pass-
word file. Please use this variable carefully, and only if you fully understand what you’re doing.

26

2 Environment-specific notes

The Main API described in chapter 5, Classes (interfaces), page 52 and chapter 6, Enumerations
(enums), page 350 is mostly identical in all the supported programming environments which
have been briefly mentioned in the introduction of this book. As a result, the Main API's general
concepts described in chapter 3, Basic VirtualBox concepts; some examples, page 47 are the same
whether you use the object-oriented web service (OOWS) for JAX-WS or a raw web service
connection via, say, Perl, or whether you use C++ COM bindings.

Some things are different depending on your environment, however. These differences are
explained in this chapter.

2.1 Using the object-oriented web service (OOWS)

As explained in chapter 1.2, Two guises of the same “Main API”: the web service or COM/XPCOM,
page 22, VirtualBox ships with client-side libraries for Java, Python and PHP that allow you to use
the VirtualBox web service in an intuitive, object-oriented way. These libraries shield you from
the client-side complications of managed object references and other implementation details that
come with the VirtualBox web service. (If you are interested in these complications, have a look
at chapter 2.2, Using the raw web service with any language, page 30).

We recommend that you start your experiments with the VirtualBox web service by using our
object-oriented client libraries for JAX-WS, a web service toolkit for Java, which enables you to
write code to interact with VirtualBox in the simplest manner possible.

As “interfaces”, “attributes” and “methods” are COM concepts, please read the documentation
in chapter 5, Classes (interfaces), page 52 and chapter 6, Enumerations (enums), page 350 with
the following notes in mind.

The OOWS bindings attempt to map the Main API as closely as possible to the Java, Python
and PHP languages. In other words, objects are objects, interfaces become classes, and you can
call methods on objects as you would on local objects.

The main difference remains with attributes: to read an attribute, call a “getXXX” method,
with “XXX” being the attribute name with a capitalized first letter. So when the Main API Ref-
erence says that IMachine has a “name” attribute (see IMachine::name), call getName() on an
IMachine object to obtain a machine’s name. Unless the attribute is marked as read-only in the
documentation, there will also be a corresponding “set” method.

2.1.1 The object-oriented web service for JAX-WS

JAX-WS is a powerful toolkit by Sun Microsystems to build both server and client code with Java.
It is part of Java 6 (JDK 1.6), but can also be obtained separately for Java 5 (JDK 1.5). The
VirtualBox SDK comes with precompiled OOWS bindings working with both Java 5 and 6.

The following sections explain how to get the JAX-WS sample code running and explain a few
common practices when using the JAX-WS object-oriented web service.

2.1.1.1 Preparations

Since JAX-WS is already integrated into Java 6, no additional preparations are needed for Java
6.

If you are using Java 5 (JDK 1.5.x), you will first need to download and install an external
JAX-WS implementation, as Java 5 does not support JAX-WS out of the box; for example, you can

27

2 Environment-specific notes

download one from here: https://jax-ws.dev.java.net/2.1.4/JAXWS2.1.4-20080502.
jar. Then perform the installation (java -jar JAXWS2.1.4-20080502.jar).

2.1.1.2 Getting started: running the sample code
To run the OOWS for JAX-WS samples that we ship with the SDK, perform the following steps:

1. Open a terminal and change to the directory where the JAX-WS samples reside.! Examine
the header of Makefile to see if the supplied variables (Java compiler, Java executable)
and a few other details match your system settings.

2. To start the VirtualBox web service, open a second terminal and change to the directory
where the VirtualBox executables are located. Then type:

./vboxwebsrv -v
The web service now waits for connections and will run until you press Ctrl+C in this

second terminal. The -v argument causes it to log all connections to the terminal. (See
chapter 1.4, Running the web service, page 24 for details on how to run the web service.)

3. Back in the first terminal and still in the samples directory, to start a simple client example
just type:
make runl6é
if you're on a Java 6 system; on a Java 5 system, run make runl5 instead.

This should work on all Unix-like systems such as Linux and Solaris. For Windows systems,
use commands similar to what is used in the Makefile.

This will compile the clienttest. java code on the first call and then execute the resulting
clienttest class to show the locally installed VMs (see below).

The clienttest sample imitates a few typical command line tasks that VBoxManage,
VirtualBox’s regular command-line front-end, would provide (see the VirtualBox User Manual
for details). In particular, you can run:

e java clienttest show vms: show the virtual machines that are registered locally.

e java clienttest list hostinfo: show various information about the host this
VirtualBox installation runs on.

e java clienttest startvm <vmname|uuid>: start the given virtual machine.

The clienttest.java sample code illustrates common basic practices how to use the
VirtualBox OOWS for JAX-WS, which we will explain in more detail in the following chapters.

2.1.1.3 Logging on to the web service

Before a web service client can do anything useful, two objects need to be created, as can be
seen in the clienttest constructor:

1. An instance of IWebsessionManager, which is an interface provided by the web service to
manage “web sessions” — that is, stateful connections to the web service with persistent
objects upon which methods can be invoked.

In the OOWS for JAX-WS, the [WebsessionManager class must be constructed explicitly, and
a URL must be provided in the constructor that specifies where the web service (the server)
awaits connections. The code in clienttest. java connects to “http://localhost:18083/“,
which is the default.

The port number, by default 18083, must match the port number given to the vboxwebsrv
command line; see chapter 1.4.1, Command line options of vboxwebsrv, page 24.

1In sdk/bindings/glue/java/.

28

https://jax-ws.dev.java.net/2.1.4/JAXWS2.1.4-20080502.jar
https://jax-ws.dev.java.net/2.1.4/JAXWS2.1.4-20080502.jar

2 Environment-specific notes

2. After that, the code calls IWebsessionManager::logon(), which is the first call that actually
communicates with the server. This authenticates the client with the web service and
returns an instance of IVirtualBox, the most fundamental interface of the VirtualBox web
service, from which all other functionality can be derived.

If logon doesn’t work, please take another look at chapter 1.4.2, Authenticating at web
service logon, page 25.

2.1.1.4 Object management

The current OOWS for JAX-WS has certain memory management related limitations. When
you no longer need an object, call its IManagedObjectRef::release() method explicitly, which
frees appropriate managed reference, as is required by the raw web service; see chapter 2.2.3.3,
Managed object references, page 34 for details. This limitation may be reconsidered in a future
version of the VirtualBox SDK.

2.1.2 The object-oriented web service for Python

VirtualBox comes with two flavors of a Python API: one for web service, discussed here, and
one for the COM/XPCOM API discussed in chapter 2.3.1, Python COM API, page 36. The client
code is mostly similar, except for the initialization part, so it is up to the application developer
to choose the appropriate technology. Moreover, a common Python glue layer exists, abstracting
out concrete platform access details, see chapter 2.3.2, Common Python bindings layer, page 36.

The minimum supported Python version is 2.6.

As indicated in chapter 1.2, Two guises of the same “Main API”: the web service or COM/XPCOM,
page 22, the COM/XPCOM API gives better performance without the SOAP overhead, and does
not require a web server to be running. On the other hand, the COM/XPCOM Python API requires
a suitable Python bridge for your Python installation (VirtualBox ships the most important ones
for each platform?). On Windows, you can use the Main API from Python if the Win32 extensions
package for Python?® is installed. Versions of Python Win32 extensions earlier than 2.16 are
known to have bugs, leading to issues with VirtualBox Python bindings, so please make sure to
use latest available Python and Win32 extensions.

The VirtualBox OOWS for Python relies on the Python ZSI SOAP implementation (see http:
//pywebsvcs.sourceforge.net/zsi.html), which you will need to install locally before trying
the examples. Most Linux distributions come with package for ZSI, such as python-zsi in
Ubuntu.

To get started, open a terminal and change to the bindings/glue/python/sample direc-
tory, which contains an example of a simple interactive shell able to control a VirtualBox in-
stance. The shell is written using the API layer, thereby hiding different implementation de-
tails, so it is actually an example of code share among XPCOM, MSCOM and web services.
If you are interested in how to interact with the web services layer directly, have a look at
install/vboxapi/__init__.py which contains the glue layer for all target platforms (i.e. XP-
COM, MSCOM and web services).

To start the shell, perform the following commands:

/opt/VirtualBox/vboxwebsrv -t 0
start web service with object autocollection disabled
export VBOX_PROGRAM_PATH=/opt/VirtualBox
your VirtualBox installation directory
export VBOX_SDK_PATH=/home/youruser/vbox-sdk
where you’ve extracted the SDK
./vboxshell.py -w

20n On Mac OS X only the Python versions bundled with the OS are officially supported. This means 2.6 and 2.7 for
10.9 and later.
3See http://sourceforge.net/project/showfiles.php?group_id=78018

29

http://pywebsvcs.sourceforge.net/zsi.html
http://pywebsvcs.sourceforge.net/zsi.html
http://sourceforge.net/project/showfiles.php?group_id=78018

2 Environment-specific notes

See chapter 4, The VirtualBox shell, page 50 for more details on the shell’s functionality. For
you, as a VirtualBox application developer, the vboxshell sample could be interesting as an exam-
ple of how to write code targeting both local and remote cases (COM/XPCOM and SOAP). The
common part of the shell is the same — the only difference is how it interacts with the invocation
layer. You can use the connect shell command to connect to remote VirtualBox servers; in this
case you can skip starting the local web server.

2.1.3 The object-oriented web service for PHP

VirtualBox also comes with object-oriented web service (OOWS) wrappers for PHP5. These
wrappers rely on the PHP SOAP Extension*, which can be installed by configuring PHP with
--enable-soap.

2.2 Using the raw web service with any language

The following examples show you how to use the raw web service, without the object-oriented
client-side code that was described in the previous chapter.

Generally, when reading the documentation in chapter 5, Classes (interfaces), page 52 and
chapter 6, Enumerations (enums), page 350, due to the limitations of SOAP and WSDL lined out
in chapter 2.2.3.1, Fundamental conventions, page 32, please have the following notes in mind:

1. Any COM method call becomes a plain function call in the raw web service, with the
object as an additional first parameter (before the “real” parameters listed in the docu-
mentation). So when the documentation says that the IVirtualBox interface supports
the createMachine() method (see IVirtualBox::createMachine()), the web service op-
eration is IVirtualBox_createMachine(...), and a managed object reference to an
IVirtualBox object must be passed as the first argument.

2. For attributes in interfaces, there will be at least one “get” function; there will also be a
“set” function, unless the attribute is “readonly”. The attribute name will be appended to
the “get” or “set” prefix, with a capitalized first letter. So, the “version” readonly attribute of
the IVirtualBox interface can be retrieved by calling IVirtualBox_getVersion(vbox),
with vbox being the VirtualBox object.

3. Whenever the API documentation says that a method (or an attribute getter) returns an
object, it will returned a managed object reference in the web service instead. As said
above, managed object references should be released if the web service client does not log
off again immediately!

2.2.1 Raw web service example for Java with Axis

Axis is an older web service toolkit created by the Apache foundation. If your distribution does
not have it installed, you can get a binary from http://www.apache.org. The following exam-
ples assume that you have Axis 1.4 installed.

The VirtualBox SDK ships with an example for Axis that, again, is called clienttest. java
and that imitates a few of the commands of VBoxManage over the wire.

Then perform the following steps:

1. Create a working directory somewhere. Under your VirtualBox installation directory, find
the sdk/webservice/samples/java/axis/ directory and copy the file clienttest.java
to your working directory.

2. Open a terminal in your working directory. Execute the following command:

4See https://www.php.net/soap.

30

http://www.apache.org
https://www.php.net/soap

2 Environment-specific notes

java org.apache.axis.wsdl.WSDL2Java /path/to/vboxwebService.wsdl

The vboxwebService.wsdl file should be located in the sdk/webservice/ directory.

If this fails, your Apache Axis may not be located on your system classpath, and you may
have to adjust the CLASSPATH environment variable. Something like this:

export CLASSPATH="/path-to-axis-1_4/lib/x*":$CLASSPATH

Use the directory where the Axis JAR files are located. Mind the quotes so that your shell
passes the “*“ character to the java executable without expanding. Alternatively, add a
corresponding - classpath argument to the “java” call above.

If the command executes successfully, you should see an “org” directory with subdirecto-
ries containing Java source files in your working directory. These classes represent the
interfaces that the VirtualBox web service offers, as described by the WSDL file.

This is the bit that makes using web services so attractive to client developers: if a lan-
guage’s toolkit understands WSDL, it can generate large amounts of support code auto-
matically. Clients can then easily use this support code and can be done with just a few
lines of code.

3. Next, compile the clienttest. java source:

javac clienttest.java

This should yield a “clienttest.class” file.

4. To start the VirtualBox web service, open a second terminal and change to the directory
where the VirtualBox executables are located. Then type:

./vboxwebsrv -v

The web service now waits for connections and will run until you press Ctrl+C in this
second terminal. The -v argument causes it to log all connections to the terminal. (See
chapter 1.4, Running the web service, page 24 for details on how to run the web service.)

5. Back in the original terminal where you compiled the Java source, run the resulting binary,
which will then connect to the web service:

java clienttest

The client sample will connect to the web service (on localhost, but the code could be
changed to connect remotely if the web service was running on a different machine) and
make a number of method calls. It will output the version number of your VirtualBox
installation and a list of all virtual machines that are currently registered (with a bit of
seemingly random data, which will be explained later).

2.2.2 Raw web service example for Perl

We also ship a small sample for Perl. It uses the SOAP::Lite perl module to communicate with
the VirtualBox web service.

The sdk/bindings/webservice/perl/lib/ directory contains a pre-generated Perl module
that allows for communicating with the web service from Perl. You can generate such a module
yourself using the “stubmaker” tool that comes with SOAP::Lite, but since that tool is slow as well
as sometimes unreliable, we are shipping a working module with the SDK for your convenience.

Perform the following steps:

1. If SOAP::Lite is not yet installed on your system, you will need to install the package
first. On Debian-based systems, the package is called libsoap-lite-perl; on Gentoo, it’s
dev-perl/SOAP-Lite.

2. Open a terminal in the sdk/bindings/webservice/perl/samples/ directory.

31

2 Environment-specific notes

3. To start the VirtualBox web service, open a second terminal and change to the directory
where the VirtualBox executables are located. Then type:

./vboxwebsrv -v

The web service now waits for connections and will run until you press Ctrl+C in this
second terminal. The -v argument causes it to log all connections to the terminal. (See
chapter 1.4, Running the web service, page 24 for details on how to run the web service.)

4. In the first terminal with the Perl sample, run the clienttest.pl script:
perl -I ../lib clienttest.pl

2.2.3 Programming considerations for the raw web service

If you use the raw web service, you need to keep a number of things in mind, or you will sooner
or later run into issues that are not immediately obvious. By contrast, the object-oriented client-
side libraries described in chapter 2.1, Using the object-oriented web service (OOWS), page 27 take
care of these things automatically and thus greatly simplify using the web service.

2.2.3.1 Fundamental conventions

If you are familiar with other web services, you may find the VirtualBox web service to behave
a bit differently to accommodate for the fact that VirtualBox web service more or less maps the
VirtualBox Main COM API. The following main differences had to be taken care of:

e Web services, as expressed by WSDL, are not object-oriented. Even worse, they are nor-
mally stateless (or, in web services terminology, “loosely coupled”). Web service operations
are entirely procedural, and one cannot normally make assumptions about the state of a
web service between function calls.

In particular, this normally means that you cannot work on objects in one method call that
were created by another call.

e By contrast, the VirtualBox Main API, being expressed in COM, is object-oriented and works
entirely on objects, which are grouped into public interfaces, which in turn have attributes
and methods associated with them.

For the VirtualBox web service, this results in three fundamental conventions:

1. All function names in the VirtualBox web service consist of an interface name and a
method name, joined together by an underscore. This is because there are only functions
(“operations”) in WSDL, but no classes, interfaces, or methods.

In addition, all calls to the VirtualBox web service (except for logon, see below) take a
managed object reference as the first argument, representing the object upon which the
underlying method is invoked. (Managed object references are explained in detail below;
see chapter 2.2.3.3, Managed object references, page 34.)

So, when one would normally code, in the pseudo-code of an object-oriented language, to
invoke a method upon an object:

IMachine machine;
result = machine.getName();

In the VirtualBox web service, this looks something like this (again, pseudo-code):

IMachineRef machine;
result = IMachine_getName(machine);

32

2 Environment-specific notes

2. To make the web service stateful, and objects persistent between method calls, the
VirtualBox web service introduces a session manager (by way of the IWebsessionManager
interface), which manages object references. Any client wishing to interact with the web
service must first log on to the session manager and in turn receives a managed object ref-
erence to an object that supports the IVirtualBox interface (the basic interface in the Main
API).

In other words, as opposed to other web services, the VirtualBox web service is both object-
oriented and stateful.

2.2.3.2 Example: A typical web service client session

A typical short web service session to retrieve the version number of the VirtualBox web service
(to be precise, the underlying Main API version number) looks like this:

1. A client logs on to the web service by calling IWebsessionManager::logon() with a valid
user name and password. See chapter 1.4.2, Authenticating at web service logon, page 25
for details about how authentication works.

2. On the server side, vboxwebsrv creates a session, which persists until the client calls
IWebsessionManager::logoff() or the session times out after a configurable period of in-
activity (see chapter 1.4.1, Command line options of vboxwebsrv, page 24).

For the new session, the web service creates an instance of IVirtualBox. This interface is the
most central one in the Main API and allows access to all other interfaces, either through
attributes or method calls. For example, [VirtualBox contains a list of all virtual machines
that are currently registered (as they would be listed on the left side of the VirtualBox main
program).

The web service then creates a managed object reference for this instance of IVirtualBox
and returns it to the calling client, which receives it as the return value of the logon call.
Something like this:

string oVirtualBox;
oVirtualBox = webservice.IWebsessionManager_logon("user", "pass");

(The managed object reference “oVirtualBox” is just a string consisting of digits and dashes.
However, it is a string with a meaning and will be checked by the web service. For details,
see below. As hinted above, IWebsessionManager::logon() is the only operation provided
by the web service which does not take a managed object reference as the first argument!)

3. The VirtualBox Main API documentation says that the IVirtualBox interface has a version
attribute, which is a string. For each attribute, there is a “get” and a “set” method in
COM, which maps to according operations in the web service. So, to retrieve the “version”
attribute of this IVirtualBox object, the web service client does this:

string version;
version = webservice.IVirtualBox_getVersion(oVirtualBox);

print version;

And it will print “5.2.10".

4. The web service client calls IWebsessionManager::logoff() with the VirtualBox managed
object reference. This will clean up all allocated resources.

33

2 Environment-specific notes

2.2.3.3 Managed object references

To a web service client, a managed object reference looks like a string: two 64-bit hex numbers
separated by a dash. This string, however, represents a COM object that “lives” in the web service
process. The two 64-bit numbers encoded in the managed object reference represent a session
ID (which is the same for all objects in the same web service session, i.e. for all objects after one
logon) and a unique object ID within that session.

Managed object references are created in two situations:

1. When a client logs on, by calling IWebsessionManager::logon().

Upon logon, the websession manager creates one instance of IVirtualBox, which can be
used for directly performing calls to its methods, or used as a parameter for calling some
methods of IWebsessionManager. Creating Main API session objects is performed using
IWebsessionManager::getSessionObject().

(Technically, there is always only one IVirtualBox object, which is shared between all web-
sessions and clients, as it is a COM singleton. However, each session receives its own
managed object reference to it.)

2. Whenever a web service clients invokes an operation whose COM implementation creates
COM objects.

For example, IVirtualBox::createMachine() creates a new instance of IMachine; the COM
object returned by the COM method call is then wrapped into a managed object reference
by the web server, and this reference is returned to the web service client.

Internally, in the web service process, each managed object reference is simply a small data
structure, containing a COM pointer to the “real” COM object, the web session ID and the object
ID. This structure is allocated on creation and stored efficiently in hashes, so that the web service
can look up the COM object quickly whenever a web service client wishes to make a method call.
The random session ID also ensures that one web service client cannot intercept the objects of
another.

Managed object references are not destroyed automatically and must be released by explicitly
calling IManagedObjectRef::release(). This is important, as otherwise hundreds or thousands of
managed object references (and corresponding COM objects, which can consume much more
memory!) can pile up in the web service process and eventually cause it to deny service.

To reiterate: The underlying COM object, which the reference points to, is only freed if the
managed object reference is released. It is therefore vital that web service clients properly clean
up after the managed object references that are returned to them.

When a web service client calls IWebsessionManager::logoff(), all managed object references
created during the session are automatically freed. For short-lived sessions that do not create a
lot of objects, logging off may therefore be sufficient, although it is certainly not “best practice”.

2.2.3.4 Some more detail about web service operation

SOAP messages Whenever a client makes a call to a web service, this involves a complicated
procedure internally. These calls are remote procedure calls. Each such procedure call typically
consists of two “message” being passed, where each message is a plain-text HTTP request with a
standard HTTP header and a special XML document following. This XML document encodes the
name of the procedure to call and the argument names and values passed to it.

To give you an idea of what such a message looks like, assuming that a web service provides
a procedure called “SayHello”, which takes a string “name” as an argument and returns “Hello”
with a space and that name appended, the request message could look like this:

<?xml version="1.0" encoding="UTF-8"7>

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

34

2 Environment-specific notes

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:test="http://test/">
<SOAP-ENV:Body>
<test:SayHello>
<name>Peter</name>
</test:SayHello>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A similar message — the “response” message — would be sent back from the web service to the
client, containing the return value “Hello Peter”.

Most programming languages provide automatic support to generate such messages whenever
code in that programming language makes such a request. In other words, these programming
languages allow for writing something like this (in pseudo-C++ code):

webServiceClass service("localhost", 18083); // server and port
string result = service.SayHello("Peter"); // invoke remote procedure

and would, for these two pseudo-lines, automatically perform these steps:
1. prepare a connection to a web service running on port 18083 of “localhost”;

2. for the SayHello() function of the web service, generate a SOAP message like in the above
example by encoding all arguments of the remote procedure call (which could involve all
kinds of type conversions and complex marshalling for arrays and structures);

3. connect to the web service via HTTP and send that message;
4. wait for the web service to send a response message;

5. decode that response message and put the return value of the remote procedure into the
“result” variable.

Service descriptions in WSDL In the above explanations about SOAP, it was left open how
the programming language learns about how to translate function calls in its own syntax into
proper SOAP messages. In other words, the programming language needs to know what opera-
tions the web service supports and what types of arguments are required for the operation’s data
in order to be able to properly serialize and deserialize the data to and from the web service.
For example, if a web service operation expects a number in “double” floating point format for a
particular parameter, the programming language cannot send to it a string instead.

For this, the Web Service Definition Language (WSDL) was invented, another XML substandard
that describes exactly what operations the web service supports and, for each operation, which
parameters and types are needed with each request and response message. WSDL descriptions
can be incredibly verbose, and one of the few good things that can be said about this standard is
that it is indeed supported by most programming languages.

So, if it is said that a programming language “supports” web services, this typically means
that a programming language has support for parsing WSDL files and somehow integrating the
remote procedure calls into the native language syntax — for example, like in the Java sample
shown in chapter 2.2.1, Raw web service example for Java with Axis, page 30.

For details about how programming languages support web services, please refer to the docu-
mentation that comes with the individual languages. Here are a few pointers:

1. For C++, among many others, the gSOAP toolkit is a good option. Parts of gSOAP are
also used in VirtualBox to implement the VirtualBox web service.

2. For Java, there are several implementations already described in this document (see chap-
ter 2.1.1, The object-oriented web service for JAX-WS, page 27 and chapter 2.2.1, Raw web
service example for Java with Axis, page 30).

35

2 Environment-specific notes

3. Perl supports WSDL via the SOAP::Lite package. This in turn comes with a tool called
stubmaker.pl that allows you to turn any WSDL file into a Perl package that you can
import. (You can also import any WSDL file “live” by having it parsed every time the script
runs, but that can take a while.) You can then code (again, assuming the above example):

my $result = servicename->sayHello("Peter");

A sample that uses SOAP::Lite was described in chapter 2.2.2, Raw web service example for
Perl, page 31.

2.3 Using COM/XPCOM directly

If you do not require remote procedure calls such as those offered by the VirtualBox web ser-
vice, and if you know Python or C++ as well as COM, you might find it preferable to program
VirtualBox’s Main API directly via COM.

COM stands for “Component Object Model” and is a standard originally introduced by Mi-
crosoft in the 1990s for Microsoft Windows. It allows for organizing software in an object-
oriented way and across processes; code in one process may access objects that live in another
process.

COM has several advantages: it is language-neutral, meaning that even though all of
VirtualBox is internally written in C+ +, programs written in other languages could communicate
with it. COM also cleanly separates interface from implementation, so that external programs
need not know anything about the messy and complicated details of VirtualBox internals.

On a Windows host, all parts of VirtualBox will use the COM functionality that is native to
Windows. On other hosts (including Linux), VirtualBox comes with a built-in implementation
of XPCOM, as originally created by the Mozilla project, which we have enhanced to support
interprocess communication on a level comparable to Microsoft COM. Internally, VirtualBox has
an abstraction layer that allows the same VirtualBox code to work both with native COM as well
as our XPCOM implementation.

2.3.1 Python COM API

On Windows, Python scripts can use COM and VirtualBox interfaces to control almost all aspects
of virtual machine execution. As an example, use the following commands to instantiate the
VirtualBox object and start a VM:

vbox = win32com.client.Dispatch("VirtualBox.VirtualBox")
session = win32com.client.Dispatch("VirtualBox.Session")
mach = vbox.findMachine("uuid or name of machine to start")
progress = mach.launchVMProcess(session, "gui", "")
progress.waitForCompletion(-1)

Also, see /bindings/glue/python/samples/vboxshell.py for more advanced usage scenari-
ous. However, unless you have specific requirements, we strongly recommend to use the generic
glue layer described in the next section to access MS COM objects.

2.3.2 Common Python bindings layer

As different wrappers ultimately provide access to the same underlying API, and to simplify
porting and development of Python application using the VirtualBox Main API, we developed
a common glue layer that abstracts out most platform-specific details from the application and
allows the developer to focus on application logic. The VirtualBox installer automatically sets up
this glue layer for the system default Python install. See below for details on how to set up the
glue layer if you want to use a different Python installation.

36

2 Environment-specific notes

The minimum supported Python version is 2.6.

In this layer, the class VirtualBoxManager hides most platform-specific details. It can be used
to access both the local (COM) and the web service based API. The following code can be used
by an application to use the glue layer.

This code assumes vboxapi.py from VirtualBox distribution
being in PYTHONPATH, or installed system-wide
from vboxapi import VirtualBoxManager

This code initializes VirtualBox manager with default style
and parameters
virtualBoxManager = VirtualBoxManager(None, None)

Alternatively, one can be more verbose, and initialize

glue with web service backend, and provide authentication

information

virtualBoxManager = VirtualBoxManager("WEBSERVICE",
{'url’:'http://myhost.com::18083/",
"user’:’'me’,
"password’:’secret’})

We supply the VirtualBoxManager constructor with 2 arguments: style and parameters. Style
defines which bindings style to use (could be “MSCOM”, “XPCOM” or “WEBSERVICE”), and if set
to None defaults to usable platform bindings (MS COM on Windows, XPCOM on other platforms).
The second argument defines parameters, passed to the platform-specific module, as we do in
the second example, where we pass username and password to be used to authenticate against
the web service.

After obtaining the VirtualBoxManager instance, one can perform operations on the IVirtu-
alBox class. For example, the following code will a start virtual machine by name or ID:

from vboxapi import VirtualBoxManager

mgr = VirtualBoxManager(None, None)

vbox = mgr.vbox

name = "Linux"

mach = vbox.findMachine(name)

session = mgr.getSessionObject(vbox)

progress = mach.launchVMProcess(session, "gui", "")
progress.waitForCompletion(-1)
mgr.closeMachineSession(session)

Following code will print all registered machines and their log folders

from vboxapi import VirtualBoxManager
mgr = VirtualBoxManager(None, None)
vbox = mgr.vbox

for m in mgr.getArray(vbox, 'machines’):
print "Machine ’'%s’ logs in ’'%s’" %(m.name, m.logFolder)

Code above demonstrates cross-platform access to array properties (certain limitations prevent
one from using vbox.machines to access a list of available virtual machines in case of XPCOM),
and a mechanism of uniform session creation and closing (mgr.getSessionObject()).

In case you want to use the glue layer with a different Python installation, use these steps in a
shell to add the necessary files:

cd VBOX_INSTALL_PATH/sdk/installer
PYTHON vboxapisetup.py install

37

2 Environment-specific notes

2.3.3 C++ COM API

C++ is the language that VirtualBox itself is written in, so C++ is the most direct way to use
the Main API - but it is not necessarily the easiest, as using COM and XPCOM has its own set of
complications.

VirtualBox ships with sample programs that demonstrate how to use the Main API to im-
plement a number of tasks on your host platform. These samples can be found in the
/bindings/xpcom/samples directory for Linux, Mac OS X and Solaris and /bindings/mscom/samples
for Windows. The two samples are actually different, because the one for Windows uses native
COM, whereas the other uses our XPCOM implementation, as described above.

Since COM and XPCOM are conceptually very similar but vary in the implementation details,
we have created a “glue” layer that shields COM client code from these differences. All VirtualBox
uses is this glue layer, so the same code written once works on both Windows hosts (with native
COM) as well as on other hosts (with our XPCOM implementation). It is recommended to always
use this glue code instead of using the COM and XPCOM APIs directly, as it is very easy to make
your code completely independent from the platform it is running on.

In order to encapsulate platform differences between Microsoft COM and XPCOM, the follow-
ing items should be kept in mind when using the glue layer:

1. Attribute getters and setters. COM has the notion of “attributes” in interfaces, which
roughly compare to C++ member variables in classes. The difference is that for each
attribute declared in an interface, COM automatically provides a “get” method to return
the attribute’s value. Unless the attribute has been marked as “readonly”, a “set” attribute
is also provided.

To illustrate, the IVirtualBox interface has a “version” attribute, which is read-only and of
the “wstring” type (the standard string type in COM). As a result, you can call the “get”
method for this attribute to retrieve the version number of VirtualBox.

Unfortunately, the implementation differs between COM and XPCOM. Microsoft COM
names the “get” method like this: get_Attribute(), whereas XPCOM uses this syn-
tax: GetAttribute() (and accordingly for “set” methods). To hide these differences, the
VirtualBox glue code provides the COMGETTER (attrib) and COMSETTER(attrib) macros.
So, COMGETTER(version) () (note, two pairs of brackets) expands to get_Version() on
Windows and GetVersion() on other platforms.

2. Unicode conversions. While the rest of the modern world has pretty much settled on
encoding strings in UTF-8, COM, unfortunately, uses UCS-16 encoding. This requires a lot
of conversions, in particular between the VirtualBox Main API and the Qt GUI, which, like
the rest of Qt, likes to use UTF-8.

To facilitate these conversions, VirtualBox provides the com::Bstr and com::Utf8Str
classes, which support all kinds of conversions back and forth.

3. COM autopointers. Possibly the greatest pain of using COM - reference counting — is
alleviated by the ComPtr<> template provided by the ptr.h file in the glue layer.

2.3.4 Event queue processing

Both VirtualBox client programs and frontends should periodically perform processing of the
main event queue, and do that on the application’s main thread. In case of a typical GUI
Windows/Mac OS application this happens automatically in the GUI’s dispatch loop. However,
for CLI only application, the appropriate actions have to be taken. For C++ applications, the
VirtualBox SDK provided glue method

int EventQueue::processEventQueue(uint32_t cMsTimeout)

38

2 Environment-specific notes

can be used for both blocking and non-blocking operations. For the Python bindings, a common
layer provides the method

VirtualBoxManager.waitForEvents(ms)

with similar semantics.

Things get somewhat more complicated for situations where an application using VirtualBox
cannot directly control the main event loop and the main event queue is separated from the event
queue of the programming librarly (for example in case of Qt on Unix platforms). In such a case,
the application developer is advised to use a platform/toolkit specific event injection mechanism
to force event queue checks either based on periodical timer events delivered to the main thread,
or by using custom platform messages to notify the main thread when events are available. See
the VBoxSDL and Qt (VirtualBox) frontends as examples.

2.3.5 Visual Basic and Visual Basic Script (VBS) on Windows hosts

On Windows hosts, one can control some of the VirtualBox Main API functionality from VBS
scripts, and pretty much everything from Visual Basic programs.®

VBS is scripting language available in any recent Windows environment. As an example, the
following VBS code will print VirtualBox version:

set vb = CreateObject("VirtualBox.VirtualBox")
Wscript.Echo "VirtualBox version " & vb.version

See bindings/mscom/vbs/sample/vboxinfo.vbs for the complete sample.
Visual Basic is a popular high level language capable of accessing COM objects. The following
VB code will iterate over all available virtual machines:

Dim vb As VirtualBox.IVirtualBox

vb = CreateObject("VirtualBox.VirtualBox")

machines = ""

For Each m In vb.Machines
m=mé&" " & m.Name

Next

See bindings/mscom/vb/sample/vboxinfo.vb for the complete sample.

2.3.6 C binding to VirtualBox API

The VirtualBox API originally is designed as object oriented, using XPCOM or COM as the mid-
dleware, which translates natively to C++. This means that in order to use it from C there needs
to be some helper code to bridge the language differences and reduce the differences between
platforms.

2.3.6.1 Cross-platform C binding to VirtualBox API

Starting with version 4.3, VirtualBox offers a C binding which allows using the same C client
sources for all platforms, covering Windows, Linux, Mac OS X and Solaris. It is the preferred
way to write API clients, even though the old style is still available.

5The difference results from the way VBS treats COM safearrays, which are used to keep lists in the Main API. VBS
expects every array element to be a VARIANT, which is too strict a limitation for any high performance API. We may
lift this restriction for interface APIs in a future version, or alternatively provide conversion APIs.

39

2 Environment-specific notes

2.3.6.2 Getting started

The following sections describe how to use the VirtualBox API in a C program. The
necessary files are included in the SDK, in the directories sdk/bindings/c/include and
sdk/bindings/c/glue.

As part of the SDK, a sample program tstCAPIGlue.c is provided in the directory
sdk/bindings/c/samples which demonstrates using the C binding to initialize the API, get
handles for VirtualBox and Session objects, make calls to list and start virtual machines, monitor
events, and uninitialize resources when done. The sample program is trying to illustrate all
relevant concepts, so it is a great source of detail information. Among many other generally
useful code sequences it contains a function which shows how to retrieve error details in C code
if they are available from the API call.

The sample program tstCAPIGLlue can be built using the provided Makefile and can be run
without arguments.

It uses the VBoxCAPIGlue library (source code is in directory sdk/bindings/c/glue, to be
used in your API client code) to open the C binding layer during runtime, which is preferred to
other means as it isolates the code which locates the necessary dynamic library, using a known
working way which works on all platforms. If you encounter problems with this glue code
in VBoxCAPIGlue.c, let the VirtualBox developers know, rather than inventing incompatible
solutions.

The following sections document the important concepts needed to correctly use the C binding,
as it is vital for developing API client code which manages memory correctly, updates the refer-
ence counters correctly, avoiding crashes and memory leaks. Often API clients need to handle
events, so the C API specifics are also described below.

2.3.6.3 VirtualBox C API initialization

Just like in C++, the API and the underlying middleware needs to be initialized before it can
be used. The VBoxCAPI_v4_3.h header provides the interface to the C binding, but you can
alternatively and more conveniently also include VBoxCAPIGLlue.h, as this avoids the VirtualBox
version dependent header file name and makes sure the global variable g_pVBoxFuncs contains
a pointer to the structure which contains the helper function pointers. Here’s how to initialize
the C API:

#include "VBoxCAPIGlue.h"

IVirtualBoxClient *vboxclient = NULL;

IVirtualBox *vbox = NULL;
ISession *session = NULL;
HRESULT rc;

ULONG revision;

~
*

VBoxCGlueInit() loads the necessary dynamic library, handles errors
(producing an error message hinting what went wrong) and gives you
the pointer to the function table (g_pVBoxFuncs).

Once you get the function table, then how and which functions
to use is explained below.

g-pVBoxFuncs->pfnClientInitialize does all the necessary startup
action and provides us with pointers to an IVirtualBoxClient instance.
It should be matched by a call to g_pVBoxFuncs->pfnClientUninitialize()
when done.

*OX K K X X X K X X ¥

*
~

if (VBoxCGlueInit())

{
fprintf(stderr, "s: FATAL: VBoxCGlueInit failed: %s\n",
argv[0], g_szVBoxErrMsg);

40

2 Environment-specific notes
return EXIT_FAILURE;
}

g_pVBoxFuncs->pfnClientInitialize(NULL, &vboxclient);
if (!vboxclient)

{
fprintf(stderr, "%s: FATAL: could not get VirtualBoxClient reference\n",
argv[0]);
return EXIT_FAILURE;
}

If vboxclient is still NULL this means the initializationi failed and the VirtualBox C API cannot
be used.

It is possible to write C applications using multiple threads which all use the VirtualBox API, as
long as you're initializing the C API in each thread which your application creates. This is done
with g_pVBoxFuncs->pfnClientThreadInitialize() and likewise before the thread is termi-
nated the API must be uninitialized with g_pVBoxFuncs->pfnClientThreadUninitialize().
You don’t have to use these functions in worker threads created by COM/XPCOM (which you
might observe if your code uses active event handling), everything is initialized correctly already.
On Windows the C bindings create a marshaller which supports a wide range of COM threading
models, from STA to MTA, so you don’t have to worry about these details unless you plan to use
active event handlers. See the sample code how to get this to work reliably (in other words think
twice if passive event handling isn’t the better solution after you looked at the sample code).

2.3.6.4 C API attribute and method invocation

Method invocation is straightforward. It looks pretty much like the C++ way, by using a macro
which internally accesses the vtable, and additionally needs to be passed a pointer to the objecti
as the first argument to serve as the this pointer.

Using the C binding, all method invocations return a numeric result code of type HRESULT
(with a few exceptions which normally are not relevant).

If an interface is specified as returning an object, a pointer to a pointer to the appropriate
object must be passed as the last argument. The method will then store an object pointer in that
location.

Likewise, attributes (properties) can be queried or set using method invocations, using spe-
cially named methods. For each attribute there exists a getter method, the name of which is
composed of get_ followed by the capitalized attribute name. Unless the attribute is read-only,
an analogous set_ method exists. Let’s apply these rules to get the IVirtualBox reference, an
ISession instance reference and read the IVirtualBox::revision attribute:

rc = IVirtualBoxClient_get_VirtualBox(vboxclient, &vbox);

if (FAILED(rc) || !vbox)

{
PrintErrorInfo(argv[0@], "FATAL: could not get VirtualBox reference", rc);
return EXIT_FAILURE;

}

rc = IVirtualBoxClient_get_Session(vboxclient, &session);

if (FAILED(rc) || !session)

{
PrintErrorInfo(argv[0], "FATAL: could not get Session reference", rc);
return EXIT_FAILURE;

}

rc = IVirtualBox_get_Revision(vbox, &revision);
if (SUCCEEDED(rc))
{

printf("Revision: %u\n", revision);

}

The convenience macros for calling a method are named by prepending the method name with
the interface name (using _as the separator).

41

2 Environment-specific notes

So far only attribute getters were illustrated, but generic method calls are straightforward,
too:

IMachine xmachine = NULL;
BSTR vmname = ...;

/%
* Calling IMachine::findMachine(...)

x/
rc = IVirtualBox_FindMachine(vbox, vmname, &machine);

As a more complicated example of a method invocation, let’s call IMachine::launchVMProcess
which returns an IProgress object. Note again that the method name is capitalized:

IProgress *progress;

rc = IMachine_LaunchVMProcess (

machine, /* this x/
session, /* arg 1 %/
sessionType, /* arg 2 */
env, /* arg 3 */
&progress /* O0ut =/

);

All objects with their methods and attributes are documented in chapter 5, Classes (interfaces),
page 52.

2.3.6.5 String handling

When dealing with strings you have to be aware of a string’s encoding and ownership.

Internally, the API uses UTF-16 encoded strings. A set of conversion functions is provided to
convert other encodings to and from UTF-16. The type of a UTF-16 character is BSTR (or its
constant counterpart CBSTR), which is an array type, represented by a pointer to the start of the
zero-terminated string. There are functions for converting between UTF-8 and UTF-16 strings
available through g_pVBoxFuncs:

int (*pfnUtfl6ToUtf8) (CBSTR pwszString, char *xppszString);
int (*pfnUtf8ToUtfl6) (const char *pszString, BSTR xppwszString);

The ownership of a string determines who is responsible for releasing resources associated with
the string. Whenever the API creates a string (essentially for output parameters), ownership is
transferred to the caller. To avoid resource leaks, the caller should release resources once the
string is no longer needed. There are plenty of examples in the sample code.

2.3.6.6 Array handling

Arrays are handled somewhat similarly to strings, with the additional information of the number
of elements in the array. The exact details of string passing depends on the platform middle-
ware (COM/XPCOM), and therefore the C binding offers helper functions to gloss over these
differences.

Passing arrays as input parameters to API methods is usually done by the following sequence,
calling a hypothetical IArrayDemo_PassArray API method:

static const ULONG aElements[] = { 1, 2, 3, 4 };

ULONG cElements = sizeof(aElements) / sizeof(aElements[0]);

SAFEARRAY #*psa = NULL;

psa = g_pVBoxFuncs->pfnSafeArrayCreateVector(VT_I4, 0, cElements);
g_pVBoxFuncs->pfnSafeArrayCopyInParamHelper(psa, aElements, sizeof(aElements));
IArrayDemo_PassArray(pThis, ComSafeArrayAsInParam(psa));
g_pVBoxFuncs->pfnSafeArrayDestroy(psa);

42

2 Environment-specific notes

Likewise, getting arrays results from output parameters is done using helper functions which
manage memory allocations as part of their other functionality:

SAFEARRAY *psa = g_pVBoxFuncs->pfnSafeArrayOutParamAlloc();

ULONG x*pData;

ULONG cElements;

IArrayDemo_ReturnArray(pThis, ComSafeArrayAsOutTypeParam(psa, ULONG));
g_pVBoxFuncs->pfnSafeArrayCopyOutParamHelper((void *x)&pData, &cElements, VT_I4, psa);
g_pVBoxFuncs->pfnSafeArrayDestroy(psa);

This covers the necessary functionality for all array element types except interface references.
These need special helpers to manage the reference counting correctly. The following code
snippet gets the list of VMs, and passes the first IMachine reference to another API function
(assuming that there is at least one element in the array, to simplify the example):

SAFEARRAY psa = g_pVBoxFuncs->pfnSafeArrayOutParamAlloc();
IMachine xxmachines = NULL;
ULONG machineCnt = 0;
ULONG 1i;
IVirtualBox_get_Machines(virtualBox, ComSafeArrayAsOutIfaceParam(machinesSA, IMachine x));
g_pVBoxFuncs->pfnSafeArrayCopyOutIfaceParamHelper((IUnknown *x*x)&machines, &machineCnt, machinesSA);
g_pVBoxFuncs->pfnSafeArrayDestroy(machinesSA);
/* Now "machines" contains the IMachine references, and machineCnt the
* number of elements in the array. x*/

SAFEARRAY *psa = g_pVBoxFuncs->pfnSafeArrayCreateVector(VT_IUNKNOWN, 0, 1);
g_pVBoxFuncs->pfnSafeArrayCopyInParamHelper(psa, (void x)&machines[0], sizeof(machines[0]));
IVirtualBox_GetMachineStates(ComSafeArrayAsInParam(psa), ...);

g_pVBoxFuncs->pfnSafeArrayDestroy(psa);
for (1 = 0; 1 < machineCnt; ++i)

{
IMachine xmachine = machines[i];
IMachine_Release(machine);

}

free(machines);

Handling output parameters needs more special effort than input parameters, thus only for
the former there are special helpers, and the latter is handled through the generic array support.

2.3.6.7 Event handling

The VirtualBox API offers two types of event handling, active and passive, and consequently
there is support for both with the C API binding. Active event handling (based on asynchronous
callback invocation for event delivery) is more difficult, as it requires the construction of valid
C++ objects in C, which is inherently platform and compiler dependent. Passive event handling
is much simpler, it relies on an event loop, fetching events and triggering the necessary handlers
explicitly in the API client code. Both approaches depend on an event loop to make sure that
events get delivered in a timely manner, with differences what exactly needs to be done.

The C API sample contains code for both event handling styles, and one has to modify the
appropriate #define to select which style is actually used by the compiled program. It allows a
good comparison between the two variants, and the code sequences are probably worth reusing
without much change in other API clients with only minor adaptions.

Active event handling needs to ensure that the following helper function is called frequently
enough in the primary thread:

g_pVBoxFuncs->pfnProcessEventQueue(cTimeoutMS) ;

The actual event handler implementation is quite tedious, as it has to implement a complete
API interface. Especially on Windows it is a lot of work to implement the complicated IDispatch

43

2 Environment-specific notes

interface, requiring to load COM type information and using it in the IDispatch method imple-
mentation. Overall this is quite tedious compared to passive event handling.

Passive event handling uses a similar event loop structure, which requires calling the following
function in a loop, and processing the returned event appropriately:

rc = IEventSource_GetEvent(pEventSource, pListener, cTimeoutMS, &pEvent);

After processing the event it needs to be marked as processed with the following method call:

rc = IEventSource_EventProcessed(pEventSource, pListener, pEvent);

This is vital for vetoable events, as they would be stuck otherwise, waiting whether the veto
comes or not. It does not do any harm for other event types, and in the end is cheaper than
checking if the event at hand is vetoable or not.

The general event handling concepts are described in the API specification (see chapter 3.4,
VirtualBox events, page 48), including how to aggregate multiple event sources for processing
in one event loop. As mentioned, the sample illustrates the practical aspects of how to use
both types of event handling, active and passive, from a C application. Additional hints are in
the comments documenting the helper methods in VBoxCAPI_v4_3.h. The code complexity of
active event handling (and its inherenly platform/compiler specific aspects) should be motivation
to use passive event handling whereever possible.

2.3.6.8 C API uninitialization

Uninitialization is performed by g_pVBoxFuncs->pfnClientUninitialize(). If your program
can exit from more than one place, it is a good idea to install this function as an exit handler
with Standard C’s atexit () just after calling g_pVBoxFuncs->pfnClientInitialize() ,e.g.

#include <stdlib.h>
#include <stdio.h>

* Make sure g_pVBoxFuncs->pfnClientUninitialize() is called at exit, no
* matter if we return from the initial call to main or call exit()

* somewhere else. Note that atexit registered functions are not

* called upon abnormal termination, i.e. when calling abort() or

* signal().

if (atexit(g_pVBoxFuncs->pfnClientUninitialize()) != 0) {
fprintf(stderr, "failed to register g_pVBoxFuncs->pfnClientUninitialize()\n");
exit (EXIT_FAILURE);

Another idea would be to write your own void myexit(int status) function, calling
g_pVBoxFuncs->pfnClientUninitialize() followed by the real exit(), and use it instead
of exit () throughout your program and at the end of main.

If you expect the program to be terminated by a signal (e.g. user types CTRL-C sending
SIGINT) you might want to install a signal handler setting a flag noting that a signal was sent
and then calling g_pVBoxFuncs->pfnClientUninitialize() later on, not from the handler
itself.

That said, if a client program forgets to call g_pVBoxFuncs->pfnClientUninitialize() be-
fore it terminates, there is a mechanism in place which will eventually release references held by
the client. On Windows it can take quite a while, in the order of 6-7 minutes.

44

2 Environment-specific notes

2.3.6.9 Compiling and linking

A program using the C binding has to open the library during runtime using the help of glue
code provided and as shown in the example tstCAPIGlue.c. Compilation and linking can be
achieved with a makefile fragment similar to:

Where is the SDK directory?

PATH_SDK YA A

CAPI_INC -I$(PATH_SDK) /bindings/c/include
ifeq ($(BUILD_PLATFORM),win)

PLATFORM_INC -I$(PATH_SDK)/bindings/mscom/include
PLATFORM_LIB $ (PATH_SDK) /bindings/mscom/lib

else
PLATFORM_INC
PLATFORM_LIB

-I$(PATH_SDK) /bindings/xpcom/include
$ (PATH_SDK) /bindings/xpcom/1lib

endif
GLUE_DIR = $(PATH_SDK) /bindings/c/glue
GLUE_INC = -I$(GLUE_DIR)

Compile Glue Library
VBoxCAPIGlue.o: $(GLUE_DIR)/VBoxCAPIGlue.c
$(CC) $(CFLAGS) $(CAPI_INC) $(PLATFORM_INC) $(GLUE_INC) -0 $@ -c $<

Compile interface ID list
VirtualBox_i.o: $(PLATFORM_LIB)/VirtualBox_i.c
$(CC) $(CFLAGS) $(CAPI_INC) $(PLATFORM_INC) $(GLUE_INC) -0 $@ -c $<

Compile program code
program.o: program.c
$(CC) $(CFLAGS) $(CAPI_INC) $(PLATFORM_INC) $(GLUE_INC) -0 $@ -c $<

Link program.
program: program.o VBoxCAPICGlue.o VirtualBox_i.o
$(CC) -0 $@ $~ -ldl -lpthread

2.3.6.10 Conversion of code using legacy C binding

This section aims to make the task of converting code using the legacy C binding to the new style
a breeze, by pointing out some key steps.

One necessary change is adjusting your Makefile to reflect the different include paths. See
above. There are now 3 relevant include directories, and most of it is pointing to the C binding
directory. The XPCOM include directory is still relevant for platforms where the XPCOM mid-
dleware is used, but most of the include files live elsewhere now, so it’s good to have it last.
Additionally the VirtualBox_i.c file needs to be compiled and linked to the program, it con-
tains the IIDs relevant for the VirtualBox API, making sure they are not replicated endlessly if the
code refers to them frequently.

The C API client code should include VBoxCAPIGlue.h instead of VBoxXPCOMCGlue.h or
VBoxCAPI_v4_3.h, as this makes sure the correct macros and internal translations are selected.

All API method calls (anything mentioning vtbl) should be rewritten using the convenience
macros for calling methods, as these hide the internal details, are generally easier to use and
shorter to type. You should remove as many as possible (nsISupports =xx) or similar typecasts,
as the new style should use the correct type in most places, increasing the type safety in case of
an error in the source code.

To gloss over the platform differences, API client code should no longer rely on XPCOM spe-
cific interface names such as nsISupports, nsIException and nsIEventQueue, and replace
them by the platform independent interface names IUnknown and IErrorInfo for the first two
respectively. Event queue handling should be replaced by using the platform independent way
described in chapter 2.3.6.7, Event handling, page 43.

Finally adjust the string and array handling to use the new helpers, as these make sure the
code works without changes with both COM and XPCOM, which are significantly different in

45

2 Environment-specific notes

this area. The code should be double checked if it uses the correct way to manage memory, and
is freeing it only after the last use.

2.3.6.11 Legacy C binding to VirtualBox API for XPCOM

Note: This section applies to Linux, Mac OS X and Solaris hosts only and describes
deprecated use of the API from C.

Starting with version 2.2, VirtualBox offers a C binding for its API which works only on plat-
forms using XPCOM. Refer to the old SDK documentation (included in the SDK packages for
version 4.3.6 or earlier), it still applies unchanged. The fundamental concepts are similar (but
the syntactical details are quite different) to the newer cross-platform C binding which should be
used for all new code, as the support for the old C binding will go away in a major release after
version 4.3.

46

3 Basic VirtualBox concepts; some
examples

The following explains some basic VirtualBox concepts such as the VirtualBox object, sessions and
how virtual machines are manipulated and launched using the Main API. The coding examples
use a pseudo-code style closely related to the object-oriented web service (OOWS) for JAX-WS.
Depending on which environment you are using, you will need to adjust the examples.

3.1 Obtaining basic machine information. Reading attributes

Any program using the Main API will first need access to the global VirtualBox object (see
IVirtualBox), from which all other functionality of the API is derived. With the OOWS for JAX-
WS, this is returned from the IWebsessionManager::logon() call.

To enumerate virtual machines, one would look at the “machines” array attribute in the
VirtualBox object (see IVirtualBox::machines). This array contains all virtual machines currently
registered with the host, each of them being an instance of IMachine. From each such instance,
one can query additional information, such as the UUID, the name, memory, operating system
and more by looking at the attributes; see the attributes list in IMachine documentation.

As mentioned in the preceding chapters, depending on your programming environment, at-
tributes are mapped to corresponding “get” and (if the attribute is not read-only) “set” methods.
So when the documentation says that IMachine has a “name* attribute, this means you need to
code something like the following to get the machine’s name:

IMachine machine = ...;
String name = machine.getName();

Boolean attribute getters can sometimes be called isAttribute() due to JAX-WS naming
conventions.

3.2 Changing machine settings: Sessions

As said in the previous section, to read a machine’s attribute, one invokes the corresponding
“get” method. One would think that to change settings of a machine, it would suffice to call the
corresponding “set” method — for example, to set a VM’s memory to 1024 MB, one would call
setMemorySize(1024). Try that, and you will get an error: “The machine is not mutable.“

So unfortunately, things are not that easy. VirtualBox is a complicated environment in which
multiple processes compete for possibly the same resources, especially machine settings. As a
result, machines must be “locked” before they can either be modified or started. This is to prevent
multiple processes from making conflicting changes to a machine: it should, for example, not be
allowed to change the memory size of a virtual machine while it is running. (You can’t add more
memory to a real computer while it is running either, at least not to an ordinary PC.) Also, two
processes must not change settings at the same time, or start a machine at the same time.

These requirements are implemented in the Main API by way of “sessions”, in particu-
lar, the ISession interface. Each process which talks to VirtualBox needs its own instance
of ISession. In the web service, you can request the creation of such an object by calling
IWebsessionManager::getSessionObject(). More complex management tasks might need mul-
tiple instances of ISession, and each call returns a new one.

47

3 Basic VirtualBox concepts; some examples

This session object must then be used like a mutex semaphore in common programming envi-
ronments. Before you can change machine settings, you must write-lock the machine by calling
IMachine::lockMachine() with your process’s session object.

After the machine has been locked, the ISession::machine attribute contains a copy of the
original IMachine object upon which the session was opened, but this copy is “mutable”: you can
invoke “set” methods on it.

When done making the changes to the machine, you must call IMachine::saveSettings(), which
will copy the changes you have made from your “mutable” machine back to the real machine and
write them out to the machine settings XML file. This will make your changes permanent.

Finally, it is important to always unlock the machine again, by calling ISession::unlockMachine().
Otherwise, when the calling process end, the machine will receive the “aborted” state, which can
lead to loss of data.

So, as an example, the sequence to change a machine’s memory to 1024 MB is something like
this:

IWebsessionManager mgr ...;
IVirtualBox vbox = mgr.logon(user, pass);

IMachine machine ..; // read-only machine
ISession session = mgr.getSessionObject();
machine.lockMachine(session, LockType.Write); // machine is now locked for writing

IMachine mutable = session.getMachine(); // obtain the mutable machine copy
mutable.setMemorySize(1024);
mutable.saveSettings(); // write settings to XML

session.unlockMachine();

3.3 Launching virtual machines

To launch a virtual machine, you call IMachine::launchVMProcess(). In doing so, the caller
instructs the VirtualBox engine to start a new process with the virtual machine in it, since to the
host, each virtual machine looks like single process, even if it has hundreds of its own processes
inside. (This new VM process in turn obtains a write lock on the machine, as described above,
to prevent conflicting changes from other processes; this is why opening another session will fail
while the VM is running.)

Starting a machine looks something like this:

IWebsessionManager mgr ...;
IVirtualBox vbox = mgr.logon(user, pass);

IMachine machine = ...; // read-only machine
ISession session = mgr.getSessionObject();
IProgress prog = machine.launchVMProcess(session,
"gui", // session type
") // possibly environment setting
prog.waitForCompletion(10000); // give the process 10 secs
if (prog.getResultCode() != 0) // check success
System.out.println("Cannot launch VM!")

The caller’s session object can then be used as a sort of remote control to the VM process that
was launched. It contains a “console” object (see ISession::console) with which the VM can be
paused, stopped, snapshotted or other things.

3.4 VirtualBox events

In VirtualBox, “events” provide a uniform mechanism to register for and consume specific events.
A VirtualBox client can register an “event listener” (represented by the IEventListener interface),

48

3 Basic VirtualBox concepts; some examples

which will then get notified by the server when an event (represented by the IEvent interface)
happens.

The IEvent interface is an abstract parent interface for all events that can occur in VirtualBox.
The actual events that the server sends out are then of one of the specific subclasses, for example
IMachineStateChangedEvent or IMediumChangedEvent.

As an example, the VirtualBox GUI waits for machine events and can thus update its display
when the machine state changes or machine settings are modified, even if this happens in another
client. This is how the GUI can automatically refresh its display even if you manipulate a machine
from another client, for example, from VBoxManage.

To register an event listener to listen to events, use code like this:

EventSource es = console.getEventSource();
IEventListener listener = es.createlListener();
VBoxEventType aTypes[] = (VBoxEventType.OnMachineStateChanged);
// list of event types to listen for
es.registerListener(listener, aTypes, false /* active */);
// register passive listener
IEvent ev = es.getEvent(listener, 1000);
// wait up to one second for event to happen
if (ev !'= null)

{
// downcast to specific event interface (in this case we have only registered
// for one type, otherwise IEvent::type would tell us)
IMachineStateChangedEvent mcse = IMachineStateChangedEvent.queryInterface(ev);
. // inspect and do something
es.eventProcessed(listener, ev);
}

es.unregisterListener(listener);

A graphical user interface would probably best start its own thread to wait for events and then
process these in a loop.

The events mechanism was introduced with VirtualBox 3.3 and replaces various callback in-
terfaces which were called for each event in the interface. The callback mechanism was not
compatible with scripting languages, local Java bindings and remote web services as they do not
support callbacks. The new mechanism with events and event listeners works with all of these.

To simplify developement of application using events, concept of event aggregator was intro-
duced. Essentially it’'s mechanism to aggregate multiple event sources into single one, and then
work with this single aggregated event source instead of original sources. As an example, one
can evaluate demo recorder in VirtualBox Python shell, shipped with SDK - it records mouse and
keyboard events, represented as separate event sources. Code is essentially like this:

listener = console.eventSource.createlListener()
agg = console.eventSource.createAggregator([console.keyboard.eventSource, console.mouse.eventSource])
agg.registerListener(listener, [ctx[’'global’].constants.VBoxEventType_Any], False)
registered = True
end = time.time() + dur
while time.time() < end:
ev = agg.getEvent(listener, 1000)
processEent(ev)
agg.unregisterListener(listener)

Without using aggregators consumer have to poll on both sources, or start multiple threads to
block on those sources.

49

4 The VirtualBox shell

VirtualBox comes with an extensible shell, which allows you to control your virtual machines
from the command line. It is also a nontrivial example of how to use the VirtualBox APIs from
Python, for all three COM/XPCOM/WS styles of the API.

You can easily extend this shell with your own commands. Create a subdirectory named
.config/VirtualBox/shexts below your home directory (respectively .VirtualBox/shexts
on a Windows system and Library/VirtualBox/shexts on OS X) and put a Python file imple-
menting your shell extension commands in this directory. This file must contain an array named
commands containing your command definitions:

commands = {

"ecmdl’: [’'Command cmdl help’, cmdl],
"cmd2’: [’'Command cmd2 help’, cmd2]
}

For example, to create a command for creating hard drive images, the following code can be

used:

def createHdd(ctx,args):
Show some meaningful error message on wrong input
if (len(args) < 3):
print "usage: createHdd sizeM location type"
return 0

Get arguments

size = int(args([1])

loc = args[2]

if len(args) > 3:
format = args[3]

else:
And provide some meaningful defaults
format = "vdi"

Call VirtualBox API, using context’s fields

hdd = ctx['vb’'].createMedium(format, loc, ctx[’global’].constants.AccessMode ReadWrite, \

ctx['global’].constants.DeviceType_HardDisk)
Access constants using ctx[’global’].constants
progress = hdd.createBaseStorage(size, (ctx[’global’].constants.MediumVariant_Standard,
use standard progress bar mechanism
ctx[’'progressBar’] (progress)

Report errors

if not hdd.id:
print "cannot create disk (file %s exist?)" %(loc)
return 0

Give user some feedback on success too
print "created HDD with id: %s" %(hdd.id)

0 means continue execution, other values mean exit from the interpreter
return 0

commands = {

50

))

4 The VirtualBox shell

"myCreateHDD’: [’'Create virtual HDD, createHdd size location type’, createHdd]

}

Just store the above text in the file createHdd (or any other meaningful name) in
.config/VirtualBox/shexts/. Start the VirtualBox shell, or just issue the reloadExts com-
mand, if the shell is already running. Your new command will now be available.

51

5 Classes (interfaces)

5.1 IAdditionsFacility

Note: With the web service, this interface is mapped to a structure. Attributes that
return this interface will not return an object, but a complete structure containing the
attributes listed below as structure members.

Structure representing a Guest Additions facility.

5.1.1 Attributes
5.1.1.1 classType (read-only)

AdditionsFacilityClass IAdditionsFacility::classType

The class this facility is part of.

5.1.1.2 lastUpdated (read-only)

long long IAdditionsFacility::lastUpdated

Time stamp of the last status update, in milliseconds since 1970-01-01 UTC.

5.1.1.3 name (read-only)

wstring IAdditionsFacility::name

The facility’s friendly name.

5.1.1.4 status (read-only)

AdditionsFacilityStatus IAdditionsFacility::status

The current status.

5.1.1.5 type (read-only)
AdditionsFacilityType IAdditionsFacility::type

The facility’s type ID.

5.2 IAdditionsStateChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when a Guest Additions property changes. Interested callees should query IGuest
attributes to find out what has changed.

52

5 Classes (interfaces)

5.2.1 Attributes
5.2.1.1 midlDoesNotLikeEmptylnterfaces (read-only)

boolean IAdditionsStateChangedEvent::midlDoesNotLikeEmptyInterfaces

5.3 |Appliance

Represents a platform-independent appliance in OVF format. An instance of this is returned by
IVirtualBox::createAppliance(), which can then be used to import and export virtual machines
within an appliance with VirtualBox.

The OVF standard suggests two different physical file formats:

1.

If the appliance is distributed as a set of files, there must be at least one XML descriptor file
that conforms to the OVF standard and carries an .ovf file extension. If this descriptor file
references other files such as disk images, as OVF appliances typically do, those additional
files must be in the same directory as the descriptor file.

If the appliance is distributed as a single file, it must be in TAR format and have the . ova file
extension. This TAR file must then contain at least the OVF descriptor files and optionally
other files.

At this time, VirtualBox does not not yet support the packed (TAR) variant; support will be
added with a later version.

Importing an OVF appliance into VirtualBox as instances of IMachine involves the following
sequence of API calls:

1.
2.

Call IvVirtualBox::createAppliance(). This will create an empty IAppliance object.

On the new object, call read() with the full path of the OVF file you would like to import.
So long as this file is syntactically valid, this will succeed and fill the appliance object with
the parsed data from the OVF file.

Next, call interpret(), which analyzes the OVF data and sets up the contents of the
IAppliance attributes accordingly. These can be inspected by a VirtualBox front-end
such as the GUI, and the suggestions can be displayed to the user. In particular, the
virtualSystemDescriptions[] array contains instances of IVirtualSystemDescription which
represent the virtual systems (machines) in the OVF, which in turn describe the virtual
hardware prescribed by the OVF (network and hardware adapters, virtual disk images,
memory size and so on). The GUI can then give the user the option to confirm and/or
change these suggestions.

If desired, call IVirtualSystemDescription::setFinalValues() for each virtual system (ma-
chine) to override the suggestions made by the interpret() routine.

Finally, call importMachines() to create virtual machines in VirtualBox as instances of
IMachine that match the information in the virtual system descriptions. After this call
succeeded, the UUIDs of the machines created can be found in the machines[] array at-
tribute.

Exporting VirtualBox machines into an OVF appliance involves the following steps:

1.

As with importing, first call IVirtualBox::createAppliance() to create an empty IAppliance
object.

. For each machine you would like to export, call IMachine::exportTo() with the IAppliance

object you just created. Each such call creates one instance of IVirtualSystemDescription
inside the appliance.

53

5 Classes (interfaces)
3. If desired, call IVirtualSystemDescription::setFinalValues() for each virtual system (ma-
chine) to override the suggestions made by the IMachine::exportTo() routine.

4. Finally, call write() with a path specification to have the OVF file written.

5.3.1 Attributes
5.3.1.1 path (read-only)

wstring IAppliance::path

Path to the main file of the OVF appliance, which is either the .ovf or the .ova file passed to
read() (for import) or write() (for export). This attribute is empty until one of these methods
has been called.

5.3.1.2 disks (read-only)

wstring IAppliance::disks[]

Array of virtual disk definitions. One such description exists for each disk definition in the
OVF; each string array item represents one such piece of disk information, with the information
fields separated by tab (\\t) characters.

The caller should be prepared for additional fields being appended to this string in future
versions of VirtualBox and therefore check for the number of tabs in the strings returned.

In the current version, the following eight fields are returned per string in the array:

1. Disk ID (unique string identifier given to disk)
2. Capacity (unsigned integer indicating the maximum capacity of the disk)

3. Populated size (optional unsigned integer indicating the current size of the disk; can be
approximate; -1 if unspecified)

4. Format (string identifying the disk format, typically “http://www.vmware.com/specifications/vmdk.html#spars

5. Reference (where to find the disk image, typically a file name; if empty, then the disk
should be created on import)

6. Image size (optional unsigned integer indicating the size of the image, which need not
necessarily be the same as the values specified above, since the image may be compressed
or sparse; -1 if not specified)

7. Chunk size (optional unsigned integer if the image is split into chunks; presently unsup-
ported and always -1)

8. Compression (optional string equaling “gzip” if the image is gzip-compressed)
5.3.1.3 virtualSystemDescriptions (read-only)
IVirtualSystemDescription IAppliance::virtualSystemDescriptions|[]

Array of virtual system descriptions. One such description is created for each virtual sys-
tem (machine) found in the OVF. This array is empty until either interpret() (for import) or
IMachine::exportTo() (for export) has been called.

54

5 Classes (interfaces)

5.3.1.4 machines (read-only)

wstring IAppliance::machines|[]

Contains the UUIDs of the machines created from the information in this appliances. This is
only relevant for the import case, and will only contain data after a call to importMachines()
succeeded.

5.3.1.5 certificate (read-only)

ICertificate IAppliance::certificate

The X.509 signing certificate, if the imported OVF was signed, null if not signed. This is
available after calling read().

5.3.2 addPasswords

void IAppliance::addPasswords (
[in] wstring identifiers[],
[in] wstring passwords[])

identifiers List of identifiers.

passwords List of matching passwords.

Adds a list of passwords required to import or export encrypted virtual machines.

5.3.3 createVFSExplorer

IVFSExplorer IAppliance::createVFSExplorer(
[in] wstring URI)

URI The URI describing the file system to use.

Returns a IVFSExplorer object for the given URI.

5.3.4 getMediumldsForPasswordid

uuid[] IAppliance::getMediumIdsForPasswordId (
[in] wstring passwordId)

passwordld The password identifier to get the medium identifiers for.

Returns a list of medium identifiers which use the given password identifier.

5.3.5 getPasswordids

wstring[] IAppliance::getPasswordIds()

Returns a list of password identifiers which must be supplied to import or export encrypted
virtual machines.

5.3.6 getWarnings

wstring[] IAppliance::getWarnings()

Returns textual warnings which occurred during execution of interpret().

55

5 Classes (interfaces)

5.3.7 importMachines

IProgress IAppliance::importMachines(
[in] ImportOptions options[])

options Options for the importing operation.

Imports the appliance into VirtualBox by creating instances of IMachine and other interfaces
that match the information contained in the appliance as closely as possible, as represented by
the import instructions in the virtualSystemDescriptions[] array.

Calling this method is the final step of importing an appliance into VirtualBox; see IAppliance
for an overview.

Since importing the appliance will most probably involve copying and converting disk images,
which can take a long time, this method operates asynchronously and returns an IProgress object
to allow the caller to monitor the progress.

After the import succeeded, the UUIDs of the IMachine instances created can be retrieved from
the machines[] array attribute.

5.3.8 interpret

void IAppliance::interpret()

Interprets the OVF data that was read when the appliance was constructed. After calling this
method, one can inspect the virtualSystemDescriptions[] array attribute, which will then contain
one IVirtualSystemDescription for each virtual machine found in the appliance.

Calling this method is the second step of importing an appliance into VirtualBox; see
IAppliance for an overview.

After calling this method, one should call getWarnings() to find out if problems were encoun-
tered during the processing which might later lead to errors.

5.3.9 read

IProgress IAppliance::read(
[in] wstring file)

file Name of appliance file to open (either with an .ovf or .ova extension, depending on
whether the appliance is distributed as a set of files or as a single file, respectively).

Reads an OVF file into the appliance object.

This method succeeds if the OVF is syntactically valid and, by itself, without errors. The mere
fact that this method returns successfully does not mean that VirtualBox supports all features
requested by the appliance; this can only be examined after a call to interpret().

5.3.10 write

IProgress IAppliance::write(
[in] wstring format,
[in] ExportOptions options[],
[in] wstring path)

format Output format, as a string. Currently supported formats are “ovf-0.9”, “ovf-1.0”, “ovf-
2.0” and “opc-1.0”; future versions of VirtualBox may support additional formats. The
“opc-1.0” format is for creating tarballs for the Oracle Public Cloud.

options Options for the exporting operation.

56

5 Classes (interfaces)

path Name of appliance file to create. There are certain restrictions with regard to the file name
suffix. If the format parameter is “opc-1.0” a .tar.gz suffix is required. Otherwise the
suffix must either be .ovf or .ova, depending on whether the appliance is distributed as a
set of files or as a single file, respectively.

Writes the contents of the appliance exports into a new OVF file.

Calling this method is the final step of exporting an appliance from VirtualBox; see IAppliance
for an overview.

Since exporting the appliance will most probably involve copying and converting disk images,
which can take a long time, this method operates asynchronously and returns an IProgress object
to allow the caller to monitor the progress.

5.4 lAudioAdapter

The IAudioAdapter interface represents the virtual audio adapter of the virtual machine. Used
in IMachine::audioAdapter.

5.4.1 Attributes
5.4.1.1 enabled (read/write)

boolean IAudioAdapter::enabled

Flag whether the audio adapter is present in the guest system. If disabled, the virtual guest
hardware will not contain any audio adapter. Can only be changed when the VM is not running.

5.4.1.2 enabledIn (read/write)

boolean IAudioAdapter::enabledIn

Flag whether the audio adapter is enabled for audio input. Only relevant if the adapter is
enabled.

5.4.1.3 enabledOut (read/write)

boolean IAudioAdapter::enabledOut

Flag whether the audio adapter is enabled for audio output. Only relevant if the adapter is
enabled.

5.4.1.4 audioController (read/write)

AudioControllerType IAudioAdapter::audioController

The emulated audio controller.

5.4.1.5 audioCodec (read/write)

AudioCodecType IAudioAdapter::audioCodec

The exact variant of audio codec hardware presented to the guest. For HDA and SB16, only
one variant is available, but for AC’97, there are several.

57

5 Classes (interfaces)

5.4.1.6 audioDriver (read/write)

AudioDriverType IAudioAdapter::audioDriver

Audio driver the adapter is connected to. This setting can only be changed when the VM is not
running.

5.4.1.7 propertiesList (read-only)

wstring IAudioAdapter::propertiesList[]

Array of names of tunable properties, which can be supported by audio driver.

5.4.2 getProperty

wstring IAudioAdapter::getProperty(
[in] wstring key)

key Name of the key to get.

Returns an audio specific property string.
If the requested data key does not exist, this function will succeed and return an empty string
in the value argument.

5.4.3 setProperty

void IAudioAdapter::setProperty/(
[in] wstring key,
[in] wstring value)
key Name of the key to set.
value Value to assign to the key.

Sets an audio specific property string.
If you pass null or empty string as a key value, the given key will be deleted.

5.5 lIAudioAdapterChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when a property of the audio adapter changes. Interested callees should use
IAudioAdapter methods and attributes to find out what has changed.

5.5.1 Attributes
5.5.1.1 audioAdapter (read-only)

TAudioAdapter IAudioAdapterChangedEvent::audioAdapter

Audio adapter that is subject to change.

58

5 Classes (interfaces)

5.6 IBIOSSettings

The IBIOSSettings interface represents BIOS settings of the virtual machine. This is used only in
the IMachine::BIOSSettings attribute.

5.6.1 Attributes
5.6.1.1 logoFadeln (read/write)

boolean IBIOSSettings::logoFadeIn
Fade in flag for BIOS logo animation.

5.6.1.2 logoFadeOut (read/write)

boolean IBIOSSettings::logoFadeOut

Fade out flag for BIOS logo animation.

5.6.1.3 logoDisplayTime (read/write)

unsigned long IBIOSSettings::logoDisplayTime

BIOS logo display time in milliseconds (0 = default).

5.6.1.4 logolmagePath (read/write)

wstring IBIOSSettings::logoImagePath

Local file system path for external BIOS splash image. Empty string means the default image
is shown on boot.

5.6.1.5 bootMenuMode (read/write)

BIOSBootMenuMode IBIOSSettings::bootMenuMode
Mode of the BIOS boot device menu.

5.6.1.6 ACPIEnabled (read/write)

boolean IBIOSSettings::ACPIEnabled
ACPI support flag.

5.6.1.7 I0APICEnabled (read/write)

boolean IBIOSSettings::I0APICEnabled
I/0-APIC support flag. If set, VirtualBox will provide an I/0-APIC and support IRQs above 15.

5.6.1.8 APICMode (read/write)

APICMode IBIOSSettings::APICMode

APIC mode to set up by the firmware.

59

5 Classes (interfaces)

5.6.1.9 timeOffset (read/write)

long long IBIOSSettings::timeOffset

Offset in milliseconds from the host system time. This allows for guests running with a dif-
ferent system date/time than the host. It is equivalent to setting the system date/time in the
BIOS except it is not an absolute value but a relative one. Guest Additions time synchronization
honors this offset.

5.6.1.10 PXEDebugEnabled (read/write)

boolean IBIOSSettings::PXEDebugEnabled

PXE debug logging flag. If set, VirtualBox will write extensive PXE trace information to the
release log.

5.6.1.11 nonVolatileStorageFile (read-only)

wstring IBIOSSettings::nonVolatileStorageFile

The location of the file storing the non-volatile memory content when the VM is powered off.
The file does not always exist.
This featu