ORACLE

Oracle® TimesTen In-Memory Database
SQL Reference

Release 11.2.1
E13070-09

January 2011

Oracle TimesTen In-Memory Database SQL Reference, Release 11.2.1
E13070-09
Copyright © 1996, 2011, Oracle and/ or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

PUrOIACE ... ettt s et st s e s e naseenaeen iX
AN Lo 1= V< JRSR R ix
ReEIAtEA AOCUIMEIES ...ttt ettt ettt e et e e et e e s eaae e e s bt eseaseeesnatesssaeessseessstesssnseesssseessssneean ix
(@) 8721 415 [0 1< IR ix
Documentation Accessibility ... X
TechniCal SUPPOTL....c.cuiiiiiiiiiiiiiiii e Xi

WRAL'S INGW ...ttt a et as s sas s sassnanen Xiii
New features in Release 11.2.1.8.0 ..ottt ettt ettt eeet e e e easeessateessaaeeseaseeessaeesseeesssseeas Xiii
New features in Release 11.2.1.7.0 ..ottt eae e ete et s eaeeaeesrseeseessessntesnesenseeons xiii
New features in Release 11.2.1.6.0 ..ottt e e e st essaaeesaaeesneeesnaeeesnneeean Xiv
New features in RelEase 11.2.1.4.0 ..ottt et e ettt e ete e s et e essateessaaeeseaseeesnseessaeeesnssesas Xiv
New features in Release 11.2.1.1.0 ..ottt et e ente et s eaeeaeesraeeaeessessntesneseresons Xiv

1 Data Types

Type sSPecificationsccocoiiiiiiiiiiii e 1-1
ANSI SQL data types........cccvuviviiiiiiiiiiiiiiic s 1-5
Types supported for backward compatibility in Oracle type mode..............ccoviininniniinnnnee. 1-7
TimesTen type MaPPInNg.......cccooviiiiiiiiiiiiiii e 1-9
Character data tyPes.........coiiiiiiiiii e 1-11
CHAR ...ttt 1-11
INCHAR ..ot bbb 1-12
VARCHARR ..o 1-13
NVARCHAR?. ..ottt 1-14
Numeric data tyPes ..o 1-15
Exact and approximate numeric data types..........cooceueiiieiiiiiiice e, 1-15
INUMBER ...ttt sttt 1-15
TT_BIGINT ..ot 1-17
TT_INTEGER......cooiiiiiiiiiiic bbb 1-18
TT_SMALLINT ..ottt 1-19
TT_TINYINT oot 1-19
Floating-point NUMDETSc.c.oiiiiiii s 1-19
BINARY_DOUBLE ...ttt 1-20
BINARY_FLOAT ..ottt sssssnens 1-20

FLOAT and FLOAT(1) c..ccouviviiiiiiiiiciniciicn s 1-20

BINARY and VARBINARY data types.........ccooiiiiniiiiiiiiiiiiicse s 1-20

NUMETLIC PIECEAOIICE ..ot 1-21
ROWID data tyPeccooiiiiiiiiiii s 1-21
Datetime data typesccccoeviiiiiiiiiiiiiiiii s 1-22
DIATE bbb 1-22
TIME ..o 1-22
TIMESTAMP ..ot s 1-23
TT_DATE. ..o bbb bbb 1-23
TT_TIMESTAMP ..ottt 1-23
TimesTen iNtervals ... 1-23
Using interval data typesoooerieiiiii 1-23
Using DATE and TIME data types ..ottt 1-23
Handling timezone CONVEISIONSccocueiiiiueieiiiiicieie ettt 1-24
Datetime and interval data types in arithmetic operationscccccoeuoviiiiiiiiciicna, 1-24
Restrictions on datetime and interval arithmetic operationsccccccccceueciccreeuccecnenne 1-26
Storage reqUIremMents............ccoooiiiiiiiiiii e 1-26
Data type comparison rules..............ccoovviviiiiiiiniiiinini 1-27
INUMETIC VAIUES......oiviiiiiiiiiii s 1-27
Date VALUEScvovviittcict s 1-27
Character ValUeS........ccciiiiiiiiiiiiii s 1-28
Binary and linguistic SOTHNGccvviiiviviviiiiicii s 1-28
Blank-padded and nonpadded comparison semantics............ccceeeverieriiniieeiinnenennnns 1-28

Data type CONVEISIONcciiiiiiiiiiecc e 1-28
Implicit data type CONVETISION.......cviiuirivirtctcictctctcctctct s 1-28
INULL VAlUES ..ottt 1-29
INF and NAN ..o s e 1-30
CONSANE VALUES ...t 1-30
Primary Key VAlUES ..ot 1-30
Selecting Inf and NaN (floating-point conditions)..........cccocueueiicieieieicciice e, 1-30
Expressions involving Inf and NalN ... 1-31
Overflow and truncation.. ... 1-31
UNAEIELOW ...ttt ettt 1-32
Replication LIMIESc.ocoiiiiiiiiiiiiccc et st st 1-32
TimesTen type mode (backward compatibility)...........ccccoooviiiiiiiiii 1-32
Data types supported in TimesTen type mode.........ccccoouvriniiiiciieiniic e, 1-33
Oracle data types supported in TimesTen type mode..........cccoevvviviriiiiiniiiniicicn, 1-36

2 Names, Namespace and Parameters

BaSiC MAIMIES.......ooouiiiiiiiicictectt et s 2-1
OWINET NAINESvtieiitctcet ettt ettt a et b et as e bt ae et b et ae e s ts 2-2
Compound Identifiers ... 2-2
INAIMESPACEc.veniiieiiieiieeereee ettt ettt b et a e et se st sa et sa et ae s e e st sae e eaesesaennenennen 2-2
Dynamic parameters ..o 2-3
Duplicate parameter NAMES.............cccovvviiiiiiiiiiiniiiii s 2-3
Inferring data type from parameters ... 2-4

3 Expressions

ROWID SPecificationc.ccociiiiiiiiiiiiiiiic s 3-1
ROWNUM SPeCIfiCationcouccerieiriiiriiirieiniciniceeetee ettt a et a e sae e e sneseenens 3-1
Expression specification...........cociiiiiiiiiiii s 3-3
SUDQUETIES ...t 3-6
Aggregate fUNCHONS ..o 3-8
COMSTANTS ..ottt et et b et e bttt st e bt s st e sbe st e bt e be s bt e s esbee b e sbeenseeneenesae 3-11
FOrmat MOAEIS.c..oouoiiiiiieie ettt ettt ettt ettt et et es st ae e bt b e beeaeebas 3-16
Number format MOAELS.......ccceirieiriiiieiiee ettt st ene 3-17
Number fOrmat lEeMENTS.cccveirieeirieririeieieeereee ettt ettt st eens 3-17
Datetime format MOAEIS.ocueiiiiieiiieeeee ettt sttt ettt ettt see s 3-20
Datetime fOrmat lEMENTES.......c.oivieirieirieirieirietee ettt sttt sttt b e ene 3-21
Format model for ROUND and TRUNC date functions.........ceceeevueereeerieeneeneneesereenieeeenenns 3-23
Format model for TO_CHAR of TimesTen datetime data types.........ccccooooreininirieinnnan, 3-24
ABS ...ttt b et h bbb Rttt b e Rt e s b e Rt b et e h et et et be e se s enn 3-26
ADD_IMONTHS ...ttt ettt ettt et s e e b e st ses e s anteseneesensesensesensesensesensenn 3-27
ASCIISTRoooiiieiiieetetttetrtett et e e ete e ete et et tas s et et esassesassesansesasesesesesasersasesansasansasensesensesensesensesensasen 3-29
CASE ...ttt ettt st b st stttk a e st et b et b et e b et b ettt be b bt e b et ebesae st eneetenens 3-30
CA ST ..ttt ettt ettt ettt bt b st et et e st et e st et ea e et e n e e b e st et en e e b en e e b et et et e ae st ese s es et eneeaeneeteneetenees 3-32
CHR ...ttt ettt ettt et et e et e s e et e st et ese et es e et ase et eseesansesansesans et ens et et esasseserses et asesseneesanensanens 3-33
CEIL. ...ttt ettt ettt st b st sttt e st st ea e st et e b ea e et en e e b ea e e b et et et e be b e b et e b et enesae st et eneeteneas 3-34
COALESCE ...ttt ettt ettt sttt st ettt st e s et e st st et sbentebentebenses et es et esestesessesessenesseneesenessenens 3-35
CONCAT ...ttt ettt ettt ettt e s e s te s e st ese et ese st aseeseseesese et essesansesansesanses et esansesersesarsasessaseesanessanens 3-36
DECODE ...ttt ettt b et s et s et e st e st b e st e st b e st sb et ebenteben b beatebesesesenn 3-38
EXTRACT ...ttt ettt ettt ettt sttt sttt e st st e st e te st ste st sbestesantebenses et esentesestesessesensenessenessenessanens 3-39
FLOOR ...ttt tet ettt te st et et eses s et et esasesesestsesessansesansasansesansesansesansesansesansesansesansesansasn 3-40
GREATEST ...ttt sttt sttt st s b et b et e b et et et et et e se e ebe b e b et enesaenestenestenens 3-41
LEAST ...ttt ettt ettt ettt s st st e e st e st st e st et ea e st en e et e st et e st e b et et et et et ese s ese s es et eneeaeneeteneeteneas 3-43
LOWER and UPPER...........oooiiiiiieieeteeeeettete st etesteeveeteetesssetesseesessaesssessesseessasssessesssessasseessesseensesses 3-45
LPAD ...ttt ettt ettt st b stttk a e et et e h et et b et b et et e e e be e e b et e b et ebe st ene et enesteneas 3-46
LTRIM ...ttt ettt ettt et ettt te s et et sbe st st estebantebe st esestesansesensesestese st eneesenessentesenessenessanessanens 3-48
IMIOD ...ttt ettt ettt ettt ettt a et e st e b e s s et e s s et eab et e b eRe b e s e b e Rt b e Rt b e Rt eb e st et en st entetans et easeseasenen 3-50
INCHR ..ottt sttt ettt ettt b et e bt e bt e st s e s et e s et es e b e st eb et esentebentebentebensesensenen 3-51
INLSSORToouieiiieiiieiiietirtettetestetetetetstestesestesastesestesassesassesenseseesestsesessesessastssentesensesensesensesensesensesensenes 3-52
NUMTODSINTERYVAL ...ttt ettt et e e teestee s ste e e e sste e saessseebeassaeeseasssessseessesnsaenseennss 3-54
NUMTOYMINTERVAL ..ottt ettt ettt sttt ettt s st et st besessenessens 3-55
INVL ettt ettt ettt ettt e st et et et e st e s ea s e s eas e s e s ese s e st s es et en e s entebe st esentesentesensesensesensenn 3-56
POWER ...ttt ettt ettt e et e et e st e e bt e etae e beeesbeebeesstesabeaseesssaesssessseessaanssesssaeassasnsaesssennseenseenn 3-57
ROUND (AE) ...ttt sttt st sttt et ettt et et e eebe b ebe st ebe s enesaenestenessenens 3-58
ROUND (EXPIESSION).......cucuiiiiiiiiiiiciiii bbb bbb 3-59
L g N) LU USRS 3-61
RTRIM ..ottt ettt sttt sttt b et sttt et e b et e b et e b et e b et e bt st e bt st eae st ene st entstenestenestenestenens 3-63
SIGIN ettt ettt ettt ettt e st st st st et et e st et e st et en e et en e e b e st et en e ek en e e b et et et eae st e st s es et eneeae st teneeteneas 3-65
SQORT ..ottt ettt e te st et et e st et e et ese et e st et e st et e st et e st et es e et en s e b eates et et et eseatese s et e beseeseseeteneesenens 3-67
SHANG FUNCHONS ... 3-68
SUBSTR, SUBSTRB, SUBSTRA.......c.ccetiriiieieietrteisteeetetsie ettt et se e see e et seseens 3-69
INSTR, INSTRB, INSTRA.......cocveteieriieteieteietiteretetestesessess e sesesessesassesessessesassesassesassesassesessesansens 3-70

LENGTH, LENGTHB, LENGTHAoouiiiiieiieeeetrc et esne s seeene 3-71

SYS_CONTEXT ... bbb s 3-72
SYSDATE and GETDATE ...t 3-74
TO_CHAR e 3-76
TO_DATE ...t 3-78
TO_NUMBERocoiiiiii e 3-79
TRIM ..ot bbb e 3-80
TRUNC (dAE).....eiiiiiiiiiiiii et e e 3-83
TRUNC (@XPIESSION)eeniiuiiiiirieirieirieeetieetee ettt ettt ae st s et s et se e se s n e nesenesennns 3-84
TT_HASH ..ot bbb 3-85
UID .t 3-86
UNISTR ..ot eees 3-87
USER FUNCEIONS. ..ottt ettt se et ae et s et a et be st s st s eaesenesenenin 3-88

CURRENT _USER ...ttt 3-89

USER .. 3-90

SESSION_USER.......oouitiiiiiiiiniiiin ittt 3-91

SYSTEM_USER ..ottt 3-92

4 Search Conditions

Search condition general SYNtax ... 4-2
ALL/ NOT IN predicate (SUDQUETY)........ccccovviiiiiiiiiiiiiiiii e 4-4
ALL/NOT IN predicate (value List)ccoviiiiiiiiiiiiicc s 4-6
ANY/ IN predicate (SUDQUETY)........cccccoviiiiiniiiiiiiiiiiiiii s 4-8
ANY/ IN predicate (Value LiSt)ccooeeiriioiriiiiiiieiceeccte e 4-10
BETWEEN predicate............cococoiiiiiiiiiiii s 4-13
Comparison predicate............ooiiiiiiii e 4-14
EXISTS PIredicCate........c.ccovuiriiiiiiiiieiiieireeereeneerte ettt st st snene e 4-16
IS INFINITE Predicateccooiiiiiiiiiiiiici b 4-18
IS NAN predicate ... 4-19
IS INULL Predicate.ottt sttt se e s st ae e saene 4-20
LIKE PIediCateccoeueoiiiiriiiieiiieicnteenteereeenteest ettt sttt st s et es e s st e aesesaenesee e saesessenenaenens 4-21

NCHAR and NVARCHAR?. ..ottt es 4-24

5 SAQL Statements

vi

Comments within SQL statementsccoocieiiiiiiiiiiiiieee et 5-1
ALTER ACTIVE STANDBY PAIRcoooiitiiiiieieeetetetetee sttt sttt ettt ese e se s sseses 5-2
ALTER CACHE GROUP........ooitiiiieiiteitetesiteteettete sttt st see st site bt ssee st e seesbeeseesseensesaeensesseensesseens 5-6
ALTER FUNGCTION ...ttt ettt ettt ettt et e st e tesat e besste b e estesseensesseeasesseensesasensesseensesneens 5-8
ALTER PACKAGE ...ttt ettt ettt ettt ettt ebe bt ebe b seennen 5-10
ALTER PROCEDURE.........oociiiiiitieitteenteteetteteste sttt et et sateste st esaesbe e besst et e sbae s eeseesesneensesnee 5-12
ALTER REPLICATION. ...ttt ettt ettt ettt est st et e satesae st esaesst e sesntensesatenseentensesntensennes 5-14
ALTER SESSION ...ttt ettt ettt ettt ettt e e bbb s b et et et et esteseebesneeseebenbensensen 5-23
ALTER TABLE ...ttt sttt et ettt e bt e ee bt esaesat e b sbe e b e st et e e bae b eesaenbesneesesne 5-30
ALTER USER ...ttt ettt st ettt et e et e st et et e ste e st e st estesaeeabesseenbesbeeaseseensesseentensenaes 5-43
CALL ..ttt et ettt sttt b e sttt et et e st e st e et s bbbttt b et et ea b et et eat et eueshe et e besaen 5-45
COMMIT ...ttt sttt sttt s et s bttt s e st e e s e sbe et e sbeemb e s bt et e sbeeas e seenbesneensesne 5-47
CREATE ACTIVE STANDBY PAIR ..ottt ettt ettt sttt ste sttt be e e e eaes 5-48

CREATE CACHE GROUP. ...ttt sttt sae v e nens 5-54

CREATE FUNC CTION ...ttt et e steesteesstessaeesstessseasseassseesssasssessssasssesssessssesssessssesssessseens 5-67
CREATE INDEXccoiiioiiieiieieieieetettetteeetestatesbessessessesaesaessesassessessassessessensessassessessessessesessessensassensens 5-70
CREATE MATERIALIZED VIEWocoiiiiiititiieeiestetetese et se et tesvesvessesessessessessesssssssassessens 5-74
CREATE MATERIALIZED VIEW LOG ...ttt eseeete e sveesaessaeesaeesveesssesseesseans 5-80
CREATE PACKAGE ...ttt et e ettt sessestasseste st e s et assessessessssansessessensarsensens 5-82
CREATE PACKAGE BODY ...ttt ettt ss st et te e st stesse st assassesaessesasssssessessassessens 5-84
CREATE PROCEDURE.........ooitiitiiiteteeieeit e ete et e s tteesteesttessteaseeessteessaesssesssaasssessssesssesssessssesssessseens 5-85
CREATE REPLICATIONcoooieieieieieteisteteiestetestetestessesessessessassessessessessassessessessessssessessessessensens 5-88

CHECK CONEFELICTS.....cotiieietietetteietese st stestesteste e et eseesessseseesessessessessessessessassassessesssssesassessessenses 5-95
CREATE SEQUENC Eoooiiiiiiieiettcteetectee ettt ettt ettt sa et eetseteeteetesbesta s ansensensessersessersetesenns 5-102
CREATE SYNONYM......oooiiiiiieieieieteeeteessessestessessassesessessessassessssessessessessessessessessessessesssssssessassenss 5-105
CREATE TABLE ..ottt ettt et e bt sa ettt e be e besbesbebe s e b essessensasaesaessessatansenes 5-109

ColUumN DEfINIHON ..ecviiieiieiieieeeeteeeete ettt ettt e e et e st e e e saeere e beesa e besssenseessessensennns 5-114
CREATE USER.........oooiiiitiiiieieieteteeteetees e st se et et essessessesaessassasassassessessessessessessessessessessssessessensenes 5-124
CREATE VIEW ...ttt ettt ettt ettt ettt e s e saesa e st esaesasbesbesbebassassessessensaseessessaseesansanes 5-126
DELETEottt e et e e ettt e st e e s st e e e s bt e e s aabeesabbee e abaeeaasaeesnbaeessabeesssaesansaeens 5-128
DROP ACTIVE STANDBY PAIRccootiiiiierieeteteteteeeetetetestesressessessessessessessessesesssssessessessens 5-131
DROP CACHE GROUPcoootiiitieiietiettettetese st stetetetestesseseeseeseetessessessessassessessassassessessessessssessessens 5-132
DROP FUNC GTIONooiieiiiieeeecteetteste et esttesteesteessaessseesssaesseesssasssessssesssessssesssessssesssessssesssesssesnns 5-133
DROP INDEX......ccotiioieiiieieieteteteteststssessesessessessessestestessessastasessessessessessessessessessessessessessssessassessens 5-134
DROP [MATERIALIZED] VIEW.oooiiiiiiiiieeietettet ettt eteetesressesvesessessessessessessessesassasseseens 5-136
DROP MATERIALIZED VIEW LOGooooiiiiieteteeteeteette st te e esaesste s saessessssesssaenseanns 5-137
DROP PACKAGE [BODY ...ttt ettt ssestessessessessassessessessessessssssssssessassessens 5-138
DROP PROCEDUREcooiiiiiieticietteieteetese sttt te sttt esseseeteetestessessesbessessessassassassessessessssassessens 5-139
DROP REPLICATION ...ttt etteete et estteeteesteesaesteesteesseesssessssasssesssessssesssessssesssessssessseessesnns 5-140
DROP SEQUENCEc.ooieiieieieteiettetetee e stestes e e ste st et et estesessessessassassassessassassassesseseaseesessensessens 5-141
DROP SYNONYM ...ttt ettt seste st e e te st st et et eseasaesessessassessassassessassassassessessessssessessens 5-142
DROP TABLE ...ttt ete et stt e s te e st este s bt e s ba e seesstesssaasssessseasssesssessssessseesssessseesseenns 5-143
DROP USER ..ottt ettt et s e ssassa et essessessessessessassasssssssessessessessessessessessessesseseessssensenes 5-145
FLUSH CACHE GROUP........cooitiieieieietiettee ettt e e svestesseste st essesseseessesassassassassessessessessessessassesseseas 5-146
GRAINT ...ttt et et e et e e st e e beessaessbeeasae et e e baeasseasseeassaasseasseansaensaessseanseessseenssenssennses 5-148
INSERT ...ttt ettt ettt et ettt eteeteete st e s e e s essessessessessassaseasaasaasesseasessessassessassenseseesaesensensensenes 5-150
INSERT...SELECTcoooiiiitiieieteteeteettete ettt et et e s e s esaessesaesessasbestessessassassessessessassessessesessensenes 5-153
LOAD CACHE GROUP ...ttt ettt stteesteebtestesteesteeseasstesbaessaessaanssessseesssesssesnses 5-154
IMEERGEE ..ottt ettt ettt s st et e st e s s e s e s s e st esteseeseastaseeseaseasaesassassessessassassassesenseasensensensens 5-158
REFRESH CACHE GROUPcooiiiitieieteetieteest ettt esteese s e s ts s e stestessessassessessessessssaessessssensenes 5-162
REFRESH MATERIALIZED VIEW. ...ttt ettt et tte e saeesaae s veassaesasa e saesnaeenes 5-165
REVOKE........ociiiiiiieiiestisterterte et e te st eseeteste st e sassa s essassessessassassassaseasassesssasessessessessessessassesseseassnsensenes 5-166
ROLLBAGCK ...ttt ettt et et et e teete e e st et be st e b essessessesaessessesaasaasessessessassassessessessaseessessessasensenes 5-168
SELECT ...ttt ettt ettt et et e v e te et et et et e s et e st et eseesseseesseseesesseesesens et eneersensereereesenns 5-169

b =] 1ol 5 1 SRR 5-179

TADLESPEC. ..ottt 5-182

DETIVEATADIE......ceeeiitieieceeteceee ettt ettt r et e e e ebe s e eseeaesreensesasebeebeenbebaeateereenns 5-183

JOINEATADIE......cueeeieeieeeieese ettt ettt s et e et et e e be s e sesseseesaesaasensessensn 5-184
TRUNGCATE TABLEcooiiititetcteeeteeeeteee et et e e st e st esesteetesbesrasbesbesbessessassassassassessesassassessens 5-187
UNLOAD CACHE GROURP ..ottt te et e e steesveestessveessaestaasssessss e ssesssessssesssasssesns 5-189

Vii

JOIN UPAALE ..o 5-194

UPDATE 5-191

6 Privileges

System privileges

... 6-1
ODbject PLivVIIEZESccooviiiiiiii 6-3
Privilege hierarchy ... s 6-4
The PUBLIC T0le.........cooiiiiiiiiiiiiiiii s 6-5

7 Reserved Words

Index

vii

Audience

Preface

Oracle TimesTen In-Memory Database is a memory-optimized relational database.
Deployed in the application tier, TimesTen operates on databases that fit entirely in
physical memory using standard SQL interfaces.

This document provides a reference for TimesTen SQL statements, expressions, and
functions, including TimesTen SQL extensions. It also describes data types.

To work with this guide, you should understand how database systems work. You
should also have knowledge of SQL (Structured Query Language).

Related documents

TimesTen documentation is available on the product distribution media and on the
Oracle Technology Network:

http://www.oracle.com/technetwork/database/timesten/documentation

Conventions

TimesTen supports multiple platforms. Unless otherwise indicated, the information in
this guide applies to all supported platforms. The term Windows refers to Windows
2000, Windows XP and Windows Server 2003. The term UNIX refers to Solaris, Linux,
HP-UX and AIX.

Note: In TimesTen documentation, the terms "data store" and
"database" are equivalent. Both terms refer to the TimesTen database
unless otherwise noted.

This document uses the following text conventions:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

italic monospace ltalic monospace type indicates a variable in a code example that you
must replace. For example:

Driver=install_dir/lib/libtten.sl

Replace install_dir with the path of your TimesTen installation
directory.

[1 Square brackets indicate that an item in a command line is optional.

{} Curly braces indicated that you must choose one of the items separated
by a vertical bar (|) in a command line.

| A vertical bar (or pipe) separates alternative arguments.

An ellipsis (. . .) after an argument indicates that you may use more
than one argument on a single command line.

% The percent sign indicates the UNIX shell prompt.
The number (or pound) sign indicates the UNIX root prompt.

TimesTen documentation uses these variables to identify path, file and user names:

Convention Meaning

install_dir The path that represents the directory where the current release of
TimesTen is installed.

TTinstance The instance name for your specific installation of TimesTen. Each
installation of TimesTen must be identified at install time with a unique
alphanumeric instance name. This name appears in the install path.

bitsor bb Two digits, either 32 or 64, that represent either the 32-bit or 64-bit
operating system.

releaseor rr Numbers that represent a major TimesTen release, with or without
dots. For example, 1121 or 11.2.1 represents TimesTen Release 11.2.1.

DSN The data source name.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http: //www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http: //www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Technical support

For information about obtaining technical support for TimesTen products, go to the
following Web address:

http://www.oracle.com/support/contact.html

xi

Xii

What's New

This section lists new features for Release 11.2.1 that are documented in this reference
and provides cross-references to additional information.

New features in Release 11.2.1.8.0

This section lists new features for Release 11.2.1.8.0 that are documented in this
reference and provides cross-references to additional information.

You can create or drop a table, index or synonym in an active standby pair without
stopping the replication agent. You can choose to have these statements replicated to
the standby database. You can include a table in an active standby pair when the table
is created. See the following statements for more details:

"ALTER SESSION" on page 5-23

"ALTER ACTIVE STANDBY PAIR" on page 5-2
"CREATE TABLE" on page 5-109

"ALTER TABLE" on page 5-30

"DROP TABLE" on page 5-143

"CREATE INDEX" on page 5-70

"DROP INDEX" on page 5-134

"CREATE SYNONYM" on page 5-105

"DROP SYNONYM" on page 5-142

New features in Release 11.2.1.7.0

This section lists new features for Release 11.2.1.7.0 that are documented in this
reference and provides cross-references to additional information:

The CALL statement is now documented to cover how to execute the TimesTen
built-in procedures and how to execute PL/SQL procedures and functions. See
"CALL" on page 5-45 for more information.

The SYS_CONTEXT expression can now be used to retrieve the connection ID. See
"SYS_CONTEXT" on page 3-72 for details.

Explicit load for a global cache group is now enabled. For details, see "CREATE
CACHE GROUP" on page 5-54 for more information.

Xiii

New features in Release 11.2.1.6.0

This section lists new features for Release 11.2.1.6.0 that are documented in this
reference and provides cross-references to additional information:

The system tables and replication tables are now documented in Oracle TimesTen
In-Memory Database System Tables and Limits Reference.

You can modify the REPLICATION_TRACK session parameter for parallel
replication with the ALTER SESSION statement. See ALTER SESSION for more
details.

New features in Release 11.2.1.4.0

This section lists new features for Release 11.2.1.4.0 that are documented in this
reference and provides cross-references to additional information:

You can create synonyms for database objects including tables, views, sequences,
PL/SQL stored procedures, PL/SQL functions, PL/SQL packages, materialized
views and cache groups. For more information, see:

— CREATE SYNONYM
— DROP SYNONYM

— CREATE ANY SYNONYM, CREATE PUBLIC SYNONYM, DROP ANY SYNONYM
and DROP PUBLIC SYNONYM system privileges in Table 6-1, " System
privileges"

Time-based aging can now be specified for tables and cache groups in units of
seconds as well as minutes, hours, and days. See the ALTER TABLE, CREATE
TABLE, and CREATE CACHE GROUP statements.

If privileges on a table owned by one user are revoked from another user, the
associated materialized views owned by the second user are marked invalid. See
"Invalid materialized views" on page 5-77.

New features in Release 11.2.1.1.0

This section lists new features for Release 11.2.1.1.0 that are documented in this
reference and provides cross-references to additional information.

Xiv

Access Control

New system privileges and object privileges. See Chapter 6, "Privileges". Also see
"Required privileges" for each SQL statement in Chapter 5, "SQL Statements".

New syntax for ALTER USER, CREATE USER, DROP USER, GRANT and REVOKE
statements

Revised reserved words. See Chapter 7, "Reserved Words".

PL/SQL support
The ALTER SESSION statement has been enhanced.

These statements are new:

ALTER FUNCTION
ALTER PACKAGE

ALTER PROCEDURE

n CREATE FUNCTION

n CREATE PACKAGE

n CREATE PACKAGE BODY
n CREATE PROCEDURE

n DROP FUNCTION

n DROP PACKAGE [BODY]
n DROP PROCEDURE
These SQL functions are new:
n SYS_CONTEXT

= UID

Oracle In-Memory Database Cache (IMDB Cache)

These IMDB Cache features are new:

= Dynamic cache groups: In a dynamic cache group, new cache instances are loaded
manually into the TimesTen cache tables using a load operation, or on demand
using a dynamic load operation. See:

— CREATE CACHE GROUP
— LOAD CACHE GROUP

— REFRESH CACHE GROUP
— UNLOAD CACHE GROUP

= Cache grid: A cache grid is a collection of TimesTen databases that collectively
manage the application data using the relational data model. A cache grid consists
of one or more grid members each backed by a TimesTen database. See "CREATE
CACHE GROUP" on page 5-54.

= Global cache groups: In a global cache group, data in the cache tables are shared
among TimesTen databases within a cache grid. See "CREATE CACHE GROUP"
on page 5-54.

Asynchronous materialized views

Materialized views can be refreshed asynchronously. The CREATE MATERIALIZED
VIEW statement has been enhanced. These statements are new:

s CREATE MATERIALIZED VIEW LOG
s DROP MATERIALIZED VIEW LOG

s REFRESH MATERIALIZED VIEW

RETURNING ... INTO clause

The DELETE, INSERT and UPDATE statements have been enhanced with the
RETURNING. . . INTO clause.

ROWID data type
The ROWID data type has been implemented. See "ROWID data type" on page 1-21.

XV

Duplicate parameter names

TimesTen offers Oracle-style behavior for duplicated parameter names. See "Duplicate
parameter names" on page 2-3.

Bitmap indexes
You can create bitmap indexes. See "CREATE INDEX" on page 5-70.

Set operators in subqueries
Set operators are allowed in subqueries. See "Subqueries" on page 3-6.

Enhanced ":" parameter markers

"non

:" parameter markers have been enhanced. See "Dynamic parameters" on page 2-3.

Multiline C-style comments

You can use multiline C-style comments in SQL statements. See "Comments within
SQL statements" on page 5-1.

View and sequence names

A view and a sequence cannot have the same name. See "CREATE VIEW" on
page 5-126 and "CREATE SEQUENCE" on page 5-102.

XVi

1

Data Types

A data type defines a set of values. A reference to a data type specifies the set of values
that can occur in a given context.

A data type is associated with each value retrieved from a table or computed in an
expression and each constant.

TimesTen follows the ODBC standard for type conversion. A discussion of this
standard is not included in this guide. For information, refer to ODBC API reference
documentation, which is available from Microsoft or a variety of third parties. For
example:

http://msdn.microsoft.com/en-us/library/ms714562 (VS.85) .aspx

If you are using IMDB Cache, see "Mappings between Oracle and TimesTen data
types" in Oracle In-Memory Database Cache User's Guide. This section compares valid
data types for creating cache group columns, as well as type conversions for
passthrough queries.

Type specifications

TimesTen supports the data types in Table 1-1 in the default Oracle type mode. The
type mode is a data store attribute. TypeMode=0 indicates Oracle type mode.
TypeMode=1 indicates TimesTen mode.

For more information on types modes, see "TypeMode" in Oracle TimesTen In-Memory
Database Reference.

Table 1-1 Data types supported in Oracle type mode

Data type Description

BINARY (n) Fixed-length binary value of n bytes. Legal values for n range from
1 to 8300.
BINARY data is padded to the maximum column size with trailing
zeroes.

Alternatively, specify TT_BINARY (n).

BINARY_DOUBLE

A 64-bit floating-point number. BINARY_DOUBLE is a
double-precision native floating point number that supports +Inf,
-Inf, and NaN values. BINARY_DOUBLE is an approximate
numeric value consisting of an exponent and mantissa. You can
use exponential or E-notation. BINARY_DOUBLE has binary
precision 53.

Minimum positive finite value: 2.22507485850720E-308
Maximum positive finite value: 1.79769313486231E+308

Data Types 1-1

Type specifications

Table 1-1 (Cont.) Data types supported in Oracle type mode

Data type

Description

BINARY_FLOAT

A 32-bit floating-point number. BINARY_FLOAT is a
single-precision native floating-point type that supports +Inf,
-Inf, and NaN values. BINARY_FLOAT is an approximate numeric
value consisting of an exponent and mantissa. You can use
exponential or E-notation. BINARY_FLOAT has binary precision
24.

Minimum positive finite value: 1.17549E-38F
Maximum positive finite value: 3.40282E+38F

CHAR[ACTER][(n[BYTE|CHAR])]

Fixed-length character string of length n bytes or characters.
Default is one byte.

BYTE indicates that the column has byte-length semantics. Legal
values for n range from a minimum of one byte to a maximum of
8300 bytes.

CHAR indicates that the column has character-length semantics.
The minimum CHAR length is one character. The maximum CHAR
length depends on how many characters fit in 8300 bytes. This is
determined by the database character set in use. For character set
AL32UTF8, up to four bytes per character may be needed, so the
CHAR length limit ranges from 2075 to 8300 depending on the
character set.

A zero-length string is interpreted as NULL.

CHAR data is padded to the maximum column size with trailing
blanks. Blank-padded comparison semantics are used.

Alternatively, specify ORA_CHAR[(n[BYTE|CHAR])].

DATE

Stores date and time information: century, year, month, date, hour,
minute, and second. Format is:

YYYY-MM-DD HHMMSS.

Valid date range is from January 1, 4712 BC to December 31, 9999
AD.

There are no fractional seconds.

Alternatively, specify ORA_DATE.

INTERVAL [+/-]

IntervalQualifier

TimesTen partially supports interval types, expressed with the
type INTERVAL and an IntervalQualifier. An
IntervalQualifier can only specify a single field type with no
precision. The default leading precision is eight digits for all
interval types. The single field type can be: year, month, day, hour,
minute, or second. Currently, interval types can be specified only
with a constant.

Note: You cannot specify a column of an interval type. These are
non-persistent types used in SQL expressions at runtime. In
addition, for those comparisons where an interval data type is
returned, the interval data type cannot be the final result of a
complete expression. The EXTRACT function must be used to
extract the desired component of this interval result.

1-2 Oracle TimesTen In-Memory Database SQL Reference

Type specifications

Table 1-1 (Cont.) Data types supported in Oracle type mode

Data type

Description

NCHAR[(n)]

Fixed-length string of n two-byte Unicode characters.

The number of bytes required is 2*n where n is the specified
number of characters. NCHAR character limits are half the byte
limits so the maximum size is 4150.

A zero-length string is interpreted as NULL.

NCHAR data is padded to the maximum column size with U+0020
SPACE. Blank-padded comparison semantics are used.

Alternatively, specify ORA_NCHAR[(n)].

NUMBER[(p [, s])]

Number having precision and scale. The precision ranges from 1
to 38 decimal. The scale ranges from -84 to 127. Both precision and
scale are optional.

If you do not specify a precision or a scale, TimesTen assumes the
maximum precision of 38 and flexible scale.

NUMBER supports negative scale and scale greater than precision.

NUMBER stores zero as well as positive and negative fixed numbers
with absolute values from 1.0 x 10% to (but not including) 1.0 x
10'%. If you specify an arithmetic expression whose value has an

absolute value greater than or equal to 1.0 x 10'%, then TimesTen
returns an error.

NVARCHAR2 (n)

Variable-length string of n two-byte Unicode characters.

The number of bytes required is 2*n where n is the specified
number of characters. NVARCHAR?2 character limits are half the

byte limits so the maximum size is 2,097,152 (2%Y). You must
specify n.

A zero-length string is interpreted as NULL.
Nonpadded comparison semantics are used.

Alternatively, specify ORA_NVARCHAR?2 (n) .

ROWID An 18-byte character string that represents the address of a table
row or materialized view row.
Specify a literal ROWID value as a CHAR constant enclosed in single
quotes.

TIME A time of day between 00:00:00 (midnight) and 23:59:59 (11:59:59

pm), inclusive. The format is: HH: MI : SS.
Alternatively, specify TT_TIME.

Data Types 1-3

Type specifications

Table 1-1 (Cont.) Data types supported in Oracle type mode

Data type Description

TIMESTAMP Stores year, month, and day values of the date plus hour, minute,
and second values of the time. The
fractional_seconds_precision isthe number of digits in
the fractional part of the seconds field. Valid date range is from
January 1, 4712 BC to December 31, 9999 AD.

TT_TIMESTAMP has a smaller storage size than TIMESTAMP.
TT_TIMESTAMP is faster than TIMESTAMP because
TT_TIMESTAMP is an eight-byte integer containing the number of
microseconds since January 1, 1754. Comparisons are very fast.
TIMESTAMP has a larger range than TT_TIMESTAMP in that
TIMESTAMP can store date and time data as far back as 4712 BC.
TIMESTAMP also supports up to nine digits of fractional second
precision whereas TT_TIMESTAMP supports six digits of fractional
second precision.

[(fractional_seconds_precision)]

The fractional seconds precision range is 0 to 9. The default is 6.
Format is:

YYYY-MM-DD HH:MI:SS [.FFFFFFFFF]

Alternatively, specify
ORA_TIMESTAMP|[(fractional_seconds_precision)]

TT_BIGINT A signed eight-byte integer in the following range:
-9,223,372,036,854,775,808 (-29) to
9,223,372,036,854,775,807 (2-1).

Use TT_BIGINT rather than the NUMBER data type. TT_BIGINT is
more compact and offers faster performance than the NUMBER
type. If you need to store greater than 19-digit integers, use
NUMBER (p) where p > 19.

TT_DATE Stores date information: century, year, month, date. The format is
YYYY-MM-DD, where MM is expressed as an integer such as
2006-10-28.

Valid dates are between 1753-01-01 (January 1, 1753) and
9999-12-31 (December 31, 9999).

TT_INTEGER A signed integer in the range -2,147,483,648 (-2%!) to 2,147,483,647
(2%1-1).

TT_INTEGER is a native signed integer data type. Use
TT_INTEGER rather than INTEGER. INTEGER maps to the NUMBER
data type. TT_INTEGER is more compact and offers faster
performance than the NUMBER type. If you need to store greater
than 19-digit integers, use NUMBER (p) where p > 19.

TT_SMALLINT A native signed 16-bit integer in the range -32,768 (-2'°) to 32,767
(2'5-1).

Use TT_SMALLINT rather than SMALLINT. SMALLINT maps to the
NUMBER data type.

TT_SMALLINT is more compact and offers faster performance
than the NUMBER type. If you need to store greater than 19-digit
integers, use NUMBER (p) where p > 19.

1-4 Oracle TimesTen In-Memory Database SQL Reference

ANSI SQL data types

Table 1-1 (Cont.) Data types supported in Oracle type mode

Data type

Description

TT_TIMESTAMP

A date and time between 1753-01-01 00:00:00 (midnight on January
1,1753) and 9999-12-31 23:59:59 pm (11:59:59 pm on December 31,
9999), inclusive. Any values for the fraction not specified in full
microseconds result in a "Data Truncated" error. The format is
YYYY-MM-DD HH:MI:SS [.FFFFFFFFF].

TT_TIMESTAMP has a smaller storage size than TIMESTAMP and is
faster than TIMESTAMP because TT_TIMESTAMP is an eight-byte
integer containing the number of microseconds since January 1,
1754. Comparisons are very fast. TIMESTAMP has a larger range
than TT_TIMESTAMP in that TIMESTAMP can store date and time
data as far back as 4712 BC. TIMESTAMP also supports up to nine
digits of fractional second precision whereas TT_TIMESTAMP
supports six digits of fractional second precision.

You can specify TT_TIMESTAMP (6).

TT_TINYINT

Unsigned integer ranging from 0 to 255 (28-1).

Use TT_TINYINT rather than the NUMBER data type. TT_TINYINT
is more compact and offers faster performance than the NUMBER
type. If you need to store greater than 19-digit integers, use
NUMBER (p) where p > 19.

Since TT_TINYINT is unsigned, the negation of a TT_TINYINT is
a TT_SMALLINT

VARBINARY (n)

Variable-length binary value having maximum length n bytes.
Legal values for n range from 1 to 4194304 (2%).

Alternatively, specify TT_VARBINARY (n).

VARCHAR[2](H[BYTE|CHAR])

Variable-length character string having maximum length n bytes
or characters.

BYTE indicates that the column has byte-length semantics. Legal
values for n range from a minimum of one byte to a maximum

4194304 (2%2) bytes. You must specify n.

CHAR indicates that the column has character-length semantics.
A zero-length string is interpreted as NULL.

Nonpadded comparison semantics are used.

Do not use the VARCHAR type. Although it is currently
synonymous with VARCHAR2, the VARCHAR type is scheduled to
be redefined.

Alternatively, specify ORA_VARCHAR2 (n[BYTE |CHAR]).

ANSI SQL data types

TimesTen supports ANSI SQL data types in Oracle type mode. These data types are
converted to TimesTen data types with data stored as TimesTen data types. Table 1-2
shows how the ANSI SQL data types are mapped to TimesTen data types.

Data Types 1-5

ANSI SQL data types

Table 1-2 Data type mapping: ANSI SQL to TimesTen

ANSI SQL data type

TimesTen data type

CHARACTER VARYING(H[BYTE|CHAR])Or
CHAR VARYING(H[BYTE|CHAR])

VARCHARZ(H[BYTE|CHAR])

Character semantics is supported.

DOUBLE [PRECISION]

NUMBER
Floating-point number with a binary precision of 126.

Alternatively, specify FLOAT (126) or
ORA_FLOAT (126).

FLOAT[(b)]

NUMBER

Floating-point number with binary precision b.
Acceptable values for b are between 1 and 126 (binary
digits).

FLOAT is an exact numeric type. Use FLOAT to define a
column with a floated scale and a specified precision. A
floated scale is supported with the NUMBER type, but
you cannot specify the precision. A lower precision
requires less space, so because you can specify a
precision with FLOAT, it may be more desirable than
NUMBER. If you do not specify b, then the default
precision is 126 binary (38 decimal).

BINARY_ FLOAT and BINARY DOUBLE are inexact
numeric types and are therefore different floating types
than FLOAT. In addition, the semantics are different
between FLOAT and BINARY_FLOAT/BINARY_DOUBLE
because BINARY_FLOAT and BINARY_DOUBLE conform
to the IEEE standard.

Internally, FLOAT is implemented as type NUMBER.
Alternatively, specify ORA_FLOAT. For example:
FLOAT (24) = ORA_FLOAT (24)

FLOAT (53) = ORA_FLOAT(53)

FLOAT (n) = ORA_FLOAT (n)

INT[EGER]

NUMBER (38, 0)

TT_INTEGER is a native 32-bit integer type. Use
TT_INTEGER, as this data type is more compact and
offers faster performance than the NUMBER type.

NATIONAL CHARACTER (n) or
NATIONAL CHAR(n)

NCHAR (n)

NATIONAL CHARACTER VARYING (n) or
NATIONAL CHAR VARYING (n) or
NCHAR VARYING (n)

NVARCHAR2 (n)

1-6 Oracle TimesTen In-Memory Database SQL Reference

Types supported for backward compatibility in Oracle type mode

Table 1-2 (Cont.) Data type mapping: ANSI SQL to TimesTen

ANSI SQL data type

TimesTen data type

NUMERICI (p[,s])] or
DEC[IMAL] [(p[,s])]

NUMBER (p, s)

Specifies a fixed-point number with precision p and
scale s. This can only be used for fixed-point numbers.
If no scale is specified, s defaults to 0.

REAL NUMBER
Floating-point number with a binary precision of 63.
Alternatively, specify ORA_FLOAT (63) or FLOAT (63).
SMALLINT NUMBER (38, 0)

TT_SMALLINT is a native signed integer data type.
Using TT_SMALLINT is more compact and offers faster
performance than the NUMBER type.

Types supported for backward compatibility in Oracle type mode
TimesTen supports the data types shown in Table 1-3 for backward compatibility in

Oracle type mode.

Data Types 1-7

Types supported for backward compatibility in Oracle type mode

Table 1-3 Data types supported for backward compatibility in Oracle type mode

Data type

Description

TT_CHAR[(n[BYTE|CHAR])]

Fixed-length character string of length n bytes or
characters. Default is one byte.

BYTE indicates that the column has byte-length
semantics. Legal values for n range from a minimum of
one byte to a maximum 8300 bytes.

CHAR indicates that the column has character-length
semantics. The minimum CHAR length is one character.
The maximum CHAR length depends on how many
characters fit in 8300 bytes. This is determined by the
database character set in use. For character set
AL32UTF8, up to four bytes per character may be
needed, so the CHAR length limit ranges from 2075 to
8300 depending on the character set.

If you insert a zero-length (empty) string into a column,
the SQL NULL value is inserted. This is true in Oracle
type mode only.

TT_CHAR data is padded to the maximum column size
with trailing blanks. Blank-padded comparison
semantics are used.

TT_DECIMALI[(p[,s])]

An exact numeric value with a fixed maximum
precision (total number of digits) and scale (number of
digits to the right of the decimal point). The precision p
must be between 1 and 40. The scale s must be between
0 and p. The default precision is 40 and the default scale
is 0.

Use the NUMBER data type, which offers better
performance, rather than TT_DECIMAL.

1-8 Oracle TimesTen In-Memory Database SQL Reference

TimesTen type mapping

Table 1-3 (Cont.) Data types supported for backward compatibility in Oracle type mode

Data type

Description

TT_NCHAR[(n)]

Fixed-length string of n two-byte Unicode characters.

The number of bytes required is 2*n where n is the
specified number of characters. NCHAR character limits
are half the byte limits so the maximum size is 4150.

If you insert a zero-length (empty) string into a column,
the SQL NULL value is inserted. This is true in Oracle
type mode only.

TT_NCHAR data is padded to the maximum column size
with U+0020 SPACE. Blank-padded comparison
semantics are used.

TT_NVARCHAR (n)

Variable-length string of n two-byte Unicode characters.

The number of bytes required is 2*n where n is the
specified number of characters. TT_NVARCHAR character
limits are half the byte limits so the maximum size is

2,097,152 (2*!). You must specify n.

If you insert a zero-length (empty) string into a column,
the SQL NULL value is inserted. This is true in Oracle
type mode only.

Blank-padded comparison semantics are used.

TT_VARCHAR(H[BYTE|CHAR])

Variable-length character string having maximum
length n bytes or characters. You must specify n.

BYTE indicates that the column has byte-length
semantics. Legal values for n range from a minimum of

1 byte to a maximum 4194304 2%) bytes.

CHAR indicates that the column has character-length
semantics.

If you insert a zero-length (empty) string into a column,
the SQL NULL value is inserted. This is true in Oracle
type mode only.

Blank-padded comparison semantics are used.

TimesTen type mapping

The names of the data types listed in the left column of Table 14 are the data types
that existed in previous releases of TimesTen. If TypeMode is set to 0 (the default),
indicating Oracle type mode, then the name of the data type may be changed to a new
name in Oracle type mode. The name of the data type in Oracle type mode is listed in
the right column. The table illustrates the mapping of the data type in the left column
to the corresponding data type in the right column.

Data Types 1-9

TimesTen type mapping

Table 1-4 Data type mapping: TimesTen data type to TimesTen data type in Oracle type mode

TimesTen data type

TimesTen data type in Oracle type mode

BIGINT TT_BIGINT
In Oracle type mode, specify TT_BIGINT. For more information on
TT_BIGINT, see "Type specifications" on page 1-1.

BINARY (1) BINARY (1)

In Oracle type mode, the data type has the same name. For more information
on BINARY (n), see "Type specifications” on page 1-1.

CHAR[ACTER] [(nn)]

TT_CHAR[(n[BYTE|CHAR])]

In Oracle type mode, specify TT_CHAR. Character semantics is supported.
For more information on type TT_CHAR, see "Types supported for backward
compatibility in Oracle type mode" on page 1-7.

DATE

TT DATE

In Oracle type mode, specify TT_DATE. For more information on TT_DATE,
see "Type specifications” on page 1-1.

DEC[IMAL] [(p[,s])] or
NUMERIC[(p[,s])]

TT_DECIMAL[(p[,s]1)]
In Oracle type mode, specify TT_DECIMAL.

For more information on TT_DECIMAL, see "Types supported for backward
compatibility in Oracle type mode" on page 1-7.

DOUBLE [PRECISION] or

BINARY_DOUBLE

FLOATI[(53)] In Oracle type mode, specify BINARY_DOUBLE. For more information on
BINARY_DOUBLE, see "Type specifications" on page 1-1.
INT[EGER] TT_INT[EGER]

In Oracle type mode, specify TT_INTEGER. For more information on
TT_INTEGER, see "Type specifications" on page 1-1.

INTERVAL IntervalQualifier

INTERVAL IntervalQualifier

In Oracle type mode, the data type has the same name. For more information
on interval types, see "Type specifications" on page 1-1.

NCHAR[(n)]

TT_NCHAR[(n)]

In Oracle type mode, specify TT_CHAR. For more information on TT_NCHAR,
see "Types supported for backward compatibility in Oracle type mode" on
page 1-7.

NVARCHAR (n)

TT_NVARCHAR (n)

In Oracle type mode, specify TT_NVARCHAR. For more information on
TT_NVARCHAR, see "Types supported for backward compatibility in Oracle
type mode" on page 1-7.

REAL or BINARY_FLOAT

FLOAT (24) In Oracle type mode, specify BINARY_FLOAT. For more information on
BINARY_FLOAT, see "Type specifications" on page 1-1.

SMALLINT TT_ SMALLINT
In Oracle type mode, specify TT_SMALLINT. For more information on
TT_SMALLINT, see "Type specifications" on page 1-1.

TIME TIME
In Oracle type mode, the data type has the same name. For more information
on TIME, see "Type specifications" on page 1-1.

TIMESTAMP TT_TIMESTAMP

In Oracle type mode, specify TT_TIMESTAMP. For more information on
TT_TIMESTAMP, see "Type specifications" on page 1-1.

1-10 Oracle TimesTen In-Memory Database SQL Reference

Character data types

Table 1-4 (Cont.) Data type mapping: TimesTen data type to TimesTen data type in Oracle type mode

TimesTen data type TimesTen data type in Oracle type mode

TINYINT

TT_TINYINT

In Oracle type mode, specify TT_TINYINT. For more information on
TT_TINYINT, see "Type specifications” on page 1-1.

VARBINARY (n)

VARBINARY (n)

In Oracle type mode, the data type has the same name. For more information
on VARBINARY (n), see "Type specifications" on page 1-1.

VARCHAR (n)

TT_VARCHAR(H[BYTE|CHAR])

In Oracle type mode, specify TT_VARCHAR. Character semantics is
supported. For more information on TT_VARCHAR, see "Types supported for
backward compatibility in Oracle type mode" on page 1-7.

Character data types

CHAR

Character data types store character (alphanumeric) data either in the database
character set or the UTF-16 format.

Character data is stored in strings with byte values. The byte values correspond to one
of the database character sets defined when the database is created. TimesTen
supports both single byte and multibyte character sets.

The character types are:
= CHAR

= NCHAR

= VARCHAR2

= NVARCHAR?2

The CHAR type specifies a fixed length character string. If you insert a value into a
CHAR column and the value is shorter than the defined column length, then TimesTen
blank-pads the value to the column length. If you insert a value into a CHAR column
and the value is longer than the defined length, then TimesTen returns an error.

By default, the column length is defined in bytes. Use the CHAR qualifier to define the
column length in characters. The size of a character ranges from one byte to four bytes
depending on the database character set. The BYTE and CHAR qualifiers override the
NLS_LENGTH_SEMANTICS parameter setting. For more information about
NLS_LENGTH_SEMANTICS, see "ALTER SESSION" on page 5-23 and "Setting
globalization support attributes" in Oracle TimesTen In-Memory Database Operations
Guide.

Note: With the CHAR type, a zero-length string is interpreted as
NULL. With the TT_CHAR type, a zero-length string is a valid
non-NULL value. Both CHAR and TT_CHAR use blank padded
comparison semantics. The TT_CHAR type is supported for backward
compatibility.

The following example creates a table. Columns are defined with type CHAR and
TT_CHAR. Blank padded comparison semantics are used for these types.

Data Types 1-11

Character data types

Command> CREATE TABLE typedemo (name CHAR (20), nnme2 TT_CHAR (20));
Command> INSERT INTO typedemo VALUES ('SMITH ', 'SMITH ")

1 row inserted.

Command> DESCRIBE typedemo;

Table USER.TYPEDEMO:

Columns:
NAME CHAR (20)
NAME2 TT_CHAR (20)

1 table found.

(primary key columns are indicated with *)

Command> SELECT * FROM typedemo;

< SMITH , SMITH >

1 row found.

Command> # Expect 1 row found; blank-padded comparison semantics
Command> SELECT * FROM typedemo WHERE name = 'SMITH';

< SMITH , SMITH >

1 row found.

Command> SELECT * FROM typedemo WHERE name2 = 'SMITH';

< SMITH , SMITH >

1 row found.

Command> # Expect 0 rows; blank padded comparison semantics.
Command> SELECT * FROM typedemo WHERE name > 'SMITH';

0 rows found.

Command> SELECT * FROM typedemo WHERE name2 > 'SMITH';

0 rows found.

The following example alters table typedemo adding column name3. The column
name3 is defined with character semantics.

Command> ALTER TABLE typedemo ADD COLUMN name3 CHAR (10 CHAR);
Command> DESCRIBE typedemo;
Table USER.TYPEDEMO:

Columns:
NAME CHAR (20)
NAME2 TT_CHAR (20)
NAME3 CHAR (10 CHAR)

1 table found.

NCHAR

The NCHAR data type is a fixed length string of two-byte Unicode characters. NCHAR
data types are padded to the specified length with the Unicode space character
U+0020 SPACE. Blank-padded comparison semantics are used.

Note: With the NCHAR type, a zero-length string is interpreted as
NULL. With the TT_NCHAR type, a zero-length string is a valid
non-NULL value. Both NCHAR and TT_NCHAR use blank padded
comparison semantics. The TT_NCHAR type is supported for
backward compatibility.

The following example alters table typedemo, adding column Name4. Data type is
NCHAR.

Command> ALTER TABLE typedemo ADD COLUMN Named4 NCHAR (10);
Command> DESCRIBE typedemo;

Table USER.TYPEDEMO:
Columns:

1-12 Oracle TimesTen In-Memory Database SQL Reference

Character data types

VARCHAR2

NAME CHAR (20)
NAME2 TT_CHAR (20)
NAME3 CHAR (10 CHAR)
NAME4 NCHAR (10)

1 table found.

The VARCHAR2 data type specifies a variable length character string. When you define
a VARCHAR2 column, you define the maximum number of bytes or characters. Each
value is stored exactly as you specify it. The value cannot exceed the maximum length
of the column.

You must specify the maximum length. The minimum must be at least one byte. Use
the CHAR qualifier to specify the maximum length in characters. For example,
VARCHAR2 (10 CHAR).

The size of a character ranges from one byte to four bytes depending on the database
character set. The BYTE and CHAR qualifiers override the NL.S_ LENGTH_SEMANTICS
parameter setting. For more information on NLS_LENGTH_SEMANTICS, see "ALTER
SESSION" on page 5-23 and "Setting globalization support attributes” in Oracle
TimesTen In-Memory Database Operations Guide.

The NULL value is stored as a single bit inside the tuple for each nullable field. A NOT
INLINE VARCHAR2 (n) whose value is NULL takes (null bit) + four bytes of storage on
32-bit platforms, whereas an INLINE VARCHAR2 (n) whose value is NULL takes (null
bit) + four bytes + n bytes of storage, or n more bytes of storage than a NOT INLINE
VARCHAR?2 (n) whose value is NULL. This storage principal holds for all variable
length data types: TT_VARCHAR, TT_NVARCHAR, VARCHAR2, NVARCHAR2,
VARBINARY.

Notes:

= Do not use the VARCHAR data type. Use VARCHAR2. Even though
both data types are currently synonymous, the VARCHAR data
type may be redefined as a different data type with different
semantics.

= With the VARCHAR?2 type, a zero-length string is interpreted as
NULL. With the TT_VARCHAR type, a zero-length string is a valid
non-null value. VARCHAR2 uses nonpadded comparison
semantics. TT_VARCHAR uses blank-padded comparison
semantics. The TT_VARCHAR type is supported for backward
compatibility.

The following example alters table typedemo, adding columns name5 and name6.
The name5 column is defined with type VARCHAR2. The name6 column is defined
with TT_VARCHAR. The example illustrates the use of nonpadded comparison
semantics with column name5 and blank-padded comparison semantics with column
nameo6:

Command> ALTER TABLE typedemo ADD COLUMN name5 VARCHAR2 (20);
Command> ALTER TABLE typedemo ADD COLUMN name6 TT VARCHAR (20);
Command> DESCRIBE typedemo;

Table USER.TYPEDEMO:

Columns:
NAME CHAR (20)
NAME2 TT_CHAR (20)

Data Types 1-13

Character data types

NAME3 CHAR (10 CHAR)

NAME4 NCHAR (10)

NAMES VARCHAR2 (20) INLINE
NAMEG6 TT_VARCHAR (20) INLINE

1 table found.
(primary key columns are indicated with *)
Command> #Insert SMITH followed by 5 spaces into all columns
Command> INSERT INTO typedemo VALUES
> ('SMITH ', 'SMITH ', 'SMITH ', 'SMITH ', '"SMITH ',
> 'SMITH');
1 row inserted.
Command> # Expect 0; Nonpadded comparison semantics
Command> SELECT COUNT (*) FROM typedemo WHERE name5 = 'SMITH';
<0 >
1 row found.
Command> # Expect 1; Blank-padded comparison semantics
Command> SELECT COUNT (*) FROM typedemo WHERE name6 = 'SMITH';
<1 >
1 row found.
Command> # Expect 1; Nonpadded comparison semantics
Command> SELECT COUNT (*) FROM typedemo WHERE name5 > 'SMITH';
< 1>
1 row found.
Command> # Expect 0; Blank-padded comparison semantics
Command> SELECT COUNT (*) FROM typedemo WHERE name6 > 'SMITH';
<0 >
1 row found.

NVARCHAR2

The NVARCHAR2 data type is a variable length string of two-byte Unicode characters.
When you define an NVARCHAR2 column, you define the maximum number of
characters. Each value is stored exactly as you specify it. The value cannot exceed the
maximum length of the column.

Note: With the NVARCHAR?2 type, a zero-length string is interpreted
as NULL. With the TT_NVARCHAR type, a zero-length string is a valid
non-null value. NVARCHAR2 uses nonpadded comparison semantics.
TT_NVARCHAR uses blank-padded comparison semantics. The
TT_NVARCHAR type is supported for backward compatibility.

The following example alters table typedemo adding column name7. Data type is
NVARCHAR2.

Command> ALTER TABLE typedemo ADD COLUMN Nnme7 NVARCHAR2 (20);
Command> DESCRIBE typedemo;
Table USER1.TYPEDEMO:

Columns:
NAME CHAR (20)
NAME2 TT_CHAR (20)
NAME3 CHAR (10 CHAR)
NAME4 NCHAR (10)
NAMES VARCHAR2 (20) INLINE
NAME6 TT_VARCHAR (20) INLINE
NAME7 NVARCHAR2 (20) INLINE

1 table found.

1-14 Oracle TimesTen In-Memory Database SQL Reference

Numeric data types

Numeric data types

Numeric types store positive and negative fixed and floating-point numbers, zero,
infinity, and values that are the undefined result of an operation (NaN, meaning not a
number).

Exact and approximate numeric data types

TimesTen supports both exact and approximate numeric data types. Arithmetic
operations can be performed on numeric types only. Similarly, SUM and AVG
aggregates require numeric types.

The exact numeric types are:
= NUMBER

s TT_BIGINT

s TT_INTEGER

= TT_SMALLINT

s TT_TINYINT

The approximate types are:
= BINARY_DOUBLE

s BINARY_FLOAT

s FLOAT and FLOAT (n)

NUMBER

The NUMBER data type stores zero as well as positive and negative fixed numbers with
absolute values from 1.0 x 10 " up to but not including 1.0 x 10 '*. Each NUMBER
value requires from five to 22 bytes.

Specify a fixed-point number as NUMBER (p, s), where the following holds:

s The argument p is the precision or the total number of significant decimal digits,
where the most significant digit is the left-most non-zero digit and the least
significant digit is the right-most known digit.

s The argument s is the scale, or the number of digits from the decimal point to the
least significant digit. The scale ranges from -84 to 127.

- Positive scale is the number of significant digits to the right of the decimal
point up to and including the least significant digit.

- Negative scale is the number of significant digits to the left of the decimal
point up to but not including the least significant digit. For negative scale, the
least significant digit is on the left side of the decimal point, because the
number is rounded to the specified number of places to the left of the decimal
point.

Scale can be greater than precision. For example, in the case of E-notation. When scale
is greater than precision, the precision specifies the maximum number of significant
digits to the right of the decimal point. For example, if you define the column as type
NUMBER (4, 5) and you insert .000127 into the column, the value is stored as .00013. A
zero is required for the first digit after the decimal point. TimesTen rounds values after
the fifth digit to the right of the decimal point.

Data Types 1-15

Numeric data types

If a value exceeds the precision, then TimesTen returns an error. If a value exceeds the
scale, then TimesTen rounds the value.

NUMBER (p) represents a fixed-point number with precision p and scale 0 and is
equivalent to NUMBER (p, 0) .

Specify a floating-point number as NUMBER. If you do not specify precision and scale,
TimesTen uses the maximum precision and scale.

The following example alters table numerics by adding columns col6, col7, cols,
and col9 defined with the NUMBER data type and specified with different precisions
and scales.

Command> ALTER TABLE numerics ADD col6 NUMBER;
Command> ALTER TABLE numerics ADD col7 NUMBER (4,2);
Command> ALTER TABLE numerics ADD col8 NUMBER (4,-2);
Command> ALTER TABLE numerics ADD col8 NUMBER (2,4)
Command> ALTER TABLE numerics ADD col9 NUMBER (2,4)
Command> DESCRIBE numerics;

Table USER1.NUMERICS:

Columns:
COL1 TT_TINYINT
COL2 TT_SMALLINT
COL3 TT_INTEGER
COL4 TT_INTEGER
COL5 TT_BIGINT
COL6 NUMBER
COoL7 NUMBER (4,2)
COL8 NUMBER (4,-2)
COL9 NUMBER (2,4)

1 table found.
(primary key columns are indicated with *)

The next example creates table numbercombo and defines columns with the NUMBER
data type using different precisions and scales. The value 123.89 is inserted into the
columns.

Command> CREATE TABLE numbercombo (coll NUMBER, col2 NUMBER (3),

> col3 NUMBER (6,2), cold NUMBER (6,1), col5 NUMBER (6,-2));
Command> DESCRIBE numbercombo;
Table USER1.NUMBERCOMBO:

Columns:
COL1 NUMBER
COL2 NUMBER (3)
COL3 NUMBER (6,2)
COoL4 NUMBER (6,1)
COL5 NUMBER (6,-2)

1 table found.
(primary key columns are indicated with *)
Command> INSERT INTO numbercombo VALUES (123.89,123.89,123.89,123.89,123.89);
1 row inserted.
Command> VERTICAL ON;
Command> SELECT * FROM numbercombo;
COL1: 123.89
COL2: 124
COL3: 123.89
COL4: 123.9
COL5: 100
1 row found.

1-16 Oracle TimesTen In-Memory Database SQL Reference

Numeric data types

The next example creates a table and defines a column with data type NUMBER (4, 2) .
An attempt to insert a value of 123.89 results in an overflow error.

Command> CREATE TABLE invnumbervalue (col6é NUMBER (4,2));

Command> INSERT INTO invnumbervalue VALUES (123.89);
2923: Number type value overflow

The command failed.

The next example creates a table and defines columns with the NUMBER data type
using a scale that is greater than the precision. Values are inserted into the columns.

Command> CREATE TABLE numbercombo? (coll NUMBER (4,5), col2 NUMBER (4,5),
> col3 NUMBER (4,5), col4d NUMBER (2,7), col5 NUMBER (2,7),
> col6 NUMBER (2,5), col7 NUMBER (2,5));
Command> INSERT INTO numbercombo2 VALUES
> (.01234, .00012, .000127, .0000012, .00000123, 1.2e-4, 1.2e-5);
1 row inserted.
Command> DESCRIBE numbercombo?2;
Table USER1.NUMBERCOMBO2 :

Columns:
COL1 NUMBER (4,5)
COL2 NUMBER (4,5)
COL3 NUMBER (4,5)
COoL4 NUMBER (2,7)
COL5 NUMBER (2,7)
COL6 NUMBER (2,5)
COoL7 NUMBER (2,5)

1 table found.

(primary key columns are indicated with *)
Command> SELECT * FROM numbercombo?2;

COL1: .01234
COL2: .00012
COL3: .00013
COL4: .0000012
COL5: .0000012
COL6: .00012
COL7: .00001

1 row found.

TT_BIGINT

The TT_BIGINT data type is a signed integer that ranges from
-9,223,372,036,854,775,808 (-2%%) to 9,223,372,036,854,775,807 (23-1). It requires eight
bytes of storage and thus is more compact than the NUMBER data type. It also has
better performance than the NUMBER data type. You cannot specify BIGINT.

This example alters table numerics and attempts to add col5 with a data type of
BIGINT. TimesTen generates an error. A second ALTER TABLE successfully adds
col5 with the data type TT_BIGINT.

Command> ALTER TABLE numerics ADD COLUMN col5 BIGINT;

3300: BIGINT is not a valid type name; use TT_BIGINT instead
The command failed.
Command> ALTER TABLE numerics ADD COLUMN col5 TT BIGINT;
Command> DESCRIBE numerics;
Table USER1.NUMERICS:

Columns:
COL1 TT_TINYINT
COL2 TT_SMALLINT
COL3 TT_INTEGER

Data Types 1-17

Numeric data types

CcoL4 TT_INTEGER
COL5 TT_BIGINT
1 table found.
(primary key columns are indicated with *)

TT_INTEGER

The TT_INTEGER data type is a signed integer that ranges from -2,147,483,648 (-2*") to
2,147,483,647 (231 -1). Tt requires four bytes of storage and thus is more compact than
the NUMBER data type. It also has better performance than the NUMBER data type. You
can specify TT_INT for TT_INTEGER. If you specify either INTEGER or INT, these
types are mapped to NUMBER (38).

The following example alters the table numerics and adds col3 with the data type
INT. Describing the table shows that the data type is NUMBER (38) . The column co13
is dropped. A second ALTER TABLE adds col2 with the data type INTEGER.
Describing the table shows that the data type is NUMBER (38) . The column col13 is
dropped. Columns col3 and col4 are then added with the data types TT_INTEGER
and TT_INT. Describing the table shows both data types as TT_INTEGER.

Command> ALTER TABLE numerics ADD col3 INT;
Command> DESCRIBE numerics;
Table USER1.NUMERICS:

Columns:
COL1 TT_TINYINT
COL2 TT_SMALLINT
COL3 NUMBER (38)

1 table found.

(primary key columns are indicated with *)
Command> ALTER TABLE numerics DROP col3;
Command> ALTER TABLE numerics ADD col3 INTEGER;
Command> DESCRIBE numerics;

Table USER1.NUMERICS:

Columns:
COL1 TT _TINYINT
COL2 TT_SMALLINT
COL3 NUMBER (38)

1 table found.

(primary key columns are indicated with *)

Command> ALTER TABLE numerics DROP col3;

Command> ALTER TABLE numerics ADD COLUMN col3 TT_ INTEGER;
Command> DESCRIBE numerics;

Table USER1.NUMERICS:

Columns:
COL1 TT_TINYINT
COL2 TT_SMALLINT
COL3 TT_INTEGER

1 table found.

(primary key columns are indicated with *)
Command> ALTER TABLE numerics ADD col4 TT_ INT;
Command> DESCRIBE numerics;

Table USER1.NUMERICS:

Columns:
CcoLnl TT _TINYINT
COL2 TT_SMALLINT
COL3 TT_INTEGER
COL4 TT_INTEGER

1 table found.
(primary key columns are indicated with *)

1-18 Oracle TimesTen In-Memory Database SQL Reference

Numeric data types

TT_SMALLINT

The TT_SMALLINT data type is a signed integer that ranges from -32,768 (-2'°) to
32,767 (2'°-1). It requires two bytes of storage and thus is more compact than the
NUMBER data type. It also has better performance than the NUMBER data type. You can
specify the data type SMALLINT, but it maps to NUMBER (38).

The following example alters the table numerics and adds col2 with the data type
SMALLINT. Describing the table shows that the data type is NUMBER (38) . The column
col2 is dropped. A second ALTER TABLE adds col2 with the data type
TT_SMALLINT.

Command> ALTER TABLE numerics ADD COLUMN col2 SMALLINT;
Command> DESCRIBE Numerics;
Table USER1.NUMERICS:

Columns:
coLnl TT _TINYINT
COL2 NUMBER (38)

1 table found.

(primary key columns are indicated with *)

Command> ALTER TABLE numerics DROP COLUMN col2;

Command> ALTER TABLE numerics ADD COLUMN col2 TT SMALLINT;
Command> DESCRIBE numerics;

Table USER1.NUMERICS:

Columns:
COL1 TT_TINYINT
COL2 TT_SMALLINT

1 table found.
(primary key columns are indicated with *)

TT_TINYINT

The TT_TINYINT data type is an unsigned integer that ranges from 0 to 255 (2°-1). It
requires one byte of storage and thus is more compact than the NUMBER data type. It
also has better performance than the NUMBER data type. The data type of a negative
TT TINYINT is TT SMALLINT. You cannot specify TINYINT.

The following example first attempts to create a table named numerics that defines a
column named col1l with data type TINYINT. TimesTen returns an error. The
example then redefines the column with data type TT_TINYINT.

Command> CREATE TABLE numerics (coll TINYINT);

3300: TINYINT is not a valid type name; use TT TINYINT instead
The command failed.
Command> CREATE TABLE numerics (coll TT TINYINT);
Command> DESCRIBE numerics;
Table USER1.NUMERICS:

Columns:

COL1 TT_TINYINT

1 table found.
(primary key columns are indicated with *)

Floating-point numbers

Floating-point numbers can be with or without a decimal point. An exponent may be
used to increase the range (for example, 1.2E-20).

Floating-point numbers do not have a scale because the number of digits that can
appear after the decimal point is not restricted.

Data Types 1-19

BINARY and VARBINARY data types

Binary floating-point numbers are stored using binary precision (the digits 0 and 1).
For the NUMBER data type, values are stored using decimal precision (the digits 0
through 9).

Literal values that are within the range and precision supported by NUMBER are stored
as NUMBER because literals are expressed using decimal precision.
BINARY_DOUBLE BINARY_DOUBLE is a 64-bit, double-precision, floating-point number.

Both BINARY_FLOAT and BINARY_DOUBLE support the special values Inf, -Inf,
and NaN (not a number) and conform to the IEEE standard.

Floating-point number limits:
s BINARY_FLOAT
- Minimum positive finite value: 1.17549E-38F
- Maximum positive finite value: 3.40282E+38F
s BINARY_DOUBLE
— Minimum positive finite value: 2.22507485850720E-308
- Maximum positive finite value: 1.79769313486231E+308

The following example creates a table and defines two columns with the
BINARY_FLOATandBINARY_DOUBLEdamiype&

Command> CREATE TABLE BfBd (Coll BINARY_FLOAT, Col2 BINARY_DOUBLE) ;
Command> DESCRIBE BfBd;
Table UISER1.BFBD:

Columns:
COL1 BINARY_FLOAT
COL2 BINARY_DOUBLE

1 table found.
(primary key columns are indicated with *)

BINARY_FLOAT BINARY_FLOAT is a 32-bit, single-precision, floating-point number.

FLOAT and FLOAT(n) TimesTen also supports the ANSI type FLOAT. FLOAT is an exact
numeric type and is implemented as the NUMBER type. The value of n indicates the
number of bits of precision that can be stored, from 1 to 126. To convert from binary
precision to decimal precision, multiply n by 0.30103. To convert from decimal
precision to binary precision, multiply the decimal precision by 3.32193. The
maximum 126 digits of binary precision is equivalent to approximately 38 digits of
decimal precision.

BINARY and VARBINARY data types

The BINARY data type is a fixed-length binary value with a length of n bytes, where
the value of n ranges from 1 to 8300 bytes. The BINARY data type requires n bytes of
storage. Data is padded to the maximum column size with trailing zeros. Zero padded
comparison semantics are used.

The VARBINARY data type is a variable-length binary value having a maximum length
of nbytes, where the value of n ranges from 1 to 4,194,304 (2%2) bytes.

The following example creates a table and defines two columns: col1 is defined with
data type BINARY and col2 with data type VARBINARY.

Command> CREATE TABLE bvar (coll BINARY (10), col2 VARBINARY (10));
Command> DESCRIBE bvar;

1-20 Oracle TimesTen In-Memory Database SQL Reference

ROWID data type

Table USER1.BVAR:

Columns:
COL1 BINARY (10)
COL2 VARBINARY (10) INLINE

1 table found.
(primary key columns are indicated with *)

Numeric precedence

The result type of an expression is determined by the operand with the highest type
precedence. The numeric precedence order is as follows (highest to lowest):

= BINARY_DOUBLE
s BINARY_FLOAT
= NUMBER

s TT_BIGINT

s TT_INTEGER

= TT_SMALLINT

s TT_TINYINT

For example, the sum of TT_INTEGER and BINARY_FLOAT values is type
BINARY_FLOAT because BINARY_FLOAT has higher numeric precedence. Similarly,
the product of NUMBER and BINARY_DOUBLE values is type BINARY_DOUBLE.

ROWID data type

The address of a row in a table or materialized view is called a rowid. The rowid data
type is ROWID. You can examine a rowid by querying the ROWID pseudocolumn. See
"ROWID specification" on page 3-1.

Specify literal ROWID values in SQL statements as constants enclosed in single quotes.
For example:

Command> SELECT ROWID, last_name FROM employees
> WHERE ROWID='BMUFVUAAABTAAAAFi8';

< BMUFVUAAABTAAAAFi8, Hartstein >

1 row found.

The ROWID data type can be used as follows:
= Asthe data type for a table column or materialized view column
= In these types of expressions:

- Literals

- Comparisons: <, <=, >, >=, BETWEEN

— CASE

— CAST

— COALESCE

- COUNT

— DECODE

— GREATEST

Data Types 1-21

Datetime data types

- 1IN
- IS NULL
— LEAST
- MAX
- MIN
- NVL
- TO_CHAR
- TT_HASH
= In ORDER BY and GROUP BY clauses

s In INSERT. . .SELECT statements. Column col1l has been defined with the
ROWID data type for these examples:

INSERT INTO t2(coll) SELECT ROWID FROM tl1;

INSERT INTO t2(coll) SELECT TO_CHAR(ROWID) FROM tl1;
INSERT INTO t2(coll) SELECT CAST(ROWID, CHAR(18)) FROM tl1;
INSERT INTO t2(coll) SELECT CAST(ROWID, CHAR(18)) FROM tl1;

Implicit type conversions are supported for assigning values and comparison
operations between ROWID and CHAR or between ROWID and VARCHAR2 data.

When CHAR, VARCHAR2, and ROWID operands are combined in CASE, COALESCE,
DECODE, or NVL expressions, the result data type is ROWID. Expressions with CHAR
and VARCHAR?2 values are converted to ROWID values to evaluate the expression.

To use ROWID values with string functions such as CONCAT, the application must
convert ROWID values explicitly to CHAR values using the SQLTO_CHAR function.

Datetime data types
The datetime data types are as follows:
s DATE
s TIME
s TIMESTAMP
s TT_DATE

s TT_TIMESTAMP

DATE
The format of a DATE value is YYYY-MM-DD HH:MI:SS and ranges from -4712-01-01
(January 1, 4712 BC) to 9999-12-31 (December 31, 9999 AD). There are no fractional
seconds. The DATE type requires seven bytes of storage.
TimesTen does not support user-specified NLS_DATE_FORMAT settings. The SQL
TO_CHAR and TO_DATE functions can be used to specify other formats.

TIME

The format of a TIME value is HH:MI : SS and ranges from 00:00:00 (midnight) to
23:59:59 (11:59:59 pm). The TIME data type requires eight bytes of storage.

1-22 Oracle TimesTen In-Memory Database SQL Reference

TimesTen intervals

TIMESTAMP

TT_DATE

The format of a TIMESTAMP value is YYYY-MM-DD HH:MI:SS [.FFFFFFFFF]. The
fractional seconds precision range is 0 to 9. The default is 6. The date range is from
-4712-01-01 (January 1, 4712 BC) to 9999-12-31 (December 31, 9999 AD). The
TIMESTAMP type requires 12 bytes of storage. The TIMESTAMP type has a larger date
range and supports more precision than TT_TIMESTAMP.

TimesTen does not support user-specified NLS_TIMESTAMP_FORMAT settings. The
SQL TO_CHAR and TO_DATE functions can be used to specify other formats.

The format of a TT_DATE value is YYYY-MM-DD and ranges from 1753-01-01 (January
1,1753 AD) to 9999-12-31 (December 31, 9999 AD). The TT_DATE data type requires
four bytes of storage.

TT_TIMESTAMP

The format of a TT_TIMESTAMP value is YYYY-MM-DD HH:MI:SS [.FFFFFFFFF].
The fractional seconds precision is 6. The range is from 1753-01-01 00:00:00 (January 1,
1753, midnight) to 9999-12-31 23:59:59 (December 31, 9999, 11:59:59 PM). The
TT_TIMESTAMP type requires eight bytes of storage. TT_TIMESTAMP is faster than the
TIMESTAMP data type and has a smaller storage size.

TimesTen intervals

This section includes the following topics:
= Using interval data types

s Using DATE and TIME data types

= Handling timezone conversions

= Datetime and interval data types in arithmetic operations

Using interval data types

If you are using TimesTen type mode, refer to the Oracle TimesTen In-Memory Database
API and SQL Reference Guide, Release 6.0.3, for information on interval types.

TimesTen supports interval types only in a constant specification or intermediate
expression result. Interval types cannot be the final result. Columns cannot be defined
with an interval type. See "Type specifications" on page 1-1.

You can specify a single-field literal that is an interval in an expression, but you cannot
specify a complete expression that returns an interval data type. Instead, the EXTRACT
function must be used to extract the desired component of the interval result.

TimesTen supports interval literals of the following form:

INTERVAL [+/-] CharString IntervalQualifier

Using DATE and TIME data types

This section shows some DATE, TIME, and TIMESTAMP data type examples:

To create a table named sample that contains a column dcol of type DATE and a
column tcol of type TIME, use the following:

Data Types 1-23

TimesTen intervals

CREATE TABLE sample (tcol TIME, dcol DATE);

To insert DATE and TIME values into the sample table, use this:

INSERT INTO sample VALUES (TIME '12:00:00', DATE '1998-10-28');

To select all rows in the sample table that are between noon and 4:00 p.m. on October
29, 1998, use the following:

SELECT * FROM sample WHERE dcol = DATE '1998-10-29'
AND tcol BETWEEN TIME '12:00:00' AND TIME '16:00:00"';

To create a table named sample?2 that contains a column tscol of type TIMESTAMP
and then select all rows in the table that are between noon and 4:00 p.m. on October
29, 1998, use these statements:

CREATE TABLE sample2 (tscol TIMESTAMP);

INSERT INTO sample2 VALUES (TIMESTAMP '1998-10-28 12:00:00');
SELECT * FROM sample2 WHERE tscol

BETWEEN TIMESTAMP '1998-10-29 12:00:00' AND '1998-10-29 16:00:00"';

Note: TimesTen allows both literal and string formats of the TIME,
DATE, and TIMESTAMP types. For example, timestring
('12:00:00"') and timeliteral (TIME '16:00:00') are both
valid ways to specify a TIME value. TimesTen reads the first value as
CHAR type and later converts it to TIME type as needed. TimesTen
reads the second value as TIME. The examples above use the literal
format. Any values for the fraction not specified in full microseconds
resultin a "Data truncated" error.

Handling timezone conversions

TimesTen does not support TIMEZONE. TIME and TIMESTAMP data type values are
stored without making any adjustment for time difference. Applications must assume
one time zone and convert TIME and TIMESTAMP to that time zone before sending
values to the database. For example, an application can assume its time zone to be
Pacific Standard Time. If the application is using TIME and TIMESTAMP values from
Pacific Daylight Time or Eastern Standard Time, for example, the application must
convert TIME and TIMESTAMP to Pacific Standard Time.

Datetime and interval data types in arithmetic operations

If you are using TimesTen type mode, see Oracle TimesTen In-Memory Database API and
SQL Reference Guide, Release 6.0.3, for information about datetime and interval types in
arithmetic operations.

Datetime refers to DATE, TIME, and TIMESTAMP data types. Date and time arithmetic is
supported with the following syntax:

m TimeVall - TimeVal2or TimestampVall - TimestampValZ2 or
DateVall - DateVal2 returns the difference as INTERVAL DAY TO SECOND.

m TT DateVall - TT DateVal2 returns the number of days difference as an
integer.

» DateTimeVal {+|-} IntervalVal
m IntervalVal + DateTimeVal

» IntervalVall {+|-} Intervalval2

1-24 Oracle TimesTen In-Memory Database SQL Reference

TimesTen intervals

s IntervalVal {*|/} NumericVal

m NumericVal * IntervalVal

Note: An interval data type cannot be the final result of a complete
expression. The EXTRACT function must be used to extract the desired
component of this interval result.

The following table lists the data type, or category of data type, that results from each
operation:

Operand 1 Operator Operand 2 Result type

TIME | - TIME | INTERVAL DAY TO SECOND
DATE | DATE |

TIMESTAMP TIMESTAMP

TT DATE - TT_DATE TT_BIGINT (number of days)
Datetime +or - Interval Datetime

Interval + Datetime Datetime

Interval +or - Interval Interval

Interval *or / Numeric Interval

Numeric * Interval Interval

SELECT tt_datel - tt_date2 FROM tl1;

SELECT EXTRACT (DAY FROM timestampl-timestamp2) FROM tl;

SELECT * FROM tl WHERE timestampl - timestamp2 = NUMTODSINTERVAL (10, 'DAY');
SELECT SYSDATE + NUMTODSINTERVAL (20, 'SECOND') FROM dual;

SELECT EXTRACT (SECOND FROM timestampl-timestamp2) FROM dual;

/* select the microsecond difference between two timestamp values dl and d2 */
SELECT 1000000* (EXTRACT (DAY FROM dl1-d2)*24*3600+

EXTRACT (HOUR FROM dl1-d2)*3600+

EXTRACT (MINUTE FROM dl1-d2) *60+EXTRACT (SECOND FROM dl-d2)) FROM dl1;

This example inserts TIMESTAMP values into two columns and then subtracts the two
values using the EXTRACT function:

Command> CREATE TABLE ts (id TIMESTAMP, id2 TIMESTAMP) ;

Command> INSERT INTO ts VALUES (TIMESTAMP '2007-01-20 12:45:23',
> TIMESTAMP '2006-12-25 17:34:22');

1 row inserted.

Command> SELECT EXTRACT (DAY FROM id - i1d2) FROM ts;

< 25 >

1 row found.

The following queries return errors. You cannot select an interval result:

SELECT timestampl - timestamp2 FROM t1;
SELECT datel - date2 FROM t1;

You cannot compare an INTERVAL YEAR TO MONTH with an INTERVAL DAY TO
SECOND:

SELECT * FROM tl WHERE timestampl - timestamp2 = NUMTOYMINTERVAL(10, 'YEAR');

You cannot compare an INTERVAL DAY TO SECOND with an INTERVAL DAY:

Data Types 1-25

Storage requirements

SELECT * FROM tl WHERE timestampl - timestamp2 = INTERVAL '10' DAY;

You cannot extract YEAR from an INTERVAL DAY TO SECOND:

SELECT EXTRACT (YEAR FROM timestampl - timestamp2) FROM dual;

Restrictions on datetime and interval arithmetic operations

Consider these restrictions when performing datetime and interval arithmetic:

Storage requirements

The results for addition and subtraction with DATE and TIMESTAMP types for
INTERVAL YEAR and INTERVAL MONTH are not closed. For example, adding one
year to the DATE or TIMESTAMP of 2004-02-29' results in a date arithmetic error
(TimesTen error 2787) because February 29, 2005 does not exist (2005 is not a leap
year). Adding INTERVAL '1' month to DATE '2005-01-30" also results in the
same error because February never has 30 days.

The results are closed for INTERVAL DAY.

An interval data type cannot be the final result of a complete expression. The
EXTRACT function must be used to extract the desired component of the interval

Variable-length columns whose declared column length is greater than 128 bytes are
stored out of line. Variable-length columns whose declared column length is less than
or equal to 128 bytes are stored inline. For character semantics, the number of bytes
stored out of line is dependent on the character set. For example, for a character set
with four bytes per character, variable-length columns whose declared column length
is greater than 32 (128/4) are stored out of line.

Table 1-5 shows the storage requirements of the various data types.

Table 1-5 Data type storage requirements

Type Storage required
BINARY (n) nbytes.
BINARY_DOUBLE Eight bytes.
BINARY_FLOAT Four bytes.

CHAR (n[BYTE | CHAR])

nbytes or, if character semantics, n characters. If character semantics, the length
of the column (n) is based on length semantics and character set.

DATE Seven bytes.

Interval An interval type cannot be stored in TimesTen.

NCHAR (n) Bytes required is 2*n where n is the number of characters.
NUMBER Five to 22 bytes.

NVARCHAR?2 (n)

For NOT INLINE columns:

On 32-bit platforms, 2*(length of value) + 20 bytes (minimum of 28 bytes).
On 64-bit platforms, 2*(length of value) + 24 bytes (minimum of 40 bytes).
For INLINE columns:

On 32-bit platforms, 2*(length of column) + 4 bytes.

On 64-bit platforms, 2*(length of column) + 8 bytes.

ROWID

Twelve bytes.

1-26 Oracle TimesTen In-Memory Database SQL Reference

Data type comparison rules

Table 1-5 (Cont.) Data type storage requirements

Type Storage required
TIMESTAMP Twelve bytes.
TT_BIGINT Eight bytes.
TT_DATE Four bytes.

TT_DECIMAL (p, s)

Approximately p/2 bytes.

TT_INT[EGER] Four bytes.

TT_SMALLINT Two bytes.

TT_TIME Eight bytes.
TT_TIMESTAMP Eight bytes.
TT_TINYINT One byte.

VARBINARY (n)

For NOT INLINE columns:

On 32-bit platforms, length of value + 20 bytes (minimum of 28 bytes).
On 64-bit platforms, length of value + 24 bytes (minimum of 40 bytes).
For INLINE columns:

On 32-bit platforms, length of column + 4 bytes.

On 64-bit platforms, length of column + 8 bytes.

VARCHAR2 (n[BYTE | CHAR])

For NOT INLINE columns:

On 32-bit platforms, length of value + 20 bytes (minimum of 28 bytes). NULL
value is stored as (null bit) + 4 bytes, or 4.125 bytes.

On 64-bit platforms, length of value + 24 bytes (minimum of 40 bytes). NULL
value is stored as (null bit) + 8 bytes, or 8.125 bytes.

This storage principal holds for all variable length NOT INLINE data types:
TT_VARCHAR, TT_NVARCHAR, VARCHAR2, NVARCHAR2, and VARBINARY.

For INLINE columns:
On 32-bit platforms, n + 4 bytes. NULL value is stored as (null bit) + n + 4 bytes.
On 64-bit platforms, n + 8 bytes. NULL value is stored as (null bit) + n + 8 bytes.

If character semantics, the length of the column (n) is based on length semantics
and character set.

Data type comparison rules

This section describes how values of each data type are compared in TimesTen.

Numeric values

A larger value is greater than a smaller value: -1 is less than 10, and -10 is less than -1.

The floating-point value NaN is greater than any other numeric value and is equal to

itself.

Date values

A later date is considered greater than an earlier one. For example, the date equivalent
of '10-AUG-2005' is less than that of '30-AUG-2006', and '30-AUG-2006 1:15 pm' is
greater than '30-AUG-2006 10:10 am'.

Data Types 1-27

Data type conversion

Character values

Character values are compared in the following ways:
= Binary and linguistic sorting

= Blank-padded and nonpadded comparison semantics

Binary and linguistic sorting

In binary sorting, TimesTen compares character strings according to the concatenated
value of the numeric codes of the characters in the database character set. One
character is greater than the other if it has a greater numeric values than the other in
the character set. Blanks are less than any character.

Linguistic sorting is useful if the binary sequence of numeric codes does not match the
linguistic sequence of the characters you are comparing. In linguistic sorting, SQL
sorting and comparison are based on the linguistic rule set by NLS_SORT. For more
information on linguistic sorts, see "Linguistic sorts" in Oracle TimesTen In-Memory
Database Operations Guide.

The default is binary sorting.

Blank-padded and nonpadded comparison semantics

With blank-padded semantics, if two values have different lengths, TimesTen adds
blanks to the shorter value until both lengths are equal. Values are then compared
character by character up to the first character that differs. The value with the greater
character in the first differing position is considered greater. If two values have no
differing characters, then they are considered equal. Thus, two values are considered
equal if they differ only in the number of trailing blanks.

Blank-padded semantics are used when both values in the comparison are expressions
of type CHAR or NCHAR or text literals.

With nonpadded semantics, two values are compared, character by character, up to
the first character that differs. The value with the greater character in that position is
considered greater. If two values that have differing lengths are identical up to the end
of the shorter one, then the longer one is considered greater. If two values of equal
length have no differing characters, they are considered equal.

Nonpadded semantics are used when both values in the comparison have the type
VARCHAR?2 or NVARCHAR2.

An example with blank-padded semantics:

'a = gt

An example with nonpadded semantics:

'a s gt

Data type conversion

Generally an expression cannot contain values of different data types. However,
TimesTen supports both implicit and explicit conversion from one data type to
another. We recommend explicit conversion.

Implicit data type conversion
The following rules apply:

1-28 Oracle TimesTen In-Memory Database SQL Reference

NULL values

s Conversions between exact numeric values (TT_TINYINT, TT_ SMALLINT,
TT_INTEGER, TT_BIGINT, NUMBER) and floating-point values (BINARY_FLOAT,
BINARY_ DOUBLE) can be inexact because the exact numeric values use decimal
precision whereas the floating-point numbers use binary precision.

= When comparing a character value with any date, time, or datetime value,
TimesTen converts the character data to the date, time, or datetime value.

s Implicit and explicit CHAR/VARCHAR2 <-> NCHAR/NVARCHAR2 conversions are
supported except when the character set is TIMESTENS. An example of explicit
conversion:

Command> CREATE TABLE convdemo (cl CHAR (10), x1 TT_INTEGER);
Command> CREATE TABLE convdemo2 (cl NCHAR (10), x2 TT_INTEGER);
Command> INSERT INTO convdemo VALUES ('ABC', 10);
1 row inserted.
Command> INSERT INTO convdemo VALUES ('def', 100);
1 row inserted.
Command> INSERT INTO convdemo2 SELECT * FROM convdemo;
2 rows inserted.
Command> SELECT x1,x2,convdemo.cl, convdemo2.cl
> FROM convdemo, convdemo2 where Ccnvdemo.cl = convdemo2.cl;
X1, X2, C1, c1
< 10, 10, ABC , ABC >
< 100, 100, def , def >
2 rows found.

NULL values

The value NULL indicates the absence of a value. It is a placeholder for a value that is
missing. Any column in a table or any parameter in an expression, regardless of its
data type, can contain NULL unless you specify NOT NULL for the column when you
create the table.

The following properties of NULL affect operations on rows, parameters, or local
variables:

= NULL always sort highest in a sequence of values.

= Two NULL values are not equal to each other except in a GROUP BY or SELECT
DISTINCT operation.

= An expression containing a NULL evaluates to NULL. For example, (5-col),
where col is NULL, evaluates to NULL.

Because of these properties, TimesTen ignores columns, rows, or parameters
containing NULL when:

= Joining tables if the join is on a column containing NULL.
= Executing aggregate functions.

In several SQL predicates, described in Chapter 4, "Search Conditions," you can
explicitly test for NULL. In an ODBC application you can use the functions
SQLBindCol, SQLBindParameter, SQLGetData, and SQLParamData to handle
input and output of NULL values. In a JDBC application you can use the JDBC
PreparedStatement method setNull () and any of the ResultSet methods
getXxxX () with the ResultSet method wasNull ().

Data Types 1-29

INF and NAN

INF and NAN

TimesTen supports the IEEE floating-point values Inf (positive infinity), -Inf
(negative infinity), and NaN (not a number).

Constant values

You can use constant values in places where a floating-point constant is allowed. The
following constants are supported:

s BINARY_ FLOAT_INFINITY

n -BINARY_FLOAT_INFINITY
s BINARY_ DOUBLE_INFINITY
L] -BINARY_DOUBLE_INFINITY
s BINARY_ FLOAT_NAN

s BINARY_ DOUBLE_NAN

In the following example, a table is created with a column of type BINARY_FLOAT and
a column of type TT_INTEGER. BINARY FLOAT_INFINITY and
BINARY_FLOAT_NAN are inserted into the column of type BINARY_FLOAT.

Command> CREATE TABLE bfdemo (id BINARY_FLOAT, Ii2 TT_INTEGER);
Command> INSERT INTO bfdemo VALUES (BINARY_FLOAT INFINITY, 50);
1 row inserted.

Command> INSERT INTO bfdemo VALUES (BINARY_FLOAT NAN, 100);

1 row inserted.

Command> SELECT * FROM bfdemo;

< INF, 50 >

< NAN, 100 >

2 rows found.

Primary key values

Inf, -Inf, and NaN are acceptable values in columns defined with a primary key.
This is different from NULL, which is not allowed in columns defined with a primary
key.

You can only insert Inf, -Inf, and NaN values into BINARY_FLOAT and
BINARY_ DOUBLE columns.

Selecting Inf and NaN (floating-point conditions)

Floating-point conditions determine whether an expression is infinite or is the
undefined result of an operation (NaN, meaning not a number).

Consider the following syntax:

Expression IS [NOT] {NAN|INFINITE}

Expression must either resolve to a numeric data type or to a data type that can be
implicitly converted to a numeric data type.

The following table describes the floating-point conditions.

1-30 Oracle TimesTen In-Memory Database SQL Reference

Overflow and truncation

Condition Operation Example

IS [NOT] NAN Returns TRUE if Expression SELECT * FROM bfdemo WHERE id IS
is the value NaN when NOT is NOT NAN;
not specified. Returns TRUEif 1p, 1p2
Expressionisnotthevalue . 1yp 50 >

NaN when NOT is specified. 1 row found.

IS [NOT] INFINITE Returns TRUE if Expression SELECT * FROM bfdemo WHERE id IS
is the value +Inf or -Inf NOT INFINITE;
when NOT is not specified. ID, ID2
Returns TRUE if Expression . yay, 100 >
is neither +Inf nor -Inf

. e 1 row found.
when NOT is specified. s

Note: The constant keywords represent specific BINARY_FLOAT and
BINARY_DOUBLE values. The comparison keywords correspond to
properties of a value and are not specific to any type, although they
can only evaluate to TRUE for BINARY_FLOAT or BINARY_DOUBLE
types or types that can be converted to BINARY_FLOAT or
BINARY_DOUBLE.

The following rules apply to comparisons with Inf and NaN:

= Comparison between Inf (or -Inf) and a finite value are as expected. For
example, 5 > -Inf.

= (Inf = Inf) and (Inf > -Inf) bothevaluate to TRUE.

= (NaN = NaN) evaluates to TRUE.

In reference to collating sequences:

= -Inf sorts lower than any other value.

= Inf sorts lower than NaN and NULL and higher than any other value.
= NaN sorts higher than Inf.

= NULL sorts higher than NaN. NULL is always the largest value in any collating
sequence.

Expressions involving Inf and NaN

s Expressions containing floating-point values may generate Inf, -Inf, or NaN.
This can occur either because the expression generated overflow or exceptional
conditions or because one or more of the values in the expression was Inf, -Inf,
or NaN. Inf and NaN are generated in overflow or division-by-zero conditions.

s Inf, -Inf, and NaN values are not ignored in aggregate functions. NULL values
are. If you want to exclude Inf and NaN from aggregates, or from any SELECT
result, use both the IS NOT NANand IS NOT INFINITE predicates.

Overflow and truncation

Some operations can result in data overflow or truncation. Overflow results in an error
and can generate Inf. Truncation results in loss of least significant data.

Exact values are truncated only when they are stored in the database by an INSERT or
UPDATE statement, and if the target column has smaller scale than the value. TimesTen

Data Types 1-31

Underflow

Underflow

returns a warning when such truncation occurs. If the value does not fit because of
overflow, TimesTen returns the special value Inf and does not insert the specified
value.

TimesTen may truncate approximate values during computations, when values are
inserted into the database, or when database values are updated. TimesTen returns an
error only upon INSERT or UPDATE. When overflow with approximate values occurs,
TimesTen returns the special value Inf.

There are several circumstances that can cause overflow:

s During arithmetic operations, overflow can occur when multiplication results in a
number larger than the maximum value allowable in its type. Arithmetic
operations are defined in Chapter 3, "Expressions."

= When aggregate functions are used, overflow can occur when the sum of several
numbers exceeds the maximum allowable value of the result type. Aggregate
functions are defined in Chapter 3, "Expressions."

= During type conversion, overflow can also occur when, for example, a
TT_INTEGER value is converted to a TT_SMALLINT value.

Truncation can cause an error or warning for alphanumeric or numeric data types:

s For character data, an error occurs if a string is truncated because it is too long for
its target type. For NCHAR and NVARCHAR2 types, truncation always occurs on
Unicode character boundaries. In the NCHAR data types, a single-byte value (half a
Unicode character) has no meaning and is not possible.

= For numeric data, a warning occurs when any trailing non-zero digit is dropped
from the fractional part of a numeric value.

When an approximate numeric value is too close to zero to be represented by the
hardware, TimesTen underflows to zero and returns a truncation warning.

Replication limits

TimesTen places the following limits on the size of data types in a database that is
being replicated:

= VARCHAR2 and VARBINARY columns cannot exceed four megabytes. For
character-length semantics, the limit is four megabytes. The database character set
determines how many characters can be represented by four megabytes. The
minimum number of characters is 1,000,000/ 4 = 250,000 characters.

= NVARCHAR2 columns cannot exceed 500,000 characters (four megabytes).

TimesTen type mode (backward compatibility)

TimesTen supports a data type backward compatibility mode called TimesTen type
mode. This is specified using the data store creation attribute TypeMode, where
TypeMode=1 indicates TimesTen mode.

For more information on type modes, see "TypeMode" in Oracle TimesTen In-Memory
Database Reference.

For information on data type usage in TimesTen type mode, refer to Oracle TimesTen
In-Memory Database API and SQL Reference Guide, Release 6.0.3.

1-32 Oracle TimesTen In-Memory Database SQL Reference

TimesTen type mode (backward compatibility)

Data types supported in TimesTen type mode

Table 1-6 Data types supported in TimesTen type mode

Data type Description

BIGINT A signed eight-byte integer in the range -9,223,372,036,854,775,808
(-2%%) to 9,223,372,036,854,775,807 (2%3-1).
Alternatively, specify TT_BIGINT.

BINARY (n) Fixed-length binary value of n bytes. Legal values for n range from 1

to 8300.

BINARY data is padded to the maximum column size with trailing
zeroes.

BINARY_DOUBLE

A 64-bit floating-point number. BINARY_DOUBLE is a double-precision
native floating point number. Supports +Inf, -Inf, and NaN values.
BINARY_DOUBLE is an approximate numeric value consisting of an
exponent and mantissa. You can use exponential or E-notation.
BINARY_DOUBLE has binary precision 53.

Minimum positive finite value: 2.22507485850720E-308
Maximum positive finite value: 1.79769313486231E+308
Alternatively, specify DOUBLE [PRECISION] or FLOAT[(53)].

BINARY_FLOAT

A 32-bit floating-point number. BINARY_FLOAT is a single-precision
native floating-point type. Supports +Inf, -Inf, and NaN values.
BINARY_FLOAT is an approximate numeric value consisting of an
exponent and mantissa. You can use exponential or E-notation.
BINARY_FLOAT has binary precision 24.

Minimum positive finite value: 1.17549E-38F
Maximum positive finite value: 3.40282E+38F
Alternatively, specify REAL or FLOAT (24).

CHAR[ACTER][(n[BYTE|CHAR])]

Fixed-length character string of length n bytes or characters. Default is
one byte.

BYTE indicates that the column has byte-length semantics. Legal
values for n bytes range from 1 to 8300.

CHAR indicates that the column has character-length semantics. The
minimum CHAR length is one character. The maximum CHAR length
depends on how many characters fit in 8300 bytes. This is determined
by the database character set in use. For character set AL32UTF8, up to
four bytes per character may be needed, so the CHAR length limit
ranges from 2075 to 8300 depending on the character set.

A zero-length string is a valid non-null value. CHAR data is padded to
the maximum column size with trailing blanks. Blank-padded
comparison semantics are used. For information on blank-padded and
nonpadded semantics, see "Blank-padded and nonpadded comparison
semantics" on page 1-28.

Alternatively, specify TT_CHAR[(n [BYTE|CHAR])].

DATE

Stores date information: century, year, month, date. The format is
YYYY-MM-DD, where MM is expressed as an integer. For example:
2006-10-28.

Storage size is four bytes.

Valid dates are between 1753-01-01 (January 1,1753) and 9999-12-31
(December 31, 9999).

Alternatively, specify TT_DATE.

Data Types 1-33

TimesTen type mode (backward compatibility)

Table 1-6 (Cont.) Data types supported in TimesTen type mode

Data type

Description

DEC[IMAL] [(p[,s])] or
NUMERIC[(p[,s])]

An exact numeric value with a fixed maximum precision (total
number of digits) and scale (number of digits to the right of the
decimal point). The value of precision p must be between 1 and 40.
The value of scale s must be between 0 and p. The default precision is
40 and the default scale is 0.

INTERVAL [+/-]
IntervalQualifier

TimesTen partially supports interval types, expressed with INTERVAL
and an IntervalQualifier. An IntervalQualifier can specify
only a single field type with no precision. The default leading
precision is eight digits for all interval types. The single field type can
be one of: YEAR, MONTH, DAY, HOUR, MINUTE, or SECOND. Currently,
interval types can be specified only with a constant.

NCHAR[(n)]

Fixed-length string of n two-byte Unicode characters.

The number of bytes required is 2*n where n is the specified number
of characters. NCHAR character limits are half the byte limits, so the
maximum size is 4150. Default and minimum bytes of storage is 2n (2).

A zero-length string is a valid non-null value. NCHAR data is padded to
the maximum column size with U+0020 SPACE. Blank-padded
comparison semantics are used. For information on blank-padded and
nonpadded semantics, see "Blank-padded and nonpadded comparison
semantics" on page 1-28.

Alternatively, specify TT_NCHAR[(n)].

NATIONAL CHARACTER and NATIONAL CHAR are synonyms for
NCHAR.

SMALLINT

A native signed 16-bit integer in the range -32,768 (-21%) to 32,767
(2"3-1).

Alternatively, specify TT_SMALLINT.

TIME

A time of day between 00:00:00 (midnight) and 23:59:59 (11:59:59 pm),
inclusive. The format is: HH: MI : SS. Storage size is eight bytes.

TIMESTAMP

A date and time between 1753-01-01 00:00:00 (midnight on January 1,
1753) and 9999-12-31 23:59:59 pm (11:59:59 pm on December 31, 9999),
inclusive. Any values for the fraction not specified in full
microseconds result in a "Data Truncated" error. The format is
YYYY-MM-DD HH:MI:SS [.FFFFFFFFF].

Storage size is eight bytes.
Alternatively, specify TT_TIMESTAMP or [TT_] TIMESTAMP (6).

TINYINT

Unsigned integer ranging from 0 to 255 (28-1).
Since TINYINT is unsigned, the negation of a TINYINT is SMALLINT.
Alternatively, specify TT_TINYINT.

INT[EGER]

A signed integer in the range -2,147,483,648 (-2°!) to 2,147,483,647
(2°1-1).

Alternatively, specify TT_INTEGER.

1-34 Oracle TimesTen In-Memory Database SQL Reference

TimesTen type mode (backward compatibility)

Table 1-6 (Cont.) Data types supported in TimesTen type mode

Data type Description

NVARCHAR (n1) Variable-length string of n two-byte Unicode characters.

The number of bytes required is 2*n where n is the specified number
of characters. NVARCHAR character limits are half the byte limits so the

maximum size is 2,097,152 (22)). You must specify n.
A zero-length string is a valid non-null value.

Blank-padded comparison semantics are used. For information on
blank-padded and nonpadded semantics, see "Blank-padded and
nonpadded comparison semantics" on page 1-28.

Alternatively, specify TT_NVARCHAR (1) .

NATIONAL CHARACTER VARYING, NATIONAL CHAR VARYING, and
NCHAR VARYING are synonyms for NVARCHAR.

VARCHAR (n[BYTE | CHAR]) Variable-length character string having maximum length n bytes or
characters. You must specify n.

BYTE indicates that the column has byte-length semantics. Legal
values for n bytes range from 1 to 4194304 (2%2).

CHAR indicates that the column has character-length semantics.
A zero-length string is a valid non-null value.

Blank-padded comparison semantics are used. For information on
blank-padded and nonpadded semantics, see "Blank-padded and
nonpadded comparison semantics" on page 1-28.

Alternatively, specify TT_VARCHAR (n[BYTE | CHAR]).

VARBINARY (n) Variable-length binary value having maximum length n bytes. Legal
values for n range from 1 to 4194304 (2%).

Data Types 1-35

TimesTen type mode (backward compatibility)

Oracle data types supported in TimesTen type mode

Table 1-7 Oracle data types supported in TimesTen type mode

Data type

Description

NUMBERI[(p [, s])]

Number having precision and scale. The precision value ranges from 1
to 38 decimal. The scale value ranges from -84 to 127. Both precision
and scale are optional.

If you do not specify a precision or a scale, then maximum precision of
38 and flexible scale are assumed.

NUMBER supports scale > precision and negative scale.

NUMBER stores zero as well as positive and negative fixed numbers
with absolute values from 1.0 x 10710 up to but not including 1.0 x
10126, 1f you specify an arithmetic expression whose value has an
absolute value greater than or equal to 1.0 x 10'?°, then TimesTen
returns an error.

In TimesTen type mode, the NUMBER data type stores 10E-89 as its
smallest (closest to zero) value.

ORA_CHAR[(n [BYTE|CHAR])]

Fixed-length character string of length n bytes or characters. Default is
one byte.

BYTE indicates that the column has byte-length semantics. Legal values
for nbytes range from 1 to 8300.

CHAR indicates that the column has character-length semantics. The
minimum CHAR length is one character. The maximum CHAR length
depends on how many characters fit in 8300 bytes. This is determined
by the database character set in use. For character set AL32UTF8, up to
four bytes per character may be needed, so the CHAR length limit
ranges from 2075 to 8300 depending on the character set.

A zero-length string is interpreted as NULL.

ORA_CHAR data is padded to the maximum column size with trailing
blanks. Blank-padded comparison semantics are used. For information
on blank-padded and nonpadded semantics, see "Blank-padded and
nonpadded comparison semantics" on page 1-28.

ORA_DATE

Stores date and time information: century, year, month, date, hour,
minute, and second. Format is YYYY-MM-DD HHMMSS.

Valid date range is from January 1, 4712 BC to December 31, 9999 AD.

The storage size is seven bytes. There are no fractional seconds.

ORA_NCHARI (n)]

Fixed-length string of length n two-byte Unicode characters.

The number of bytes required is 2*n where n is the specified number of
characters. NCHAR character limits are half the byte limits so the
maximum size is 4150. Default and minimum bytes of storage is 2n (2).

A zero-length string is interpreted as NULL.

ORA_NCHAR data is padded to the maximum column size with U+0020
SPACE. Blank-padded comparison semantics are used. For information
on blank-padded and nonpadded semantics, see "Blank-padded and
nonpadded comparison semantics" on page 1-28.

1-36 Oracle TimesTen In-Memory Database SQL Reference

TimesTen type mode (backward compatibility)

Table 1-7 (Cont.) Oracle data types supported in TimesTen type mode

Data type

Description

ORA_NVARCHAR?2 (n)

Variable-length string of n two-byte Unicode characters.

The number of bytes required is 2*n where n is the specified number of
characters. ORA_NVARCHAR?2 character limits are half the byte limits so

the maximum size is 2,097,152 (2*}). You must specify n.
A zero-length string is interpreted as NULL.
Nonpadded comparison semantics are used.

For information on blank-padded and nonpadded semantics, see
"Blank-padded and nonpadded comparison semantics" on page 1-28.

ORA_VARCHAR2(n[BYTE|CHAR])

Variable-length character string having maximum length n bytes or
characters.

BYTE indicates that the column has byte-length semantics. Legal values
for n bytes range from 1 to 4194304 (2%). You must specify n.

CHAR indicates that the column has character-length semantics.
A zero-length string is interpreted as NULL.

Nonpadded comparison semantics are used. For information on
blank-padded and nonpadded semantics, see "Blank-padded and
nonpadded comparison semantics" on page 1-28.

ORA_TIMESTAMP

[(fractional_seconds_precision)]

Stores year, month, and day values of the date data type plus hour,
minute, and second values of time.
Fractional_seconds_precision is the number of digits in the
fractional part of the seconds field. Valid date range is from January 1,
4712 BC to December 31, 9999 AD.

The fractional seconds precision range is 0 to 9. The default is 6. Format
is:

YYYY-MM-DD HH:MI:SS [.FFFFFFFFF]

Storage size is 12 bytes.

Data Types 1-37

TimesTen type mode (backward compatibility)

1-38 Oracle TimesTen In-Memory Database SQL Reference

2

Names, Namespace and Parameters

This chapter presents general rules for names and parameters used in TimesTen SQL
statements. It includes the following topics:

Basic hames

Basic names

Owner names

Compound identifiers
Namespace

Dynamic parameters
Duplicate parameter names

Inferring data type from parameters

Basic names identify columns, tables, views and indexes. Basic names must follow
these rules:

The maximum length of a basic name is 30 characters.

A name can consist of any combination of letters (A to Z a to z), decimal digits (0
t09), $, #, @, or underscore (_). For identifiers, the first character must be a letter
(A-Z a-z) and not a digit or special character. However, for parameter names, the
first character can be a letter (A-Z a-z), a decimal digit (0 to 9), or special characters
$, #, @, or underscore (_).

TimesTen changes lowercase letters (a to z) to the corresponding uppercase letters
(A to Z). Thus names are not case-sensitive.

If you enclose a name in quotation marks, you can use any combination of
characters even if they are not in the set of legal characters. When the name is
enclosed in quotes, the first character in the name can be any character, including
one or more spaces.

If a column, table, or index is initially defined with a name enclosed in quotation
marks and the name does not conform to the rule noted in the second bullet, then
that name must always be enclosed in quotation marks whenever it is
subsequently referenced.

Unicode characters are not allowed in names.

Names, Namespace and Parameters 2-1

Owner names

Owner names

The owner name is the user name of the account that created the table. Tables and
indexes defined by TimesTen itself have the owner SYS or TTREP. User objects cannot
be created with owner names SYS or TTREP. TimesTen converts all owner and table
names to upper case.

Owners of tables in TimesTen are determined by the user ID settings or login names.
For cache groups, Oracle table owner names must always match TimesTen table
owner names.

Owner names may be specified by the user during table creation, in addition to being
automatically determined if they are left unspecified. See "CREATE TABLE" on

page 5-109. When creating owner names, follow the same rules as those for creating
basic names. See "Basic names" on page 2-1.

Compound identifiers

Namespace

Basic names and user names are simple names. In some cases, simple names are
combined to form a compound identifier, which consists of an owner name combined
with one or more basic names, with periods (.) between them.

In most cases you can abbreviate a compound identifier by omitting one of its parts. If
you do not use a fully qualified name, a default value is automatically used in place of
the missing part. For example, if you omit the owner name (and the period) when you
refer to tables you own, TimesTen generates the owner name by using your login
name.

A complete compound identifier, including all of its parts, is called a fully qualified
name. Different owners can have tables and indexes with the same name. The fully
qualified name of these objects must be unique.

The following are compound identifiers:

m Column identifier: [[Owner.]TableName.]ColumnName
" [Owner.] IndexName

m Table identifier: [Owner.]TableName

m Row identifier: [[Owner.]TableName.]rowid

In SQL syntax, each name of an object that share the same namespace must be unique,
so that when referenced in any SQL syntax, the exact object can be found.

The following objects owned by the same user share one namespace and so the names
for each of these objects must be unique within that namespace: tables, views,
materialized views, sequences, private synonyms, PLSQL packages, functions,
procedures, and cache groups.

Indexes are created in their own namespace.

Because tables and views are in the same namespace, a table and a view owned by the
same owner cannot have the same name. However, tables and indexes are in different
namespaces. Therefore, a table and an index owned by the same user can have the
same name

However, tables that are owned by separate users can have the same name, since they
exist in separate user namespaces.

2-2 Oracle TimesTen In-Memory Database SQL Reference

Duplicate parameter names

If the object name provided is not qualified with the user that owns it, then the search
order for an object is as follows:

1. Search for any match from all object names within the current user namespace. If
there is a match, the object name is resolved.

2. If nomatch is found in the user namespace, search for any match from the PUBLIC
namespace, which contains objects such as public synonyms. Public synonyms are
pre-defined for SYS and TTREP objects. If there is a match, the object name is
resolved. Otherwise, the object does not exist.

Dynamic parameters

Dynamic parameters are used to pass information between an application program and
TimesTen. They are placeholders in SQL commands and are replaced at runtime with
actual values.

A dynamic parameter name must be preceded by a colon (:) when used in a SQL
command and must conform to the TimesTen rules for basic names. However, unlike
identifiers, parameter names can start with any of the following characters:

» Uppercase letters: A to Z
= Lowercase letters: a to z

s Digits:0to 9

» Special characters: #$ @ _

Note: Instead of using a : DynamicParameter sequence, the
application can use a ? for each dynamic parameter.

Enhanced ":" style parameter markers have this form:

:parameter [INDICATOR] :indicator

The : indicatoris considered to be a component of the : parameter. It is not
counted as a distinct parameter. Do not specify '?' for this style of parameter marker.

Duplicate parameter names
Consider this SQL statement:

SELECT * FROM tl WHERE cl=:a AND c2=:a AND c3=:b AND cd=:a;

Traditionally in TimesTen, multiple instances of the same parameter name in a SQL
statement are considered to be multiple occurrences of the same parameter. When
assigning parameter numbers to parameters, TimesTen assigns parameter numbers
only to the first occurrence of each parameter name. The second and subsequent
occurrences of a given name do not get their own parameter numbers. In this case, a
TimesTen application binds a value for every unique parameter in a SQL statement. It
cannot bind different values for different occurrences of the same parameter name nor
can it leave any parameters or parameter occurrences unbound.

In Oracle Database, multiple instances of the same parameter name in a SQL statement
are considered to be different parameters. When assigning parameter numbers, Oracle
assigns a number to each parameter occurrence without regard to name duplication.
An Oracle application, at a minimum, binds a value for the first occurrence of each
parameter name. For the subsequent occurrences of a given parameter, the application

Names, Namespace and Parameters 2-3

Inferring data type from parameters

can either leave the parameter occurrence unbound or it can bind a different value for
the occurrence.

The following table shows a query with the parameter numbers that TimesTen and
Oracle Database assign to each parameter.

TimesTen Oracle Database
Query parameter number parameter number
SELECT *
FROM t1
WHERE cl=:a 1 1
AND c2=:a 1 2
AND c3=:Db 2 3
AND céd=:a; 1 4

The total number of parameter numbers for TimesTen in this example is 2. The total
number of parameters for Oracle Database in this example is 4. The parameter
bindings provided by an application produce different results for the traditional
TimesTen behavior and the Oracle behavior.

You can use the DuplicateBindMode general connection attribute to determine
whether applications use traditional TimesTen parameter binding for duplicate
occurrences of a parameter in a SQL statement or Oracle-style parameter binding.
Oracle-style parameter binding is the default.

Inferring data type from parameters

Consider this statement:

SELECT :a FROM dual;

TimesTen cannot infer the data type of parameter a from the query. TimesTen returns
this error:

2778: Cannot infer type of parameter from its use
The command failed.

Use the CAST function to declare the data type for parameters:

SELECT CAST (:a AS NUMBER) FROM dual;

2-4 Oracle TimesTen In-Memory Database SQL Reference

3

Expressions

Expressions are used for the following purposes:

» The select list of the INSERT. . . SELECT statement

= A condition of the WHERE clause and the HAVING clause
s The GROUP BY and ORDER BY clauses

s The VALUES clause of the INSERT and MERGE statements

s The SET clause of the UPDATE and MERGE statements

ROWID specification

TimesTen assigns a unique ID called a rowid to each row stored in a table. The rowid
has data type ROWID. You can examine a rowid by querying the ROWID
pseudocolumn.

Because the ROWID pseudocolumn is not a real column, it does not require database
space and cannot be updated, indexed or dropped.

The rowid value persists throughout the life of the table row, but the system can
reassign the rowid to a different row after the original row is deleted. Zero is not a
valid value for a rowid.

Rowids persists through recovery, backup and restore operations. They do not persist
through replication, ttMigrate or ttBulkCp operations.

See "Expression specification" on page 3-3 for more information on rowids. See
"ROWID data type" on page 1-21 for more information about the ROWID data type.

ROWNUM specification

For each row returned by a query, the ROWNUM pseudocolumn returns a number
indicating the order in which the row was selected. The first row selected has a
ROWNUM of 1, the second a ROWNUM of 2, and so on.

Use ROWNUM to limit the number of rows returned by a query as in this example:
SELECT * FROM employees WHERE ROWNUM < 10;

The order in which rows are selected depends on the index used and the join order. If
you specify an ORDER BY clause, ROWNUM is assigned before sorting. However, the
presence of the ORDER BY clause may change the index used and the join order. If the

order of selected rows changes, the ROWNUM value associated with each selected row
could also change.

Expressions 3-1

ROWNUM specification

For example, the following query may return a different set of employees than the
preceding query if a different index is used:

SELECT * FROM employees WHERE ROWNUM < 10 ORDER BY last_name;
Conditions testing for ROWNUM values greater than a positive integer are always false.
For example, the following query returns no rows:

SELECT * FROM employees WHERE ROWNUM > 1;

Use ROWNUM to assign unique values to each row of a table. For example:
UPDATE my_table SET columnl = ROWNUM;
If your query contains either FIRST NumRows or ROWS m TO n, do not use ROWNUM to

restrict the number of rows returned. For example, the following query results in an
error message:

SELECT FIRST 2 * FROM employees WHERE ROWNUM <1 ORDER BY employee_id;
2974: Using rownum to restrict number of rows returned cannot be combined with
first N or rows M to N

3-2 Oracle TimesTen In-Memory Database SQL Reference

Expression specification

Expression specification

SQL syntax

An expression specifies a value to be used in a SQL operation.

An expression can consist of a primary or several primaries connected by arithmetic
operators, comparison operators, string or binary operators, bit operators or any of the
functions described in this chapter. A primary is a signed or unsigned value derived
from one of the items listed in the SQL syntax.

{ColumnName | ROWID | {? | :DynamicParameter} |

AggregateFunction | Constant | (Expression)}
or

[[+ |-] {ColumnName | SYSDATE | TT_SYSDATE|GETDATE() |
{? | :DynamicParameter} | AggregateFunction |
Constant | {~ | + | -} Expression}]

[...]
or
Expressionl [& | | | ~ | + | / | * | - 1 Expression2
or
Expressionl | | Expression2
or
Expression
Component Description
+, - Unary plus and unary minus. Unary minus changes the sign of the

primary. The default is to leave the sign unchanged.

ColumnName Name of a column from which a value is to be taken. Column names
are discussed in Chapter 2, "Names, Namespace and Parameters."

ROWID TimesTen assigns a unique ID called a rowid to each row stored in a
table. The rowid value can be retrieved through the ROWID
pseudocolumn.

? A placeholder for a dynamic parameter.

:DynamicParameter The value of the dynamic parameter is supplied at runtime.

AggregateFunction A computed value. See "Aggregate functions" on page 3-8.

Constant A specific value. See "Constants" on page 3-11.
(Expression) Any expression enclosed in parentheses.
Expressionl Expressionl and Expression2, when used with the bitwise

operators, can be of integer or binary types. The data types of the

Expression2 expressions must be compatible. See Chapter 1, "Data Types."
* Multiplies two primaries.

/ Divides two primaries.

+ Adds two primaries.

- Subtracts two primaries.

Expressions 3-3

Expression specification

Component Description

& Bitwise AND of the two operands. Sets a bit to 1 if and only if both of
the corresponding bits in Expressionl and Expression2 are 1.
Sets a bit to 0 if the bits differ or both are 0.

Bitwise OR of the two operands. Sets a bit to 1 if one or both of the
corresponding bits in Expressionl and Expression2 are 1. Sets a
bit to 0 if both of the corresponding bits are 0.

~ Bitwise NOT of the operand. Takes only one Expression and inverts
each bit in the operand, changing all the ones to zeros and zeros to
ones.

~ Exclusive OR of the two operands. Sets the bit to 1 where the
corresponding bits in its Expressionl and Expression2 are
different and to 0 if they are the same. If one bit is 0 and the other bit
is 1, the corresponding result bit is set to 1. Otherwise, the
corresponding result bit is set to 0.

| Concatenates Expressionl and Expression2, where both
expressions are character strings. Forms a new string value that
contains the values of both expressions. See also "CONCAT" on
page 3-36.

Description

= Arithmetic operators can be used between numeric values. See "Numeric data
types" on page 1-15.

= Arithmetic operators can also be used between datetime values and interval types.
The result of a datetime expression is either a datetime data type or an interval
data type.

= Arithmetic operators cannot be applied to string values.
= Elements in an expression are evaluated in the following order:
- Aggregate functions and expressions in parentheses
— Unary pluses and minuses
— The * and / operations
— The + and - operations
— Elements of equal precedence are evaluated in left-to-right order

= You can enclose expressions in parentheses to control the order of their evaluation.
For example:

10 * 2 -1 =19 but 10 * (2 - 1) =10

= Type conversion, truncation, underflow, or overflow can occur when some
expressions are evaluated. See Chapter 1, "Data Types".

= If either operand in a numeric expression is NULL, the result is NULL.

= Since NVL takes two parameters, both designated as an "expression", TimesTen
does not permit NULL in either position. If there is a NULL value in an expression,
comparison operators and other predicates evaluate to NULL. See Chapter 4,
"Search Conditions" for more information on evaluation of comparison operators
and predicates containing NULL values. TimesTen permits inserting NULL, but in
general INSERT takes only specific values, and not general expressions.

3-4 Oracle TimesTen In-Memory Database SQL Reference

Expression specification

Examples

s The query optimizer and execution engine permit multiple rowid lookups when a
predicate specifies a disjunct of rowid equalities or uses IN. For example, multiple
fast rowid lookups are executed for:

WHERE ROWID = :v1 OR ROWID = :v2

= or equivalently:

WHERE ROWID IN (:v1, :v2)

s The ? or : DynamicParameter can be used as a dynamic parameter in an
expression.

This example shows a dynamic parameter in the WHERE clause of any SELECT
statement:

SELECT * FROM purchasing.orders
WHERE partnumber = ? AND ordernumber > ?
ORDER BY ordernumber;

This example shows a dynamic parameter in the WHERE and SET clauses of an UPDATE
statement:

UPDATE purchasing.parts
SET salesprice = :dynamicparameterl
WHERE partnumber = :dynamicparameter?;

This example shows a dynamic parameter in the WHERE clause of a DELETE statement:

DELETE FROM purchasing.orderitems
WHERE itemnumber BETWEEN ? AND ?;

This example shows a dynamic parameter in the VALUES clause of an INSERT
statement. In this example, both ? and : dynamicparameter are used where
:dynamicparameterl corresponds to both the second and fourth columns of the
purchasing.orderitems table. Therefore, only four distinct dynamic parameters
need to be passed to this expression with the second parameter used for both the
second and fourth columns.

INSERT INTO purchasing.orderitems VALUES
(?, :dynamicparameterl,
:dynamicparameter2,
:dynamicparameterl, ?);

This example demonstrates that both ? and :dynamicparameter can be used in the
same SQL statement and shows the semantic difference between repeating both types
of dynamic parameters.

Examples of bitwise operators:

Command> SELECT 0x183D & Ox00FF FROM dual;
< 003D >

1 row found.

Command> SELECT ~255 FROM dual;

< -256 >

1 row found.

Command> SELECT 0x08 | 0xOF FROM dual;

< OF >

1 row found.

Expressions 3-5

Subqueries

Subqueries

SQL syntax

Description

TimesTen supports subqueries in INSERT. . . SELECT, CREATE VIEW or UPDATE
statements and in the SET clause of an UPDATE statement, in a search condition and as
a derived table. TimesTen supports table subqueries and scalar subqueries. It does not
support row subqueries. A subquery can specify an aggregate with a HAVING clause
or joined table. It can also be correlated.

[NOT] EXISTS | [NOT] IN (Subquery)
Expression {= | <> | > | >= | < | <= } [ANY | ALL] (Subquery)
Expression [NOT] IN (ValueList | Subguery)

TimesTen supports queries with the characteristics listed in each section.

Table subqueries

= A subquery can appear in the WHERE clause or HAVING clause of any statement
except one that creates a materialized view. Only one table subquery can be
specified in a predicate. These predicates can be specified in a WHERE or HAVING
clause, an OR expression within a WHERE or HAVING clause, or an ON clause of a
joined table. They cannot be specified in a CASE expression, a materialized view,
or a HAVING clause that uses the + operator for outer joins.

= A subquery can be specified in an EXISTS or NOT EXISTS predicate, a quantified
predicate with ANY or ALL, or a comparison predicate. The allowed operators for
both comparison and quantified predicates are: =, <, >, <=, >=, <>. The subquery
cannot be connected to the outer query through a UNIQUE or NOT UNIQUE
operator.

= Only one subquery can be specified in a quantified or comparison predicate.
Specify the subquery as either the right operand or the left operand of the
predicate, but not both.

s The subquery should not have an ORDER BY clause.
s FIRST NumRows is notsupported in subquery statements.

= Ina query specified in a quantified or comparison predicate, the underlying
SELECT must have a single expression in the select list. In a query specified in a
comparison predicate, if the underlying select returns a single row, the return
value is the select result. If the underlying select returns no row, the return value
is NULL. It is an error if the subquery returns multiple rows.

Scalar subqueries
A scalar subquery returns a single value.

= A nonverifiable scalar subquery has a predicate such that the optimizer cannot
detect at compile time that the subquery returns at most one row for each row of
the outer query. The subquery cannot be specified in an OR expression.

= Neither outer query nor any scalar subquery should have a DISTINCT modifier.

3-6 Oracle TimesTen In-Memory Database SQL Reference

Subqueries

Examples

Examples of supported subqueries for a list of customers having at least one
unshipped order:

SELECT customers.name FROM customers

WHERE EXISTS (SELECT 1 FROM orders
WHERE customers.id = orders.custid

AND orders.status = 'unshipped');

SELECT customers.name FROM customers
WHERE customers.id = ANY

(SELECT orders.custid FROM orders

WHERE orders.status = 'unshipped');

SELECT customers.name FROM customers
WHERE customers.id IN
(SELECT orders.custid FROM orders
WHERE orders.status = 'unshipped');

In this example, list items are shipped on the same date as when they are ordered:

SELECT line_items.id FROM line_items
WHERE line_items.ship_date =
(SELECT orders.order_date FROM orders
WHERE orders.id = line_items.order_id);

Expressions 3-7

Aggregate functions

Aggregate functions

Aggregate functions specify a value computed with data from a set of rows described
in an argument. The argument, enclosed in parentheses, is an expression.

Aggregate functions can be specified in the select list or the HAVING clause. See
"INSERT...SELECT" on page 5-153 for more information. The value of the expression is
computed using each row that satisfies the WHERE clause.

SQL syntax
{AVG ({Expression | [ALL | DISTINCT] ColumnName})
MAX ({Expression | [ALL | DISTINCT] ColumnName | ROWID})
MIN ({Expression | [ALL | DISTINCT] ColumnName | ROWID})
SUM ({Expression | [ALL | DISTINCT] ColumnName})
COUNT ({ * | [ALL | DISTINCT] ColumnName | ROWID})

}

Component Description

Expression Specifies an argument for the aggregate function. The expression itself
cannot be an aggregate function.

AVG Computes the arithmetic mean of the values in the argument. NULL values
are ignored. AVG can be applied only to numeric data types.

MAX Finds the largest of the values in the argument (ASCII comparison for
alphabetic types). NULL values are ignored. MAX can be applied to numeric,
character, and BINARY data types.

MIN Finds the smallest of the values in the argument (ASCII comparison for
alphabetic types). NULL values are ignored. MIN can be applied to numeric,
character, and BINARY data types.

SUM Finds the total of all values in the argument. NULL values are ignored. SUM
can be applied to numeric data types only.

COUNT * Counts all rows that satisfy the WHERE clause, including rows containing
NULL values. The data type of the result is TT_INTEGER. For more
information on the number of rows in a table, see the description for the
NUMTUPS field in "SYS.TABLES" in Oracle TimesTen In-Memory Database
System Tables and Limits Reference.

COUNT Counts all rows in a specific column. Rows containing NULL values are not

ColumnName counted. The data type of the result is TT_INTEGER. For more information
on the number of rows in a table, see the description for the NUMTUPS field in
"SYS.TABLES" in Oracle TimesTen In-Memory Database System Tables and
Limits Reference.

ALL Includes any duplicate rows in the argument of an aggregate function. If
neither ALL nor DISTINCT is specified, ALL is assumed.

DISTINCT Eliminates duplicate column values from the argument of an aggregate
function. Can be specified for more than one column.

Description

= If an aggregate function is computed over an empty table in which GROUP BY is
not used, the results are as follows:

— COUNT returns 0.

— AVG, SUM, MAX, and MIN return NULL.

3-8 Oracle TimesTen In-Memory Database SQL Reference

Aggregate functions

Examples

» If an aggregate function is computed over an empty group or an empty grouped
table (GROUP BY is used):

— COUNT returns nothing.
- AVG, SUM, MAX, and MIN return nothing.
s For suM:

— If the source is TT_TINYINT, TT SMALLINT, or TT INTEGER, the result data
type is TT INTEGER.

If the source is NUMBER, then the result data type is NUMBER with undefined
scale and precision.

If the source is TT_DECIMAL, then the result data type is TT_DECIMAL with
maximum precision.

For all other data types, the result data type is the same as the source.
= For MAX and MIN:

— The result data type is the same as the source.
s For AVG:

— AVGis evaluated as SUM/COUNT. The result data type is derived using the rule
that is applied for the DIV operator.

See Chapter 1, "Data Types" for information about:

s Truncation and type conversion that may occur during the evaluation of aggregate
functions.

s Precision and scale of aggregate functions involving numeric arguments.

= Control of the result type of an aggregate function.

Calculate the average salary for employees in the HR schema. Use CAST to cast the
average as the data type of the column:

Command> SELECT CAST(AVG (salary) AS NUMBER (8,2)) FROM employees;
< 6461.68 >

Calculate the MAX salary for employees in the HR schema:

Command> SELECT MAX (salary) FROM employees;
< 24000 >
1 row found.

The example uses DESCRIBE to show the data type that is returned when using the
SUM aggregate. The aggregates table is created and columns with different data
types are defined:

Command> CREATE TABLE aggregates (coll TT_TINYINT, col2 TT SMALLINT,

> col3 TT_INTEGER, col4 TT BIGINT, col5 NUMBER (4,2),

> col6é TT_DECIMAL (6,2), col7 BINARY_FLOAT, col8 BINARY_DOUBLE) ;
Command> DESCRIBE SELECT SUM (coll) FROM aggregates;
Prepared Statement:

Columns:
EXP TT_INTEGER

Command> DESCRIBE SELECT SUM (col2) FROM aggregates;
Prepared Statement:
Columns:

Expressions 3-9

Aggregate functions

EXP
Command>
Prepared
Columns:

EXP
Command>
Prepared
Columns:

EXP
Command>
Prepared
Columns:

EXP
Command>
Prepared
Columns:

EXP
Command>
Prepared
Columns:

EXP
Command>
Prepared

DESCRIBE SELECT
Statement:

DESCRIBE SELECT
Statement:

DESCRIBE SELECT
Statement:

DESCRIBE SELECT
Statement:

DESCRIBE SELECT
Statement:

DESCRIBE SELECT
Statement:

Columns:

EXP

SUM

SUM

SUM

SUM

SUM

SUM

(col3)

(cold)

(colb)

(col6)

(col7)

(col8)

TT_INTEGER
FROM aggregates;

TT_INTEGER
FROM Aggregates;

TT_BIGINT
FROM aggregates;

NUMBER
FROM aggregates;

TT_DECIMAL (40,2)
FROM aggregates;

BINARY_FLOAT
FROM Aagregates;

BINARY_DOUBLE

3-10 Oracle TimesTen In-Memory Database SQL Reference

Constants

Constants

A constant is a literal value.

SQL syntax

{IntegerValue | FloatValue |FloatingPointLiteral|
FixedPointValue | 'CharacterString'|
'NationalCharacterString' | OxHexadecimalString |
'‘DateString' | DateLiteral |'TimeString' |
TimeLiteral | 'TimestampString' | TimestampLiteral |
IntervallLiteral | BINARY_FLOAT INFINITY |
BINARY_DOUBLE_INFINITY | -BINARY_FLOAT_INFINITY ‘
-BINARY_DOUBLE_INFINITY | BINARY_FLOAT_NAN |
BINARY_DOUBLE_NAN

Constant Description

IntegerValue A whole number compatible with TT_INTEGER, TT_BIGINT
or TT_SMALLINT data types or an unsigned whole number
compatible with the TT_TINYINT data type. For example:

155, 5, -17

FloatValue A floating-point number compatible with the
BINARY_FLOAT or BINARY_DOUBLE data types. Examples:

.2E-4, 1.23e-4, 27.03, -13.1

FloatingPointLiteral Floating point literals are compatible with the
BINARY_FLOAT and BINARY_DOUBLE data types. f or F
indicates that the number is a 32-bit floating point number (of
type BINARY_FLOAT). d or D indicates that the number is a
64-bit floating point number (of type BINARY_DOUBLE).

For example: 123 .23F, 0.5d

FixedPointValue A fixed-point number compatible with the BINARY_FLOAT,
BINARY_DOUBLE or NUMBER data types. For example:
27.03

CharacterString A character string compatible with CHAR or VARCHAR2 data

types. String constants are delimited by single quotation
marks. For example:

'DON''T JUMP!'

Two single quotation marks in a row are interpreted as a
single quotation mark, not as string delimiters or the empty
string.

Expressions 3-11

Constants

Constant

Description

NationalCharacterString

A character string compatible with NCHAR or NVARCHAR2
data types. National string constants are preceded by an
indicator consisting of either N or n, and delimited by single
quotation marks. For example:

N'Here''s how!'

Two single quotation marks in a row are interpreted as a
single quotation mark.

The contents of a national string constant may consist of any
combination of:

s ASCII characters
s UTF-8 encoded Unicode characters
= Escaped Unicode characters

ASCII characters and UTF-8 encoded characters are
converted internally to their corresponding UTF-16 format
Unicode equivalents.

Escaped Unicode characters are of the form \uxxxx, where
xxxx is the four hex-digit representation of the Unicode
character. For example:

N'This is an \u0061'

is equivalent to:

N'This is an a'

The \u itself can be escaped with another \. The sequence
\ \uis always converted to \u. No other escapes are
recognized.

HexadecimalString

A string of hexadecimal digits 0 -9 and A - F (or a - f)
compatible with the BINARY, VARBINARY, CHAR and
VARCHAR?2 data types. A HexadecimalString constant
must be prefixed with the characters "0x." For example:

OxFFFAB0880088343330FFAA7
or

0x000A001231

DateString

A string of the format YYYY-MM-DD HH:MI:SS enclosed in
single quotation marks ('). For example:

'2007-01-27 12:00:00"

The YYYY field must have a 4-digit value. The MM and DD
fields must have 2-digit values. The only spaces allowed are
trailing spaces (after the day field). The range is from
'-4713-01-01" (January 1,4712 BC) to '9999-12-31",
(December 31, 9999). The time component is not required. For
example:

'2007-01-27"

For TT_DATE data types, the string is of format YYYY-MM-DD
and ranges from '1753-01-01" to '9999-12-31".

If you are using TimesTen type mode, see Oracle TimesTen
In-Memory Database Release 6.0.3 documentation for
information about DateString.

3-12 Oracle TimesTen In-Memory Database SQL Reference

Constants

Constant

Description

DateLiteral

Format: DATE DateString. For example:
DATE '2007-01-27' or DATE '2007-01-27 12:00:00'

For TT_DATE data types, use the literal TT_DATE. For
example:

TT_DATE '2007-01-27".

Do not specify a time portion with the TT_DATE literal.
The DATE keyword is case-insensitive.

TimesTen also supports ODBC date-literal syntax.

For example:

{d '2007-01-27"}.

See ODBC documentation for details.

If you are using TimesTen type mode, see Oracle TimesTen
In-Memory Database Release 6.0.3 documentation for
information about DateLiteral.

TimeString

A string of the format HH: MM: SS enclosed in single quotation
marks ('). For example:

'20:25:30"

The rangeis '00:00:00"' to '23:59:59", inclusive. Every
component must be two digits. The only spaces allowed are
trailing spaces (after the seconds field).

TimeLiteral

Format: TIME TimeString. For example:
TIME '20:25:30"'

The TIME keyword is case-insensitive.
Usage examples:

INSERT INTO timetable VALUES (TIME '10:00:00');

SELECT * FROM timetable WHERE coll < TIME
'10:00:00";

TimesTen also supports ODBC time-literal syntax.
For example:

{t '12:00:00"'}

Expressions 3-13

Constants

Constant

Description

TimestampString

A string of the format YYYY-MM-DD HH:MI:SS

[.FFFFFFFFF] -enclosed in single quotation marks('). The
range is from '-4713-01-01" (January 1, 4712 BC) to
'9999-12-31" (December 31, 9999). The year field must be
a 4-digit value. All other fields except for the fractional part
must be 2-digit values. The fractional field can consist of 0 to
9 digits. For TT_TIMESTAMP data types, a string of format
YYYY-MM-DD HH:MM:SS[.FFFFFF] enclosed in single
quotation marks('). The range is from '1753-01-01
00:00:00.000000" to '9999-12-31
23:59:59.999999'. The fractional field can consist of 0 to
6 digits.

If you have a CHAR column called C1, and want to enforce the
TIME comparison, you can do the following:

SELECT * FROM testable WHERE Cl = TIME '12:00:00"'

In this example, each CHAR value from C1 is converted into a
TIME value before comparison, provided that values in C1
conform to the proper TIME syntax.

If you are using TimesTen type mode, see Oracle TimesTen
In-Memory Database Release 6.0.3 documentation for
information on TimestampString.

TimestampLiteral

Format: TIMESTAMP TimestampString
For example:

TIMESTAMP '2007-01-27 11:00:00.000000'

For TIMESTAMP data types, the fraction field supports from 0
to 9 digits of fractional seconds. For TT_TIMESTAMP data
types, the fraction field supports from 0 to 6 digits of
fractional seconds.

The TIMESTAMP keyword is case-insensitive.

Literal syntax can be used if you want to enforce
DATE/TIME/TIMESTAMP comparisons for CHAR and
VARCHAR2 data types.

TimesTen also supports ODBC timestamp literal syntax. For
example:

{ts '9999-12-31 12:00:00"}

If you are using TimesTen type mode, see Oracle TimesTen
In-Memory Database Release 6.0.3 documentation for
information about TimestampLiteral.

IntervalLiteral

Format: INTERVAL [+\-] CharacterString
IntervalQualifier.

ForexanqﬂeINTERVAL '8' DAY

BINARY_FLOAT_INFINITY|
BINARY_DOUBLE_INFINITY

INF (positive infinity) is an IEEE floating-point value that is
compatible with the BINARY_FLOAT and BINARY_DOUBLE
data types. Use the constant values
BINARY_FLOAT_INFINITY or BINARY_ DOUBLE_INFINITY
to represent positive infinity.

-BINARY_FLOAT_INFINITY |
-BINARY_DOUBLE_INFINITY

-INF (negative infinity) is an IEEE floating-point value that
is compatible with the BINARY_FLOAT and BINARY_DOUBLE
data types. Use the constant values
-BINARY_FLOAT_INFINITY and
-BINARY_DOUBLE_INFINITY to represent negative infinity.

3-14 Oracle TimesTen In-Memory Database SQL Reference

Constants

Constant Description

BINARY_FLOAT_NAN | NaN ("not a number") is an IEEE floating-point value that is

compatible with the BINARY_FLOAT and BINARY_DOUBLE

data types. Use the constant values BINARY_FLOAT_NAN or
BINARY_DOUBLE_NAN to represent NaN ('not a number").

BINARY_DOUBLE_NAN

Expressions 3-15

Format models

Format models

A format model is a character literal that describes the format of datetime and numeric
data stored in a character string. When you convert a character string into a date or
number, a format model determines how TimesTen interprets the string.

3-16 Oracle TimesTen In-Memory Database SQL Reference

Format models

Number format models

Use number format models in the following functions:

s In the TO_CHAR function to translate a value of NUMBER, BINARY_FLOAT, or
BINARY_DOUBLE data type to VARCHAR2 data type.

= In the TO_NUMBER function to translate a value of CHAR or VARCHAR?2 data type to

NUMBER data type.

Number format elements

A number format model is composed of one or more number format elements. The
table lists the elements of a number format model. Negative return values
automatically contain a leading negative sign and positive values automatically
contain a leading space unless the format model contains the MI, S, or PR format

element.

The default american_america NLS language and territory setting is used.

Table 3-1 Number format elements

Element Example

Description

, (comma) 9,999

Returns a comma in the specified position. You can specify
multiple commas in a number format model.

Restrictions:
= A comma element cannot begin a number format model.

= A comma cannot appear to the right of the decimal
character or period in a number format model.

. (period) 99.99

Returns a decimal point, which is a period (.) in the specified
position.

Restriction:

You can specify only one period in a format model.

$ $9999 Returns value with leading dollar sign.
0 0999 Returns leading zeros.
9990 Returns trailing zeros.

9 9999 Returns value with the specified number of digits with a leading
space if positive or with a leading minus if negative.

Leading zeros are blank, except for a zero value, which returns a
zero for the integer part of the fixed-point number.

B B9999 Returns blanks for the integer part of a fixed-point number
when the integer part is zero (regardless of zeros in the format
model).

C C999 Returns in the specified position the ISO currency symbol.

D 99D99 Returns the decimal character in the specified position. The
default is a period (.).

Restriction:
You can specify only one decimal character in a number format
model.

EEEE 9.9EEEE Returns a value in scientific notation.

Expressions 3-17

Number format models

Table 3—-1 (Cont.) Number format elements

Element

Example

Description

G

9G999

Returns the group separator in the specified position. You can
specify multiple group separators in a number format model.

Restriction:

A group separator cannot appear to the right of a decimal
character or period in a number format model.

L999

Returns the local currency symbol in the specified position.

MI

999MI

Returns negative value with a trailing minus sign (-).
Returns positive value with a trailing blank.
Restriction:

The MI format element can appear only in the last position of a
number format model.

PR

999PR

Returns negative value in angle brackets (< >).
Returns positive value with a leading and trailing blank.
Restriction:

The PR format element can appear only in the last position of a
number format model.

RN

RN

Returns a value as Roman numerals in uppercase.

rn

rn

Returns a value as Roman numerals in lowercase.

Value can be an integer between 1 and 3999.

59999

Returns negative value with a leading minus sign (-).

Returns positive value with a leading plus sign (+).

9999s

Returns negative value with a trailing minus sign (-).
Returns positive value with a trailing plus sign (+).
Restriction:

The S format element can appear only in the first or last position
of a number format model.

™

™

The text minimum number format model returns (in decimal
output) the smallest number of characters possible. This element
is case insensitive.

The default is TM9, which returns the number in fixed notation
unless the output exceeds 64 characters. If the output exceeds 64
characters, then TimesTen automatically returns the number in
scientific notation.

Restrictions:
= You cannot precede this element with any other element.

= You can follow this element only with one 9 or one E or (e),
but not with any combination of these. The following
statement returns an error:

SELECT TO_NUMBER (1234, 'TM9e') FROM dual;

U9999

Returns the euro or other dual currency symbol in the specified
position.

999Vv99

Returns a value multiplied by 10" (and if necessary, rounds it
up), where n is the number of 9s after the V.

3-18 Oracle TimesTen In-Memory Database SQL Reference

Format models

Table 3—-1 (Cont.) Number format elements

Element Example Description

X XXXX Returns the hexadecimal value of the specified number of digits.
If the specified number is not an integer, then TimesTen rounds
it to an integer.

Restrictions:

» This element accepts only positive values or 0. Negative
values return an error.

= You can precede this element only with 0 (which returns
leading zeros) or FM. Any other elements return an error. If
you specify neither 0 nor FM with X, then the return always
has a leading blank.

Expressions 3-19

Datetime format models

Datetime format models

Use datetime format models in the following functions:

s In the TO_CHAR or TO_DATE functions to translate a character value thatis in a
format other than the default format for a datetime value.

s Inthe TO_CHAR function to translate a datetime value that is in a format other than
the default format into a string.

The total length of a datetime format model cannot exceed 22 characters.

The default american_america NLS language and territory setting is used.

3-20 Oracle TimesTen In-Memory Database SQL Reference

Format models

Datetime format elements

A datetime format model is composed of one or more datetime format elements.

Table 3-2 Datetime format elements

Element

Description

-/, .5 text”

Punctuation and quoted text is reproduced in the result.

AD
A.D.

AD indicator with or without periods.

AM
A.M.

Meridian indicator with or without periods.

BC
B.C.

BC indicator with or without periods.

D

Day of week (1-7).

DAY

Name of day, padded with blanks to display width of widest name of
day.

DD

Day of month (1-31).

DDD

Day of year.

DL

Returns a value in the long date format. In the default
AMERICAN_AMERICA locale, this is equivalent to specifying the format
'fmDay, Month d4dd, yvyy'.

Restriction:

Specify this format only with the TS element, separated by white space.

DS

Returns a value in the short date format. In the default
AMERICAN_AMERICA locale, this is equivalent to specifying the format
'MM/DD/RRRR'

Restriction:

Specify this format only with the TS element, separated by white space.

DY

Abbreviated name of day.

FM

Returns a value with no leading or trailing blanks.

FX

Requires exact matching between the character data and the format
model.

HH

Hour of day (1-12).

HH24

Hour of day (0-23).

Julian day: The number of days since January 1, 4712 BC. Numbers
specified with J must be integers.

MI

Minute (0-59).

Month (01-12. January = 01).

MON

Abbreviated name of month.

MONTH

Name of month padded with blanks to display width of the widest
name of month.

RM

Roman numeral month (I-XIL. January = I).

RR

Stores 20th century dates in the 21st century using only two digits.

Expressions 3-21

Datetime format elements

Table 3-2 (Cont.) Datetime format elements

Element

Description

RRRR

Rounds year. Accepts either 4-digit or 2-digit input. If 2-digit, provides
the same return as RR. If you do not want this functionality, then enter
the 4-digit year.

SS

Second (0-59).

SSSSS

Seconds past midnight (0-86399).

TS

Returns a value in the short time format.
Restriction:

Specify this format only with the DL or DS element, separated by white
space.

Local radix character.

Example: 'HH:MI: SSXFF'.

Y,YYY

Year with comma in this position.

YYYY
SYYYY

4-digit year. S prefixes BC dates with a minus sign.

YYY
YY

Last 3, 2, or 1 digit (s) of year.

3-22 Oracle TimesTen In-Memory Database SQL Reference

Format models

Format model for ROUND and TRUNC date functions

The table lists the format models you can use with the ROUND and TRUNC date
functions and the units to which they round and truncate dates. The default model DD
returns the date rounded or truncated to the day with a time of midnight.

Format model

Rounding or truncating unit

cc Century: If the last 2 digits of a 4-digit year are between 01 and 99

sce (inclusive), then the century is one greater than the first 2 digits of that year.
If the last 2 digits of a 4-digit year are 00, then the century is the same as the
first 2 digits of that year.
For example, 2002 returns 21; 2000 returns 20.

SYYYY Year. All year output rounds up on July 1

YYYY

YEAR

SYEAR

YYY

YY

Y

IYYY ISO year

IYY

IY

I

Q Quarter (rounds up on the sixteenth day of the second month of the quarter)

MONTH Name of month (rounds up on the sixteenth day)

MON

MM

RM

Wi Same day of the week as the first day of the year

w Same day of the week as the first day of the ISO week, which is Monday

w Same day of the week as the first day of the month

DDD Day of year

DD

J

DAY Starting day of the week

DY

D

HH Hour

HH12

HH24

MI Minute

Expressions 3-23

Format model for TO_CHAR of TimesTen datetime data types

Format model for TO_CHAR of TimesTen datetime data types

Use this format model when invoking the TO_CHAR function to convert a datetime
value of TT_TIMESTAMP or TT_DATE. In addition, use this format model when
invoking the TO_CHAR function to convert any numeric value other than NUMBER or
ORA_FLOAT.

s If a numeric value does not fit in the specified format, TimesTen truncates the
value.

s The format string cannot exceed 50 characters.

= D always results in a decimal point. Its value cannot be changed with an NLS
parameter.

» If a float with an absolute value less than 1e-126 or greater than 1e126 is
specified as input to the TO_CHAR function, TimesTen returns an error.

Format Description

DD Day of month (1-31)

MM Month (1-12)

MON Month (three character prefix)

MONTH Month (full name blank-padded to 9 characters)
YYYY Year (four digits)

Y, YYY Year (with comma as shown)

YYY Year (last three digits)

YY Year (last two digits)

Y Year (last digit)

Q Quarter

HH Hour (1-12)

HH12 Hour (1-12)

HH24 Hour (0-23)

MI Minute (0-59)

Ss Second (0-59)

FF Fractions of a second to a precision of 6 digits
FFn Fractions of a second to the precision specified by n
AM Meridian indicator

A.M. Meridian indicator

PM Meridian indicator

P.M. Meridian indicator

-/ . i Punctuation to be output

"text" Text to be output

9 Digit

0 Leading or trailing zero

Decimal point

3-24 Oracle TimesTen In-Memory Database SQL Reference

Format models

Format Description

, Comma

EEEE Scientific notation

S Sign mode

B Blank mode. If there are no digits, the string is filled with blanks.

FM No-blank mode (fill mode). If this element is used, trailing and leading
spaces are suppressed.

$ Leading dollar sign.

Expressions 3-25

ABS

ABS

SQL syntax

Parameters

Description

Examples

The ABS function returns the absolute value of Expression.

ABS (Expression)

ABS has the parameter:

Parameter Description

Expression Operand or column can be any numeric data type. Absolute value of
Expressionis returned.

» If Expressionis of type TT_DECIMAL or NUMBER, the data type returned is
NUMBER with maximum precision and scale. Otherwise, ABS returns the same data
type as the numeric data type of Expression.

m If the value of Expression is NULL, NULL is returned. If the value of the
Expressionis -INF, INF is returned.

Create table abstest and define columns with type BINARY_FLOAT and
TT_INTEGER. Insert values -BINARY_FLOAT_INFINITY and -10. Call ABS to return
the absolute value. You see INF and 10 are the returned values:

Command> CREATE TABLE abstest (coll BINARY FLOAT, col2 TT INTEGER);
Command> INSERT INTO abstest VALUES
> (-BINARY_FLOAT_INFINITY, -10);
1 row inserted.
Command> SELECT ABS (coll) FROM abstest;
< INF >
1 row found.
Command> SELECT ABS (col2) FROM abstest;
< 10 >
1 row found.

3-26 Oracle TimesTen In-Memory Database SQL Reference

ADD_MONTHS

ADD_MONTHS

SQL syntax

Parameters

Description

Examples

The ADD_MONTHS function returns the date resulting from date plus integer
months.

ADD_MONTHS (date, integer)

ADD_MONTHS has the parameters:

Parameter Description
date A datetime value or any value that can be implicitly converted to DATE.
integer An integer or any value that can be implicitly converted to an integer.

s The return type is always DATE regardless of the data type of date. Supported
data types are DATE and TIMESTAMP.

s Data types TT_DATE and TT_TIMESTAMP are not supported.

s If dateis the last day of the month or if the resulting month has fewer days than
the day component of date, then the result is the last day of the resulting month.
Otherwise, the result has the same day component as date.

Call the ADD_MONTHS function to add 1 month to date January 31, 2007. The last day of
February is returned.

Command> SELECT ADD_MONTHS (DATE '2007-01-31', 1) FROM dual;
< 2007-02-28 00:00:00 >
1 row found.

ADD_MONTHS returns data type DATE if date is of type TIMESTAMP:

Command> DESCRIBE SELECT ADD_MONTHS (TIMESTAMP '2007-01-31
> 10:00:00', 1) FROM dual;
Prepared Statement:
Columns:
EXP DATE NOT NULL

Use the HR schema to select the first 5 rows of the employees table, showing
employee_id, last_name and hire_date. Create new table temp_hire_date
using the CREATE TABLE ... AS SELECT statement. Call ADD_MONTHS to add 23
months to the original hire_date.

Command> SELECT FIRST 5 employee_id, last_name, hire_date FROM employees;
100, King, 1987-06-17 00:00:00 >

101, Kochhar, 1989-09-21 00:00:00 >

102, De Haan, 1993-01-13 00:00:00 >

103, Hunold, 1990-01-03 00:00:00 >

104, Ernst, 1991-05-21 00:00:00 >

rows found.

Command> CREATE TABLE temp_hire_date (employee_id, last_name,

U A A A A A

Expressions 3-27

ADD_MONTHS

> hire_date) AS SELECT FIRST 5 employee_id, last_name,
> ADD_MONTHS (hire_date, 23) FROM employees;

5 rows inserted.

Command> SELECT * FROM temp_hire_date;

100, King, 1989-05-17 00:00:00 >

101, Kochhar, 1991-08-21 00:00:00 >

102, De Haan, 1994-12-13 00:00:00 >

103, Hunold, 1991-12-03 00:00:00 >

104, Ernst, 1993-04-21 00:00:00 >

rows found.

U A A A A A

3-28 Oracle TimesTen In-Memory Database SQL Reference

ASCIISTR

ASCIISTR

SQL syntax

Parameters

Description

Examples

The ASCIISTR function takes as its argument, either a string or an expression that
resolves to a string, in any character set, and returns the ASCII version of the string in
the database character set. Non-ASCII characters are converted to Unicode escapes.

ASCIISTR ([N]'String')

ASCIISTR has the parameter:

Parameter Description

[N]'String' The string passed to the ASCIISTR function. The string can be in any
character set. The ASCII version of the string in the database character set is
returned. Specify N if you want to pass the string in UTF-16 format.

The ASCIISTR function allows you to see the representation of a string value that is
not in the database character set.

The following example invokes the ASCIISTR function passing as an argument the
string 'A&a’' in UTF-16 format. The ASCII version is returned in the WE8IS08859P1
character set. The non-ASCII character & is converted to Unicode encoding value:

Command> connect "dsn=test; ConnectionCharacterSet= WE8ISO8859P1";
Connection successful: DSN=test;UID=userl;DataStore=/datastore/userl/test;
DatabaseCharacterSet=WE8IS08859P1;
ConnectionCharacterSet=WE8IS08859P1; PermSize=32; TypeMode=0;

(Default setting AutoCommit=1)

Command> SELECT ASCIISTR (n'Ada') FROM dual;

< A\0OE4a >

1 row found.

Expressions 3-29

CASE

CASE

SQL syntax

Parameters

Description

Examples

Specifies a conditional value. Both simple and searched case expressions are
supported. Case expression can be specified anywhere an expression can be and can
be used as often as needed.

Instead of using a series of IF statements, case expression allows you to use a series of
conditions that return the appropriate values when the conditions are met. With CASE
expression, you can simplify queries and write more efficient code.

The syntax for a searched CASE expression is:

CASE
{WHEN SearchCondition THEN Expressionl}[..]
[ELSE Expression2]
END

The syntax for a simple CASE expression is:

CASE Expression
{WHEN CompExpression THEN Expressionl}|[..]
[ELSE Expression?]
END

CASE has the parameters:

Parameter Description

WHEN SearchCondition Specifies the search criteria. This clause cannot specify a
subquery.

WHEN CompExpression Specifies the operand to be compared.

Expression Specifies the first operand to be compared with each
CompExpression.

THEN Expressionl Specifies the resulting expression.

ELSE Expression?2 If condition is not met, specifies the resulting expression. If

no ELSE clause is specified, TimesTen adds an ELSE NULL
clause to the expression.

CASE expression cannot be specified in the value clause of an INSERT statement.

To specify a searched CASE statement that specifies the value of a color, use:

SELECT CASE
WHEN color=1 THEN 'red'
WHEN color=2 THEN 'blue'’
ELSE 'yellow'

END FROM cars;

To specify a simple CASE statement that specifies the value of a color, use:

3-30 Oracle TimesTen In-Memory Database SQL Reference

CASE

SELECT CASE color
WHEN 1 THEN 'red'
WHEN 2 THEN 'blue’
ELSE 'yellow'

END FROM cars;

Expressions 3-31

CAST

CAST

Allows you to convert data of one type to another type. CAST can be used wherever a
constant can be used. CAST is useful in specifying the exact data type for an argument.
This is especially true for unary operators like '-' or functions with one operand like
TO_CHAR or TO_DATE.

A value can only be CAST to a compatible data type, with the exception of NULL. NULL
can be cast to any other data type. CAST is not needed to convert a NULL to the desired
target type in an insert select.

The following conversions are supported:

= Numeric value to numeric or BCD (Binary Coded Decimal)
[NCHAR to NCHAR

= CHAR string to BINARY string or DATE, TIME or TIMESTAMP
= BINARY string to BINARY or CHAR string

s DATE, TIME or TIMESTAMP to CHAR

SQL syntax

CAST

({Expression | NULL} AS DataType)

Parameters

CAST has the parameters:

Parameter Description

Expression Specifies the value to be converted.

AS DataType Specifies the resulting data type.
Description

= CAST to a domain name is not supported.

s Casting a selected value may cause the SELECT statement to take more time and

memory than a SELECT statement without a CAST expression.

Examples

INSERT INTO tl VALUES(TO_CHAR(CAST(? AS REAL)));
SELECT CONCAT (x1, CAST (? AS CHAR(10))) FROM tl1;
SELECT * FROM tl WHERE CAST (? AS INT)=CAST(? AS INT);

3-32 Oracle TimesTen In-Memory Database SQL Reference

CHR

CHR

SQL syntax

Parameters

Description

Examples

The CHR function returns the character having the specified binary value in the
database character set.

CHR (n)

CHR has the parameter:

Parameter Description

n The binary value in the database character set. The character having this
binary value is returned. The result is of type VARCHAR2.

» For single-byte character sets, if n >256, then TimesTen returns the binary value of
nmod 256.

= For multibyte character sets, n must resolve to one code point. Invalid code points
are not validated. If you specify an invalid code point, the result is indeterminate.

The following example is run on an ASCII-based machine with the WE8IS08859P1
character set.

Command> SELECT CHR(67) | |CHR(65) | |CHR(84) FROM dual;
< CAT >
1 row found.

Expressions 3-33

CEIL

CEIL

SQL syntax

Parameters

Description

Examples

The CEIL function returns the smallest integer greater than or equal to Expression.

CEIL (Expression)

CEIL has the parameter:

Parameter Description

Expression Operand or column can be any numeric data type.

s If Expression is of type TT_DECIMAL or NUMBER, the data type returned is
NUMBER with maximum precision and scale. Otherwise, CEIL returns the same
data type as the numeric data type of Expression.

m If the value of Expressionis NULL, NULL is returned. If the value of
Expressionis —-INF, INF, or NaN, the value returned is -INF, INF, or NaN
respectively.

Sum the commission_pct for employees in the employees table, and then call
CEIL to return the smallest integer greater than or equal to the value returned by SUM.
You see the value returned by the SUM function is 7.8 and the value returned by the
CEIL function is 8.

Command> SELECT SUM (commission_pct) FROM employees;

< 7.8 >

1 row found.

Command> SELECT CEIL (SUM (commission_pct)) FROM employees;
< 8 >

1 row found.

3-34 Oracle TimesTen In-Memory Database SQL Reference

COALESCE

COALESCE

The COALESCE function returns the first non-null expression in the expression list.
If all occurrences of expression evaluate to NULL, then the function returns NULL.

SQL syntax
COALESCE (Expressionl, Expression2 [,...])
Parameters
COALESCE has the parameters:
Parameter Description
Expressionl, The expressions in the expression list. The first non-null expression in the
Expression2 expression list is returned.
L] Each expression is evaluated in order and there must be at least 2
expressions.
Description
s This function is a generalization of the NVL function.
s Use COALESCE as a variation of the CASE expression. For example:
COALESCE (Expressionl, ExpressionZ2)
is equivalent to:
CASE WHEN Expressionl IS NOT NULL THEN Expressionl
ELSE Expression2
END
Examples

The example illustrates the use of the COALESCE expression. The COALESCE
expression is used to return the commission_pct for the first 10 employees with
manager_id = 100.If the commission_pct is NOT NULL, then the original value
for commission_pct is returned. If commission_pct is NULL, then 0 is returned.

Command> SELECT FIRST 10 employee_id, COALESCE (commission_pct, 0) FROM employees

> WHERE manager_id = 100;
< 101, 0 >
< 102, 0 >
< 114, 0 >
< 120, 0 >
< 121, 0 >
< 122, 0 >
< 123, 0 >
< 124, 0 >
< 145, .4 >
< 146, .3 >
10 rows found.

Expressions 3-35

CONCAT

CONCAT

SQL syntax

Parameters

Description

Examples

The CONCAT function concatenates one character string with another to form a new
character string.

CONCAT (Expressionl, ExpressionZ2)

CONCAT has the parameters:

Parameter Description

Expressionl A CHAR, VARCHAR2, NCHAR or NVARCHAR2 expression.

Expression2 A CHAR, VARCHAR2, NCHAR or NVARCHAR2 expression.

m CONCAT returns Expressionl concatenated with Expression2.
» The type of Expressionl and ExpressionZ2 must be compatible.

s If Expression2 is NULL, CONCAT returns Expressionl.lf Expressionl is
NULL, CONCAT returns Expression2.

s Ifboth Expressionl and Expression2 are NULL, CONCAT returns NULL.

s The return type of CONCAT depends on the types of Expressionl and
Expression2. The following table summarizes how the return type is

determined.
Expression1 Expression2 CONCAT
CHAR (m) CHAR (n) CHAR (m+n)
CHAR (m) VARCHAR? (n) VARCHAR2 (m+n)
VARCHAR2 (m) CHAR (n) VARCHAR2 (m+n)
VARCHAR2 (m) VARCHAR? (n) VARCHAR?2 (m+n)

» The treatment of NCHAR and NVARCHAR?2 is similar. If one of the operands is of
varying length, then the result is of varying length. Otherwise the result is of a
fixed length.

s The concatenation of CHAR, NCHAR, VARCHAR2, and NVARCHAR?2 types are
supported. The result type of character types concatenated with ncharacter types
is ncharacter types.

The following example concatenates first names and last names.

Command> SELECT CONCAT (CONCAT (first_name, ' '), last_name), salary FROM employees;
< Steven King, 24000 >

< Neena Kochhar, 17000 >

< Lex De Haan, 17000 >

< Alexander Hunold, 9000 >

3-36 Oracle TimesTen In-Memory Database SQL Reference

CONCAT

107 rows found.

The following example concatenates column id with column 1d2. In this example, the
result type is NCHAR (40).

Command> CREATE TABLE cat (id CHAR (20), id2 NCHAR (20));
Command> INSERT INTO cat VALUES ('abc', 'def');

1 row inserted.

Command> SELECT CONCAT (id,id2) FROM cat;

< abc def >

1 row found.

The description of the | | operator is in "Expression specification" on page 3-3.

Expressions 3-37

DECODE

DECODE

SQL syntax

Parameters

Description

Examples

The DECODE function compares an expression to each search value one by one. If the
expression is equal to the search value, then the result value is returned. If no match is
found, then the default value (if specified) is returned. Otherwise NULL is returned.

DECODE (Expression, {SearchValue, Result [,...])} [,Default])

DECODE has the parameters:

Parameter Description

Expression The expression that is compared to the search value.

SearchValue An expression is compared to one or more search values.

Result If the expression is equal to a SearchValue, then the specified Result value is
returned.
Default If no match is found, the default value is returned. Default is optional. If

Default is not specified and no match is found, then NULL is returned.

If an expression is NULL, then the NULL expression equals a NULL search value.

The following example invokes the DECODE function. In the locations table, if the
column country_idisequal to 'IT', then the function returns 'Italy'.If the
country_idisequal to 'JP', then the function returns 'Japan'. If the
country_idisequal to 'US"', then 'United States' isreturned. If the
country_idisnotequalto 'IT' or 'JP' or 'US', then the function returns
'Other'.

Command> SELECT location_id,

> DECODE (country_id, 'IT', 'Italy',

> 'Other')

> FROM locations WHERE location_id < 2000;
LOCATION_ID, EXP
< 1000, Italy >
< 1100, Italy >
< 1200, Japan >
< 1300, Japan >
< 1400, United States
< 1500, United States
< 1600, United States
< 1700, United States
< 1800, Other >
< 1900, Other >
10 rows found.

VvV V. V V

3-38 Oracle TimesTen In-Memory Database SQL Reference

EXTRACT

EXTRACT

SQL syntax

Parameters

Description

Examples

The EXTRACT function extracts and returns the value of a specified datetime field from
a datetime or interval value expression as a NUMBER data type. This function can be
useful for manipulating datetime field values in very large tables.

If you are using TimesTen type mode, see the Oracle TimesTen In-Memory Database
Release 6.0.3 documentation for information about the EXTRACT function.

EXTRACT (DateTimeField FROM IntervalExpression / DateTimeExpression)

EXTRACT has the following parameters:

Parameter Description

DateTimeField The field to be extracted from IntervalExpression or
DateTimeExpression. Accepted fields are YEAR, MONTH, DAY,
HOUR, MINUTE or SECOND.

IntervalExpression An interval result.

DateTimeExpression A datetime expression. For example, TIME, DATE, TIMESTAMP

= Some combinations of DateTime field and DateTime or interval value
expression result in ambiguity. In these cases, TimesTen returns UNKNOWN.

s The field you are extracting must be a field of the IntervalExpression or
DateTimeExpression. For example, you can extract only YEAR, MONTH, and
DAY from a DATE value. Likewise, you can extract HOUR, MINUTE or SECOND only
from the TIME, DATE, or TIMESTAMP data type.

s The fields are extracted into a NUMBER value.

The following example extracts the second field out of the interval result
sysdate-tl.createtime.

SELECT EXTRACT (SECOND FROM sysdate-tl.createtime) FROM t1;
The following example extracts the second field out of sysdate from the dual system
table.

Command> SELECT EXTRACT (SECOND FROM sysdate) FROM dual;
< 20 >
1 row found.

Expressions 3-39

FLOOR

FLOOR

SQL syntax

Parameters

Description

Examples

The FLOOR function returns the largest integer equal to or less than Expression.

FLOOR (Expression)

FLOOR has the parameter:

Parameter Description

Expression Operand or column can be any numeric data type.

s If Expression is of type TT_DECIMAL or NUMBER, the data type returned is
NUMBER with maximum precision and scale. Otherwise, FLOOR returns the same
data type as the numeric data type of Expression.

m If the value of Expressionis NULL, NULL is returned. If the value of
Expressionis —-INF, INF, or NaN, the value returned is -INF, INF, or NaN
respectively.

Sum the commission_pct for employees in the employees table. Then call FLOOR
to return the largest integer equal to or less than the value returned by SUM. You see

the value returned by the SUM function is 7.8 and the value returned by the FLOOR
function is 7:

Command> SELECT SUM (commission_pct) FROM employees;

< 7.8 >

1 row found.

Command> SELECT FLOOR (SUM (commission_pct)) FROM employees;
<7 >

1 row found.

3-40 Oracle TimesTen In-Memory Database SQL Reference

GREATEST

GREATEST

SQL syntax

Parameters

Description

The GREATEST function returns the greatest of the list of one or more expressions.

GREATEST (Expression [,...])

GREATEST has the parameter:

Parameter Description
Expression List of one or more expressions that is evaluated to determine the greatest
[--] expression value. Operand or column can be numeric, character or date.

Each expression in the list must be from the same data type family.

» Each expression in the list must be from the same data type family or date
subfamily. Data type families include numeric, character and date. The date family
includes four subfamilies: date family, TIME family, TT_DATE family, and
TT_TIMESTAMP family. As an example, do not specify a numeric expression and a
character expression in the list of expressions. Similarly, do not specify a date
expression and a TT_TIMESTAMP expression in the list of expressions.

» If the first Expression is numeric, then TimesTen determines the argument with
the highest numeric precedence, implicitly converts the remaining arguments to
that data type before the comparison, and returns that data type.

n If the first Expression isin the character family, and the operand or column is
of type CHAR or VARCHAR?2, the data type returned is VARCHAR?2. If the operand or
column is of type NCHAR or NVARCHAR2, the data type returned is NVARCHAR2.
The returned data type length is equal to the length of the largest expression. If
one operand or column is of type CHAR or VARCHAR?2 and the second operand or
column is of type NCHAR or NVARCHAR2, the data type returned is NVARCHAR2.

= TimesTen uses nonpadded comparison semantics for data types from the
character family.

» If the first expression is in the date family, the data type returned is the same data
type as the first expression.

= If any of the expressions is NULL, the result is NULL.

n If the first Expression isin the character family, and the operand or column is
of type TT_CHAR or TT_VARCHAR, the data type returned is TT_VARCHAR. If the
operand or column is of type TT_NCHAR or TT_NVARCHAR, the data type returned
is TT_NVARCHAR. The returned data type length is equal to the largest of the
expressions.

= You can specify a maximum of 256 expressions.
Use the GREATEST function to return the string with the greatest value:

Command> SELECT GREATEST ('GREAT', 'GREATER', 'GREATEST') FROM dual;
< GREATEST >
1 row found.

Expressions 3-41

GREATEST

Use the GREATEST function to return the numeric expression with the greatest value.
In this example, BINARY_DOUBLE is the data type with the highest numeric
precedence, so arguments are implicitly converted to BINARY_DOUBLE before the
comparison and the data type BINARY_DOUBLE is returned:

Command> SELECT GREATEST (10, 10.55, 10.1D) FROM dual;
< 10.5500000000000 >
1 row found.

Use the DESCRIBE command to confirm the data type returned is BINARY_DOUBLE:

Command> DESCRIBE SELECT GREATEST (10, 10.55, 10.1D) FROM dual;

Prepared Statement:
Columns:
EXP BINARY_DOUBLE NOT NULL

Use the GREATEST function to return the DATE expression with the greatest value.
DATE and TIMESTAMP are in the same date family.

Command> SELECT GREATEST (DATE '2007-09-30',

> TIMESTAMP '2007-09-30:10:00:00') FROM dual;
< 2007-09-30 10:00:00 >
1 row found.

Attempt to use the GREATEST function to return the greatest value in the list of
TT_DATE and TT_TIMESTAMP expressions. You see an error because TT_DATE and
TT_TIMESTAMP are in different date subfamilies and cannot be used in the same list of
expressions.

Command> SELECT GREATEST (TT_DATE '2007-09-30', TT_TIMESTAMP

> '2007-09-30:10:00:00"') FROM dual;
2817: Invalid data type TT_TIMESTAMP for argument 2 for function GREATEST
The command failed.

Use the GREATEST function to return the TT_DATE expression with the greatest value.

Command> SELECT GREATEST (TT_DATE '2007-09-30',

> TT_DATE '2007-09-29', TT_DATE '2007-09-28') FROM dual;
< 2007-09-30 >
1 row found.

3-42 Oracle TimesTen In-Memory Database SQL Reference

LEAST

LEAST

SQL syntax

Parameters

Description

The LEAST function returns the smallest of the list of one or more expressions.

LEAST (Expression [,...])

LEAST has the parameter:

Parameter Description

Expression List of one or more expressions that is evaluated to determine the smallest

L]

expression value. Operand or column can be numeric, character, or date.
Each expression in the list must be from the same data type family.

Each expression in the list must be from the same data type family or date
subfamily. Data type families include numeric, character and date. The date family
includes four subfamilies: date family, TIME family, TT_DATE family, and
TT_TIMESTAMP family. As an example, do not specify a numeric expression and a
character expression in the list of expressions. Similarly, do not specify a date
expression and a TT_TIMESTAMP expression in the list of expressions.

If the first Expression is numeric, then TimesTen determines the argument with
the highest numeric precedence, implicitly converts the remaining arguments to
that data type before the comparison, and returns that data type.

If the first Expression isin the character family, and the operand or column is
of type CHAR or VARCHAR?2, the data type returned is VARCHAR?2. If the operand or
column is of type NCHAR or NVARCHAR2, the data type returned is NVARCHAR2.
The returned data type length is equal to the length of the largest expression. If
one operand or column is of type CHAR or VARCHAR?2 and the second operand or
column is of type NCHAR or NVARCHAR2, the data type returned is NVARCHAR2.

TimesTen uses nonpadded comparison semantics for data types from the
character family.

If the first expression is in the date family, the data type returned is the same data
type as the first expression.

If any of the expressions is NULL, the result is NULL.

If the first Expression isin the character family, and the operand or column is
of type TT_CHAR or TT_VARCHAR, the data type returned is TT_VARCHAR. If the
operand or column is of type TT_NCHAR or TT_NVARCHAR, the data type returned
is TT_NVARCHAR. The returned data type length is equal to the largest of the
expressions.

You can specify a maximum of 256 expressions.

Use the LEAST function to return the string with the smallest value:

Command> SELECT LEAST ('SMALL', 'SMALLER', 'SMALLEST') FROM dual;
< SMALL >
1 row found.

Expressions 3-43

LEAST

Use the LEAST function to return the numeric expression with the smallest value. In
this example, NUMBER is the data type with the highest numeric precedence, so
arguments are implicitly converted to NUMBER before the comparison and the data
type NUMBER is returned. First describe the table 1eastex to see the data types
defined for columns coll and col2. Then SELECT * from leastex to see the data.
Then invoke the LEAST function.

Command> DESCRIBE leastex;

Table SAMPLEUSER.LEASTEX:

Columns:
CoLl NUMBER (2,1)
COL2 TT_BIGINT

1 table found.

(primary key columns are indicated with *)
Command> SELECT * FROM leastex;

< 1.1, 1>

1 row found.

Command> SELECT LEAST (Col2,Coll) from leastex;
<1>

1 row found.

Use the DESCRIBE command to confirm that the data type returned is NUMBER:

Command> DESCRIBE SELECT LEAST (Col2,Coll) FROM leastex;

Prepared Statement:
Columns:
EXP NUMBER

Use the LEAST function to return the DATE expression with the smallest value. DATE
and TIMESTAMP are in the same date family.

Command> SELECT LEAST (DATE '2007-09-17"',

> TIMESTAMP '2007-09-17:10:00:00') FROM dual;
< 2007-09-17 00:00:00 >
1 row found.

Attempt to use the LEAST function to return the smallest value in the list of TT_DATE
and TT_TIMESTAMP expressions. You see an error because TT_DATE and
TT_TIMESTAMP are in different date subfamilies and cannot be used in the same list of
expressions.

Command> SELECT LEAST (TT_DATE '2007-09-17"',

> TT_TIMESTAMP '2007-09-17:01:00:00') FROM dual;
2817: Invalid data type TT_TIMESTAMP for argument 2 for function LEAST
The command failed.

Use the LEAST function to return the TIME expression with the smallest value.

Command> SELECT LEAST (TIME '13:59:59', TIME '13:59:58',
> TIME '14:00:00') FROM dual;

< 13:59:58 >

1 row found.

3-44 Oracle TimesTen In-Memory Database SQL Reference

LOWER and UPPER

LOWER and UPPER

SQL syntax

Parameters

Description

The LOWER function converts expressions of type CHAR, NCHAR, VARCHAR2 or
NVARCHAR2 to lowercase. The UPPER function converts expressions of type CHAR,
NCHAR, VARCHAR2 or NVARCHAR?2 to uppercase. Character semantics is supported for
CHAR and VARCHAR?2 types. The data type of the result is the same as the data type of
the expression.

{UPPER | LOWER} (Expressionl)

LOWER and UPPER have the following parameter:

Parameter Description

Expressionl An expression which is converted to lowercase (using LOWER) or uppercase
(using UPPER).

LOWER (?) and UPPER (?) are not supported, but you can combine it with the CAST
operator. For example:

LOWER (CAST (? AS CHAR(30)))
Command> SELECT LOWER (last_name) FROM employees WHERE employee_id = 100;

< king >
1 row found.

Expressions 3-45

LPAD

LPAD

SQL syntax

Parameters

Description

Examples

The LPAD function returns Expressionli, left-padded to length n characters with the
sequence of characters in Expression2. This function is useful for formatting the
output of a query.

LPAD (Expressionl, n [,Expression2])

LPAD has the parameters:

Parameter Description

Expressionl CHAR, VARCHAR2, NCHAR or NVARCHAR2 operand or column to be
left-padded. If Expressionl is longer than n, then LPAD returns the
portion of Expressionl that fits in n.

n Length of characters returned by LPAD function. Must be a NUMBER
integer or a value that can be implicitly converted to a NUMBER integer.

Expression2 Sequence of characters left-padded to Expressionl.If you do not
specify Expression2, then the default is a single blank. Operand or
column can be of type CHAR, VARCHAR2, NCHAR, or NVARCHAR?2.

» If Expressionlis of type CHAR or VARCHAR?2, the data type returned is
VARCHAR2. If Expressionl is of type NCHAR or NVARCHAR2, the data type
returned is NVARCHAR2.

s The returned data type length is equal to n if n is a constant. Otherwise, the
maximum result length of 8300 is returned.

» You can specify TT_CHAR, TT_VARCHAR, TT_NCHAR, and TT_NVARCHAR for
Expressionl and Expression2.If Expressionl is of type TT_CHAR or
TT_VARCHAR, the data type returned is TT_VARCHAR. If Expressionl is of type
TT_NCHAR or TT_NVARCHAR, the data type returned is TT_NVARCHAR.

» For CHAR, VARCHAR2, NCHAR, and NVARCHAR2 types:

— If either Expressionl or ExpressionZ is NULL, the result is NULL. If nis
less than or equal to 0, then the result is NULL.

s For TT_CHAR, TT_VARCHAR, TT_NCHAR and TT_NVARCHAR types:

— Ifeither Expressionl or Expression2 is not NULL and if n is less than or
equal to 0, then the result is the empty string.

Use LPAD function to left-pad the string ' LPAD Function' with string
'DEMO-ONLY ' plus 2 spaces. Replicate string DEMO-ONLY plus 2 spaces 3 times.

Command> SELECT LPAD ('LPAD Function', 46, 'DEMO-ONLY ') FROM dual;
< DEMO-ONLY DEMO-ONLY DEMO-ONLY LPAD Function >
1 row found.

Call LPAD function with length of -1. You see NULL is returned.

3-46 Oracle TimesTen In-Memory Database SQL Reference

LPAD

Command> SELECT LPAD ('abc', -1, 'a') FROM dual;
< <NULL> >
1 row found.

Expressions 3-47

LTRIM

LTRIM

SQL syntax

Parameters

Description

The LTRIM function removes from the left end of Expressionl all of the characters
contained in Expression2. TimesTen begins scanning Expressionl from its first
character and removes all characters that appear in Expression2 until reaching a
character not in Expression2 and returns the result.

LTRIM (Expressionl [,Expression2])

LTRIM has the parameters:

Parameter Description

Expressionl The CHAR, VARCHAR2, NCHAR or NVARCHAR?2 operand or column to be

trimmed. If Expressionl is a character literal, then enclose it in single
quotes.

Expression2 Optional expression used for trimming Expressionl.If Expression2isa

character literal, then enclose it in single quotes. If you do not specify
Expression2, it defaults to a single blank. Operand or column can be of
type CHAR,VARCHAR2, NCHAR, or NVARCHAR2.

If Expressionl is of type CHAR or VARCHAR2, the data type returned is
VARCHAR2. If Expressionl is of type NCHAR or NVARCHAR?2, the data type
returned is NVARCHAR2. The returned data type length is equal to the data type
length of Expressionli.

If Expressionl is a data type defined with CHAR length semantics, the returned
length is expressed in CHAR length semantics.

If either Expressionl or ExpressionZis NULL, the result is NULL.

You can specify TT_CHAR, TT_VARCHAR, TT_NCHAR, and TT_NVARCHAR for
Expressionl and Expression2.lf Expressionl is of type TT_CHAR or
TT_VARCHAR, the data type returned is TT_VARCHAR. If Expressionl is of type
TT_NCHAR or TT_NVARCHAR, the data type returned is TT_NVARCHAR.

If Expressionl is of type CHAR or VARCHAR?2 and Expression2 is of type
NCHAR or NVARCHAR?2, then Expression2 is demoted to CHAR or VARCHAR2
before LTRIM is invoked. The conversion of Expression2 could be lost. If the
trim character of Expression2 is not in the database character set, then the query
may produce unexpected results.

For CHAR, VARCHAR2, NCHAR, and NVARCHAR?2 types:

— If all the characters in Expressionl are removed by the LTRIM function,
then the result is NULL.

For TT_CHAR, TT_VARCHAR, TT_NCHAR and TT_NVARCHAR types:

— If all the characters in Expressionl are removed by the LTRIM function,
then the result is the empty string.

3-48 Oracle TimesTen In-Memory Database SQL Reference

LTRIM

Examples

Call the LTRIM function to remove left-most 'x' and 'y' from string. LTRIM removes
individual occurrences of 'x' and 'y', not pattern 'xy"'.

Command> SELECT LTRIM ('xxxyyyxyxXyLTRIM Example', 'xy') FROM dual;
< LTRIM Example >
1 row found.

Call the LTRIM function to remove YYYY-MM-DD from SYSDATE. Call TO_CHAR to
convert SYSDATE to VARCHAR2.

Command> SELECT LTRIM (TO_CHAR(SYSDATE), '2007-08-21') FROM dual;
< 22:54:39 >
1 row found.

Call LTRIM to remove all characters from Expressionl. In the first example, the data
type is CHAR, so NULL is returned. In the second example, the data type is TT_CHAR, so
the empty string is returned.

Command> CREATE TABLE ltrimtest (coll CHAR (4), col2 TT CHAR (4));
Command> INSERT INTO ltrimtest VALUES ('ABBB', 'ABBB');

1 row inserted.

Command> SELECT LTRIM (coll, 'AB') FROM ltrimtest;

< <NULL> >

1 row found.

Command> SELECT LTRIM (col2, 'AB') FROM ltrimtest;

< >

1 row found.

Expressions 3-49

MOD

MOD

SQL syntax

Parameters

Description

Returns the remainder of an INTEGER expression divided by a second INTEGER
expression.

MOD (Expressionl, Expression2)

MOD has the following parameters:

Parameter Description

Expressionl An INTEGER expression.

Expression2 An INTEGER expression.

= MOD returns the remainder of Expressionl divided by Expression2.
s If ExpressionZ2is 0, then MOD returns Expressionl.
m If either Expressionl or ExpressionZ2 is NULL, MOD returns NULL.

= MODis treated as a binary arithmetic operation, so the return type is determined
according to the rules specified in Chapter 1, "Data Types".

s The MOD function behaves differently from the classic mathematical modulus
function when one of the operands is negative. The following table illustrates this

difference:
M N Classic Modulus MOD(M,N)
11 3 2 2
11 -3 -1 2
-11 3 1 -2
-11 -3 -2 -2

The following example tests whether the value of the expression mis divisible by the
value of expression n.

SELECT m, n FROM test WHERE MOD(m, n) = 0;

3-50 Oracle TimesTen In-Memory Database SQL Reference

NCHR

NCHR

SQL syntax

Parameters

Example

The NCHR function returns the character having the specified Unicode value.

NCHR (n)

NCHR has the parameter:

Parameter Description

n The specified Unicode value. The character having this Unicode value is
returned. The result is of type NVARCHAR2

The following example returns the NCHAR character 187:

Command> SELECT NCHR(187) FROM dual;
<> >
1 row found.

The following example returns the NCHAR character 187:

Command> SELECT NCHR(187) FROM dual;
< > >

1 row found.

Expressions 3-51

NLSSORT

NLSSORT

SQL syntax

Parameters

Description

Examples

Returns the sort key value for the given string.

NLSSORT (String [, 'NLS_SORT = SortName'])

NLSSORT has the following parameters:

Parameter Description

String Supported data types for String are CHAR, VARCHAR2, NCHAR and
NVARCHAR2. Given the String, NLSSORT returns the sort key value used to
sort the String.

['NLS_SORT = SortName is either the linguistic sort sequence or BINARY. If you omit this

SortName'] parameter, then the default sort sequence for the session is used. Append to
the SortName the suffix -ai for accent-insensitive sorting or -c1i for
case-insensitive sorting. For more information on acceptable linguistic
SortName values, see "Supported linguistic sorts" in Oracle TimesTen
In-Memory Database Reference.

= The returned sort key value is of type VARBINARY.

= You can create a linguistic index for linguistic comparisons.

The following example illustrates sorting and comparison operations based on a
linguistic sort sequence rather than on the binary value of the string. In addition, the
example shows the same results can be obtained by using the ALTER SESSION. ..
SET NLS_SORT statement.

Command> CREATE TABLE nsortdemo (name VARCHAR2 (15));
Command> INSERT INTO nsortdemo VALUES ('Gaardiner');
1 row inserted.

Command> INSERT INTO nsortdemo VALUES ('Gaberd');

1 row inserted.

Command> INSERT INTO nsortdemo VALUES ('Gaasten');

1 row inserted.

Command> # Perform Sort

Command> SELECT * FROM nsortdemo ORDER BY name;

< Gaardiner >

< Gaasten >

< Gaberd >

3 rows found.

Command> #Use function to perform sort

Command> SELECT * FROM nsortdemo ORDER BY NLSSORT (name, 'NLS_SORT = XDanish');
< Gaberd >

< Gaardiner >

< Gaasten >

3 rows found.

Command># comparison operation

Command> SELECT * FROM nsortdemo where Nnme > 'Gaberd';
0 rows found.

3-52 Oracle TimesTen In-Memory Database SQL Reference

NLSSORT

Command> #Use function in comparison operation
Command> SELECT * FROM nsortdemo WHERE NLSSORT (name, 'NLS_SORT = XDanish') >
> NLSSORT ('Gaberd', 'NLS_SORT = XDanish');

< Gaardiner >

< Gaasten >

2 rows found.

Command> #Use ALTER SESSION to obtain the same results
Command> ALTER SESSION SET NLS_SORT = 'XDanish';
Command> SELECT * FROM nsortdemo ORDER BY name;

< Gaberd >

< Gaardiner >

< Gaasten >

3 rows found.

Command> SELECT * FROM nsortdemo where name > 'Gaberd';
< Gaardiner >

< Gaasten >

2 rows found.

The following example creates a linguistic index:

Command> CREATE INDEX danishindex
> ON nsortdemo (NLSSORT (name, 'NLS_SORT =XDanish'));

Command> INDEXES N%;
Indexes on table USER1.NSORTDEMO:

DANISHINDEX: non-unique T-tree index on columns:

NLSSORT (NAME, 'NLS_SORT = XDanish')

1 index found.

1 table found.

Expressions 3-53

NUMTODSINTERVAL

NUMTODSINTERVAL

Converts a number or expression to an INTERVAL DAY TO SECOND type.

SQL syntax

NUMTODSINTERVAL (Expressionl, IntervalUnit)
Parameters

NUMTODSINTERVAL has the parameters:

Parameter Description

Expressionl The argument can be any NUMBER value or an expression that can be

implicitly converted to a NUMBER value.

IntervalUnit One of the string constants: 'DAY', 'HOUR', 'MINUTE', or 'SECOND'.

Examples

Example using NUMTODSINTERVAL with SYSDATE:

Command> SELECT SYSDATE + NUMTODSINTERVAL (20, 'SECOND') FROM dual;
< 2007-01-28 09:11:06 >

3-54 Oracle TimesTen In-Memory Database SQL Reference

NUMTOYMINTERVAL

NUMTOYMINTERVAL

Converts a number or expression to an INTERVAL YEAR TO MONTH type.

SQL syntax
NUMTOYMINTERVAL (Expressionl, 'IntervalUnit')
Parameters
NUMTOYMINTERVAL has the parameters:
Parameter Description
Expressionl The argument can be any NUMBER value or an expression that can be
implicitly converted to a NUMBER value.
IntervalUnit One of the string constants ' YEAR' or 'MONTH'.
Examples

An example using NUMTOYMINTERVAL:

Command> SELECT SYSDATE + NUMTOYMINTERVAL (1, 'MONTH') FROM dual;
< 2007-02-28 09:23:28 >
1 row found.

Expressions 3-55

NVL

NVL

SQL syntax

Parameters

Description

Examples

The NVL function replaces a null value with a second value.

NVL (Expressionl, Expression2)

NVL has the parameters:

Parameter Description

Expressionl The expression whose values are to be tested for NULL.

Expression2 The alternate value to use if the value of Expressionl is NULL.

s The data types of Expressionl and Expression2 must be compatible.

s If Expressionl is NULL, the NVL function returns Expression2. If
Expressionl is NOT NULL, the NVL function returns Expressionl.

s The NVL function can be used in the WHERE or HAVING clause of SELECT, UPDATE,
or DELETE statements and in the SELECT list of a SELECT statement.

This example checks for null values of commission_pct and replaces them with
'Not Applicable' for employees whose last name start with B.

Command> SELECT last_name, NVL(TO_CHAR (commission_pct), 'Not Applicable')
> FROM employees
> WHERE last_name LIKE 'B%'
> ORDER BY last_name;

Baer, Not Applicable >

Baida, Not Applicable >

Banda, .1 >

Bates, .15 >

Bell, Not Applicable >

Bernstein, .25 >

Bissot, Not Applicable >

Bloom, .2 >

Bull, Not Applicable >

rows found.

o A A AN AN AN AN AN ANA

3-56 Oracle TimesTen In-Memory Database SQL Reference

POWER

POWER

SQL syntax

Parameters

Description

Example

The POWER function returns Base raised to the Exponent power. The base and
exponent can be any numbers, but if the base is negative, the exponent must be
an integer.

POWER (Base, Exponent)

POWER has the parameters:

Parameter Description

Base Operand or column can be any numeric type. POWER returns this value
raised to Exponent power.

Exponent Operand or column can be any numeric type. If base is negative, exponent
must be an integer.

If either Base or Exponent is of type BINARY_FLOAT or BINARY_DOUBLE, the data
type returned is BINARY_DOUBLE. If the Base is of type NUMBER or TT_DECIMAL, and
the Exponent is not of type BINARY_FLOAT or BINARY_DOUBLE, the date type
returned is NUMBER with maximum precision and scale. If Base is one of the TT*
numeric types (TT_BIGINT, TT_INTEGER, TT_SMALLINT, or TT_TINYINT), the data
type returned is BINARY_DOUBLE.

Use the POWER function to return the commission_pct squared for the employee
with employee_id equal to 145.

Command> SELECT employee_id, commission_pct FROM employees WHERE employee_id = 145;
< 145, .4 >
1 row found.

Command> SELECT POWER (commission_pct,2) FROM employees WHERE employee_id = 145;

< .16 >
1 row found.

Expressions 3-57

ROUND (date)

ROUND (date)

SQL syntax

Parameters

Description

Examples

Returns date rounded to the unit specified by the format model fmt. The value
returned is of type DATE. If you do not specify fmt, then date is rounded to the
nearest day.

ROUND (date [, fmt])

ROUND (date) has the parameters:

Parameter Description

date The date that is rounded. Must resolve to a date value.

If you do not specify fmt, then date is rounded to the nearest day.

[, fmt] The format model rounding unit. Specify either a constant or a parameter for
fmt.

s Date can be of type DATE or TIMESTAMP. The data type returned is DATE.
s Data types TT_DATE and TT_TIMESTAMP are not supported.

n For the supported format models to use in fmt, see "Format model for ROUND
and TRUNC date functions" on page 3-23.

Round date to the first day of the following year by specifying ' YEAR' as the format
model:

Command> SELECT ROUND (DATE '2007-08-25','YEAR') FROM dual;
< 2008-01-01 00:00:00 >
1 row found.

Omit fmt. Specify date as type TIMESTAMP with a time of 13:00:00. dateis
rounded to nearest day:

Command> SELECT ROUND (TIMESTAMP '2007-08-16 13:00:00') FROM dual;
< 2007-08-17 00:00:00 >
1 row found.

3-58 Oracle TimesTen In-Memory Database SQL Reference

ROUND (expression)

ROUND (expression)

SQL syntax

Parameters

Description

Examples

The ROUND function returns Expressionl rounded to Expression2 places to the
right of the decimal point.

ROUND (Expressionl [,Expression2])

ROUND has the parameters:

Parameter Description

Expressionl Operand or column can be any numeric type.

Expression2 Operand or column that indicates how many places to round. Can be
negative to round off digits left of the decimal point. If you omit
Expression2, then Expressionl is rounded to 0 places. Must be an
integer.

» If you omit Expression2, and Expressionlis of type TT_DECIMAL, the data
type returned is NUMBER with maximum precision and scale. Otherwise, if you
omit Expression2, the data type returned is the same as the numeric data type
of Expressionl.

= If you specify Expression2, the data type returned is NUMBER with maximum
precision and scale.

» If Expressionlis of type BINARY_FLOAT or BINARY_DOUBLE, the value of
Expressionl is rounded to the nearest even value. Otherwise, the value of
Expressionlis rounded away from O (for example, to x+1 when x. 5 is positive
and to x-1 when x.5 is negative).

Round a number 2 places to the right of the decimal point.

Command> SELECT ROUND (15.5555,2) FROM dual;
< 15.56 >
1 row found.

Round a number to the left of the decimal point by specifying a negative number for
Expression?2.

Command> SELECT ROUND (15.5555,-1) FROM dual;
< 20 >
1 row found.

Round a floating point number. Floating point numbers are rounded to nearest even
value. Contrast this to rounding an expression of type NUMBER where the value is
rounded up (for positive values).

Command> SELECT ROUND (1.5f), ROUND (2.5f) FROM dual;
< 2.00000000000000, 2.00000000000000 >

1 row found.

Command> SELECT ROUND (1.5), ROUND (2.5) FROM dual;

Expressions 3-59

ROUND (expression)

<2, 3>
1 row found.

3-60 Oracle TimesTen In-Memory Database SQL Reference

RPAD

RPAD

SQL syntax

Parameters

Description

Examples

The RPAD function returns Expressionli, right-padded to length n characters with
Expression2, replicated as many times as necessary. This function is useful for
formatting the output of a query.

RPAD (Expressionl, n [,Expression2])

RPAD has the parameters:

Parameter Description

Expressionl CHAR, VARCHAR2, NCHAR or NVARCHAR?2 operand or column to be
right-padded. If Expressionl is longer than n, then RPAD returns the
portion of Expressionl that fits in n.

n Length of characters returned by RPAD function. Must be a NUMBER integer
or a value that can be implicitly converted to a NUMBER integer.

Expression2 CHAR, VARCHAR2, NCHAR or NVARCHAR2 operand or column to be
right-padded to Expressioni. If you do not specify Expression2, then
the default is a single blank.

» If Expressionlis of type CHAR or VARCHAR?2, the data type returned is
VARCHAR2. If Expressionl is of type NCHAR or NVARCHAR2, the data type
returned is NVARCHAR2.

s The returned data type length is equal to n if n is a constant. Otherwise, the
maximum result length of 8300 is returned.

» You can specify TT_CHAR, TT_VARCHAR, TT_NCHAR, and TT_NVARCHAR for
Expressionl and Expression2.If Expressionl is of type TT_CHAR or
TT_VARCHAR, the data type returned is TT_VARCHAR. If Expressionl is of type
TT_NCHAR or TT_NVARCHAR, the data type returned is TT_NVARCHAR.

» For CHAR, VARCHAR2, NCHAR, and NVARCHAR2 types:

— If either Expressionl or ExpressionZ is NULL, the result is NULL. If nis
less than or equal to 0, then the result is NULL.

s For TT_CHAR, TT_VARCHAR, TT_NCHAR and TT_NVARCHAR types:

— Ifeither Expressionl or Expression2 is not NULL and if n is less than or
equal to 0, then the result is the empty string.

Concatenate first_name and last_name from the employees table. Call the RPAD
function to return first_name right-padded to length 12 with spaces and call RPAD a
second time to return last_name right-padded to length 12 with spaces. Select first 5
rOws.

Command> SELECT FIRST 5 CONCAT (RPAD (first_name,12),
> RPAD (last_name,12)) FROM employees
> ORDER BY first_name, last_name;

Expressions 3-61

RPAD

Adam Fripp
Alana Walsh
Alberto Errazuriz

Alexander Hunold
Alexander Khoo
rows found.

U A A A AN A
vV V. V V VvV

Call the RPAD function to return last_name right-padded to length 20 characters
with the dot ('.") character. Use the employees table and select first 5 rows.

Command> SELECT FIRST 5 RPAD (last_name,20,'.') FROM employees
> ORDER BY last_name;

<Abel................ >

<Ande...........c..... >

< Atkinson............ >

< AuStin.............. >

< Baer........iiiiian. >

5 rows found.

3-62 Oracle TimesTen In-Memory Database SQL Reference

RTRIM

RTRIM

The RTRIM function removes from the right end of Expression1i all of the characters
contained in Expression2. TimesTen scans Expressionl backwards from its last
character and removes all characters that appear in Expression2 until reaching a
character not in Expression2 and then returns the result.

SQL syntax
RTRIM (Expressionl [,Expression2])
Parameters
RTRIM has the parameters:
Parameter Description
Expressionl The CHAR, VARCHAR2, NCHAR or NVARCHAR?2 operand or column to be
trimmed. If Expressionl is a character literal, then enclose it in quotes.
Expression2 Optional expression used for trimming Expressionl.If ExpressionZ2isa
character literal, then enclose it in single quotes. If you do not specify
Expression2, it defaults to a single blank. Operand or column can be of
type CHAR,VARCHAR2, NCHAR, or NVARCHAR2.
Description

s If Expressionlis of type CHAR or VARCHAR?2, the data type returned is
VARCHAR2. If Expressionl is of type NCHAR or NVARCHAR?2, the data type
returned is NVARCHAR2. The returned data type length is equal to the data type
length of Expressionli.

s If Expressionlisa data type defined with CHAR length semantics, the returned
length is expressed in CHAR length semantics.

s If either Expressionl or Expression2 is NULL, the result is NULL.

= You can specify TT_CHAR, TT_VARCHAR, TT_NCHAR, and TT_NVARCHAR for
Expressionl and Expression2.lf Expressionl is of type TT_CHAR or
TT_VARCHAR, the data type returned is TT_VARCHAR. If Expressionl is of type
TT_NCHAR or TT_NVARCHAR, the data type returned is TT_NVARCHAR.

s If Expressionlis of type CHAR or VARCHAR2 and Expression2 is of type
NCHAR or NVARCHAR?2, then ExpressionZ2 is demoted to CHAR or VARCHAR2
before RTRIM is invoked. The conversion of Expression2 could be lost. If the
trim character of Expression2 is not in the database character set, then the query
may produce unexpected results.

» For CHAR, VARCHAR?2, NCHAR, and NVARCHAR? types:

— If all the characters in Expressionl are removed by the RTRIM function,
then the result is NULL.

s For TT_CHAR, TT_VARCHAR, TT_NCHAR and TT_NVARCHAR types:

— If all the characters in Expressionl are removed by the RTRIM function,
then the result is the empty string.

Expressions 3-63

RTRIM

Examples
The following example trims the trailing spaces from coll in table rtrimtest.

Command> CREATE TABLE rtrimtest (coll VARCHAR2 (25));
Command> INSERT INTO rtrimtest VALUES ('abc ")

1 row inserted.

Command> SELECT * FROM rtrimtest;

< abc >

1 row found.

Command> SELECT RTRIM (coll) FROM rtrimtest;

< abc >

1 row found.

Call the RTRIM function to remove right-most 'x' and 'y' from string. RTRIM
removes individual occurrences of 'x' and 'y ', not pattern 'xy'.

Command> SELECT RTRIM ('RTRIM Examplexxxyyyxyxy', 'xy') FROM dual;
< RTRIM Example >
1 row found.

Call RTRIM to remove all characters from Expressionl. In the first example, the data
type is CHAR, so NULL is returned. In the second example, the data type is TT_CHAR, so
the empty string is returned.

Command> CREATE TABLE rtrimtest (coll CHAR (4), col2 TT CHAR (4));
Command> INSERT INTO rtrimtest VALUES ('BBBA', 'BBBA');

1 row inserted.

Command> SELECT RTRIM (coll, 'AB') FROM rtrimtest;

< <NULL> >

1 row found.

Command> SELECT RTRIM (col2, 'AB') FROM rtrimtest;

< >

1 row found.

3-64 Oracle TimesTen In-Memory Database SQL Reference

SIGN

SIGN

The SIGN function returns the sign of Expression.

SQL syntax
SIGN (Expression)
Parameters
SIGN has the parameter:
Parameter Description
Expression Operand or column can be any numeric data type.
Description
» If Expressionis of type NUMBER or TT_DECIMAL, the data type returned is
NUMBER with maximum precision and scale. Otherwise, the data type returned is
TT_INTEGER.
- For numeric types that are not binary floating-point numbers, the sign is:
— -1if the value of Expression is <0
— 0if the value of Expression is= 0
— 1if the value of Expression is> 0
= For binary floating-point numbers (BINARY_FLOAT and BINARY_DOUBLE), this
function returns the sign bit of the number. The sign bit is:
— -1if the value of Expression is <0
- +1 if the value of Expression is >= 0 or the value of Expression isequal
to NaN.
Examples

These examples illustrate use of the SIGN function with different data types. Table
signex has been created and the columns have been defined with different data
types. First, describe the table signex to see the data types of the columns. Then select
each column to retrieve values for that column. Use the SIGN function to return the
sign for the column.

Command> DESCRIBE signex;

Table SAMPLEUSER.SIGNEX:

Columns:
COL1 TT_INTEGER
COL2 TT_BIGINT
COL3 BINARY_FLOAT
COL4 NUMBER (3,2)

1 table found.

(primary key columns are indicated with *)
Command> SELECT coll FROM signex;

< 10 >

< =10 >

Expressions 3-65

SIGN

<0 >

3 rows found.

Command> SELECT SIGN (coll) FROM signex;
<1>

< -1 >

<0 >

3 rows found.

Command> SELECT col2 FROM signex;

<0 >

< -3 >

<0 >

3 rows found.

Command> SELECT SIGN (col2) from signex;
<0 >

< -1 >

<0 >

3 rows found.

Command> SELECT col3 FROM signex;

< 3.500000 >

< -3.560000 >

< NAN >

3 rows found.

Command> SELECT SIGN (col3) from signex;
<1 >

< -1 >

<1>

3 rows found.

Command> SELECT col4 FROM signex;

< 2.2 >

< -2.2 >

<0 >

3 rows found.

Command> SELECT SIGN (cold4) from signex;
< 1>

< -1 >

<0 >

3 rows found.

3-66 Oracle TimesTen In-Memory Database SQL Reference

SQRT

SQRT

SQL syntax

Parameters

Description

Examples

The SQRT function returns the square root of Expression.

SORT (Expression)

SQRT has the parameter:

Parameter Description

Expression Operand or column can be any numeric data type.

s If Expressionis of type NUMBER or TT_DECIMAL, the data type returned is
NUMBER with maximum precision and scale. If Expressionis of type
BINARY_FLOAT, the data type returned is BINARY_FLOAT. Otherwise, the data
type returned is BINARY_DOUBLE.

s If Expressionis of type NUMBER or TT_DECIMAL, the value of Expression
cannot be negative.

s If Expression resolves to a binary floating-point number (BINARY_FLOAT or
BINARY_DOUBLE):

— Ifthe value of the Expression is> = 0, the resultis positive.
— If the value of the Expression is= -0, the resultis -0.

— If the value of the Expression is < 0,the resultis NaN.

Use SQORT function to return the square root of the absolute value of -10. Then cast the
value as BINARY_FLOAT.

Command> SELECT CAST (SQRT (ABS (-10)) AS BINARY_FLOAT) FROM dual;
< 3.162278 >
1 row found.

Expressions 3-67

String functions

String functions

TimesTen supports these string functions in SELECT statements:
m SUBSTR, SUBSTRB, SUBSTR4

u INSTR, INSTRB, INSTR4

s LENGTH, LENGTHB, LENGTH4

A selected value that specifies a string function causes the SELECT result to be
materialized. This causes overhead in both time and space.

3-68 Oracle TimesTen In-Memory Database SQL Reference

String functions

SUBSTR, SUBSTRB, SUBSTR4

SQL syntax

Parameters

Description

Examples

Returns a CHAR, VARCHAR2 or NVARCHAR?2 that represents a substring of a CHAR or
NCHAR string. The returned substring is of a specified number of characters, beginning
from a designated starting point, relative to either the beginning or end of the string.

{SUBSTR | SUBSTRB | SUBSTR4}=(char, m, n)

SUBSTR has the parameters:

Parameter

Description

char

The string for which this function returns a substring. If charis a CHAR
string, the result is a CHAR or VARCHAR? string. If char is a NCHAR string,
the result is a NVARCHAR?2 string.

The position at which to begin the substring. If mis positive, the first
character of the returned string is m characters from the beginning of the
string specified in char. Otherwise it is m characters from the end of the
string. If ABS(m) is bigger than the length of the character string, a NULL
value is returned.

The number of characters to be included in the substring. If n is omitted, all
characters to the end of the string specified in char are returned. If n is less
than 1 or if char, mor n is NULL, NULL is returned.

SUBSTR calculates lengths using characters as defined by character set. SUBSTRB uses
bytes instead of characters. SUBSTR4 uses UCS4 code points.

In the first 5 rows of employees, select the first three characters of last_name:

SELECT FIRST 5 SUBSTR(last_name,1,3) FROM employees;

u A A A A A

Kin
Koc
De

Hun
Ern

rows found.

V V. V V V

In the first 5 rows of employees, select the last five characters of last_name:

SELECT FIRST 5 SUBSTR(last_name,-5,5) FROM employees;

U A A A A A

<NULL> >
chhar >
Haan >
unold >
Ernst >
rows found.

Expressions 3-69

INSTR, INSTRB, INSTR4

INSTR, INSTRB, INSTR4

SQL syntax

Parameters

Description

Examples

Determines the first position, if any, at which one string occurs within another. If the
substring does not occur in the string, then 0 is returned. The position returned is
always relative to the beginning of CharExpr2. INSTR returns type NUMBER.

If you are using TimesTen type mode, for information on the INSTR function, see the
Oracle TimesTen In-Memory Database Release 6.0.3 documentation.

{INSTR | INSTRB | INSTR4} (CharExpr2, CharExpl [,m[,n]])

INSTR has the parameters:

Parameter Description

CharExprl The substring to be found in string CharExpr2. If CharExprl does not
occur in CharExpr2, then zero is returned. If either string is of length zero,
NULL is returned.

CharExpr2 The string to be searched to find the position of CharExpri.

m The optional position at which to begin the search. If mis specified as zero,
the result is zero. If mis positive, the search begins at the CharExpr2+m. If m
is negative, the search begins m characters from the end of CharExpr2.

n If nis specified it must be a positive value and the search returns the
position of the nth occurrence of CharExpril

INSTR calculates strings using characters as defined by character set. INSTRB uses
bytes instead of characters. INSTR4 uses UCS4 code points.

The following example uses INSTR to determine the position at which the substring
'ing' occurs in the string 'Washington':

Command> SELECT INSTR ('Washington', 'ing') FROM dual;
< 5>
1 row found.

3-70 Oracle TimesTen In-Memory Database SQL Reference

String functions

LENGTH, LENGTHB, LENGTH4

SQL syntax

Parameters

Description

Examples

Returns the length of a given character string in an expression. LENGTH returns type
NUMBER.

If you are using TimesTen type mode, for information on the LENGTH function, see the
Oracle TimesTen In-Memory Database Release 6.0.3 documentation.

{LENGTH | LENGTHB | LENGTH4} (CharExpr)

LENGTH has the parameter:

Parameter Description

CharExpr The string for which to return the length.

The LENGTH functions return the length of CharExpr. LENGTH calculates the length
using characters as defined by the character set. LENGTHB uses bytes rather than
characters. LENGTH4 uses UCS4 code points.

Determine the length of the string 'William':

Command> SELECT LENGTH('William') FROM dual;
<7 >
1 row found.

Expressions 3-71

SYS_CONTEXT

SYS_CONTEXT

Returns information about the current session.

The data type of the return value is VARCHAR2.

SQL syntax

SYS_CONTEXT (' namespace',

Parameters

'parameter' [, length])

SYS_CONTEXT has the parameters:

Parameter Description

namespace Value: USERENV

Other values result in a return of NULL.

parameter Supported values:

L] AUTHENTICATION_METHOD

L] CURRENT_USER

L] CURRENT_USERID

L] IDENTIFICATION_TYPE

u LANG

L] LANGUAGE

L] NLS_SORT

L] SESSION_USER

L] SESSION_USERID

L] SID

length Number between 1 and 4000 bytes.

These are descriptions of the supported values for parameter:

Parameter

Description

AUTHENTICATION_METHOD

Returns the method of authentication for these types of users:
= Local database user authenticated by password

= External user authenticated by the operating system

CURRENT_USER

The name of the database user whose privileges are currently
active. This may change during the duration of a session to
reflect the owner of any active definer's rights object. When no
definer's rights object is active, CURRENT_USER returns the same
value as SESSION_USER. When used directly in the body of a
view definition, this returns the user that is executing the cursor
that is using the view. It does not respect views used in the
cursor as being definer's rights.

CURRENT_USERID

The identifier of the database user whose privileges are
currently active

3-72 Oracle TimesTen In-Memory Database SQL Reference

SYS_CONTEXT

Description

Examples

Parameter Description

IDENTIFICATION_TYPE Returns the way the user was created in the database.
Specifically, it reflects the IDENTIFIED clause in the
CREATE/ALTER USER syntax. In the list that follows, the syntax
used during user creation is followed by the identification type
returned:

n IDENTIFIED BY password: LOCAL
n IDENTIFIED EXTERNALLY: EXTERNAL

LANG The ISO abbreviation for the language name, a shorter form than
the existing ' LANGUAGE ' parameter.

LANGUAGE The language and territory currently used by the session, along
with the database character set, in this form:

language_territory.characterset

NLS_SORT Binary or linguistic sort.

SESSION_USER The name of the database user at logon. This value remains the
same throughout the duration of the session.

SESSION_USERID The identifier of the database user at logon.

SID The connection id of the current connection.

The data type of the return value is VARCHAR2.

SELECT SYS_CONTEXT ('USERENV', 'CURRENT USER') FROM dual;
< TTUSER >
1 row found.

SELECT SYS_CONTEXT ('USERENV', 'LANGUAGE') FROM dual;
< AMERICAN_AMERICA.AL32UTF8 >
1 row found.

SELECT SYS_CONTEXT ('USERENV', 'IDENTIFICATION_TYPE') FROM dual;

< EXTERNAL >
1 row found.

Expressions 3-73

SYSDATE and GETDATE

SYSDATE and GETDATE

SQL syntax

Parameters

Description

Examples

Returns the date in the format YYYY-MM-DD HH:MM: SS. The date represents the local
current date and time, which is determined by the system on which the statement is
executed.

If you are using TimesTen type mode, for information on SYSDATE, see the Oracle
TimesTen In-Memory Database Release 6.0.3 documentation.

SYSDATE | GETDATE()

The SYSDATE and GETDATE functions have no parameters.

= SYSDATE and GETDATE perform identically. SYSDATE is compatible with Oracle
syntax. GETDATE is compatible with Microsoft SQL Server syntax.

= SYSDATE and GETDATE have no arguments, and return a DATE value.
s The SYSDATE or GETDATE value is only retrieved during execution.

= Any required changes to the date (to incorporate a different time zone or Daylight
Savings Time, for example) must occur at the system level. The date cannot be
altered using SYSDATE or GETDATE.

s The SYSDATE and GETDATE functions return the DATE data type. The DATE
formatis 'YYYY-MM-DD HH:MM:SS'.

= SYSDATE and GETDATE are built-in functions and can be used anywhere a date
expression may be used. They can be used in a INSERT. . . SELECT projection list,
a WHERE clause or to insert values. They cannot be used with a SUM or AVG
aggregate (operands must be numeric) or with a COUNT aggregate (column names
are expected).

= SYSDATE and GETDATE return the same DATE value in a single SQL statement
context.

» The literals TT_SYSDATE and ORA_SYSDATE are supported. TT_SYSDATE returns
the TT_TIMESTAMP data type. ORA_SYSDATE returns the DATE data type.

In this example, invoking SYSDATE returns the same date and time for all rows in the
table:

Command> SELECT SYSDATE FROM dual;
< 2006-09-03 10:33:43 >
1 row found.

This example invokes SYSDATE to insert the current data and time into column
datecol:

Command> CREATE TABLE t (datecol DATE);
Command> INSERT INTO t VALUES (SYSDATE);
1 row inserted.

Command> SELECT * FROM t;

3-74 Oracle TimesTen In-Memory Database SQL Reference

SYSDATE and GETDATE

< 2006-09-03 10:35:50 >
1 row found.

In this example, GETDATE inserts the same date value for each new row in the table,
even if the query takes several seconds.

INSERT INTO tl SELECT GETDATE(), coll
FROM t2 WHERE ...;

TO_CHAR is used with SYSDATE to return the date from table dual:

Command> SELECT TO_CHAR (SYSDATE) FROM dual;
< 2006-09-03 10:56:35 >
1 row found.

This example invokes TT_SYSDATE to return the TT_TIMESTAMP data type and then
invokes ORA_SYSDATE to return the DATE data type:

Command> SELECT tt_sysdate FROM dual;
< 2006-10-31 20:02:19.440611 >

1 row found.

Command> SELECT ora_sysdate FROM dual;
< 2006-10-31 20:02:30 >

1 row found.

Expressions 3-75

TO_CHAR

TO_CHAR

SQL syntax

Parameters

Description

Examples

The TO_CHAR function converts a DATE, TIMESTAMP or numeric input value to a
VARCHAR2.

If you are using TimesTen type mode, for information on the TO_CHAR function, see
the Oracle TimesTen In-Memory Database Release 6.0.3 documentation.

TO_CHAR (Expressionl[, Expression? [, Expression3]])

TO_CHAR has the parameters:

Parameter Description

Expressionl A DATE, TIMESTAMP or numeric expression.

Expression2 The format string. If omitted, TimesTen uses the default date format
(YYYY-MM-DD).

Expression3 A CHAR or VARCHAR2 expression to specify the NLS parameter which is
currently ignored.

= TO_CHAR supports different datetime format models depending on the data type
specified for the expression. For information on the datetime format model used
for TO_CHAR of data type DATE or TIMESTAMP, see "Datetime format models" on
page 3-20. For information on the datetime format model used for TO_CHAR of
data type TT_DATE or TT_TIMESTAMP, see "Format model for ROUND and
TRUNC date functions" on page 3-23.

= TO_CHAR supports different number format models depending on the numeric
data type specified for the expression. For information on the number format
model used for TO_CHAR of data type NUMBER or ORA_FLOAT, see "Number
format models" on page 3-17. For information on the number format model used
for TO_CHAR of all other numeric data types, see "Format model for ROUND and
TRUNC date functions" on page 3-23.

SELECT FIRST 5 first_name,
TO_CHAR (hire_date, 'MONTH DD, YYYY'),
TO_CHAR (salary, '$999999.99')

FROM employees;

Steven, JUNE 17, 1987, $24000.00 >

Neena, SEPTEMBER 21, 1989, $17000.00 >

Lex, JANUARY 13, 1993, $17000.00 >

Alexander, JANUARY 03, 1990, $9000.00 >

Bruce, MAY 21, 1991, $6000.00 >

rows found.

U A A A A A

SELECT TO_CHAR(-0.12,'$B99.9999') FROM dual;
< -$.1200 >
1 row found.

3-76 Oracle TimesTen In-Memory Database SQL Reference

TO_CHAR

SELECT TO_CHAR(-12, 'B99999PR') FROM dual;
< 12 >
1 row found.

SELECT TO_CHAR(-12, 'FM99999') FROM dual;
< -12 >
1 row found.

SELECT TO_CHAR(1234.1,'9,999.999') FROM dual;

< 1,234.100 >
1 row found.

Expressions 3-77

TO_DATE

TO_DATE

SQL syntax

Parameters

Description

Examples

The TO_DATE function converts a CHAR or VARCHAR2 argument to a value of DATE

data type

If you are using TimesTen type mode, for information on the TO_DATE function, see
the Oracle TimesTen In-Memory Database Release 6.0.3 documentation.

TO_DATE (Expressionl[, Expression? [, Expression3]])

TO_DATE has the parameters:

Parameter Description

Expressionl A CHAR or VARCHAR?2 expression.

Expression2 The format string. This expression is usually required. It is optional only
when Expressionl is in the default date format YYYY-MM-DD HHMMSS.

Expression3 A CHAR or VARCHAR2 expression to specify the NL.S parameter which is

currently ignored.

You can use a datetime format model with the TO_DATE function. For more
information on datetime format models, see "Datetime format models" on page 3-20.

Command> SELECT TO_DATE ('1999, JAN 14', 'YYYY, MON DD') FROM dual;
< 1999-01-14 00:00:00 >

1 row found.

Command> SELECT TO_CHAR(TO_DATE('1999-12:23"','YYYY-MM:DD')) FROM dual;
< 1999-12-23 00:00:00 >

1 row found.

Command> SELECT TO_CHAR(TO_DATE('12-23-1997 10 AM:56:20',
'MM-DD-YYYY HH AM:MI:SS'), 'MONTH,DD YYYY HH:MI-SS') FROM dual;
< DECEMBER ,23 1997 10:56-20 >

1 row found.

3-78 Oracle TimesTen In-Memory Database SQL Reference

TO_NUMBER

TO_NUMBER

SQL syntax

Parameters

Description

Examples

Converts an expression whose value is of type CHAR, VARCHAR2, NCHAR, NVARCHAR2,
BINARY_FLOAT or BINARY_ DOUBLE to a value of NUMBER type.

TO_NUMBER (Expression[, format])

TO_NUMBER has the parameters:

Parameter Description
Expression The expression to be converted.
format If specified, the format is used to convert Expression to a value of NUMBER

type. The format consists of a format string that identifies the number format
model. The format string can be either a constant or a parameter.

You can use a number format model with the TO_NUMBER function. For more
information on number format models, see "Number format models" on page 3-17.

Command> SELECT TO_NUMBER ('100.00', '999D99') FROM dual;
< 100 >
1 row found.

Command> SELECT TO_NUMBER ('1210.73', '9999.99') FROM dual;

< 1210.73 >
1 row found.

Expressions 3-79

TRIM

TRIM

SQL syntax

Parameters

The TRIM function trims leading or trailing characters (or both) from a character

string.

There are four valid syntax options for TRIM:

= You can specify one of the TRIM qualifiers (LEADING or TRAILING or BOTH) with
the Trim character:

TRIM (LEADING|TRAILING|BOTH Trim character FROM Expression)

= You can specify one of the TRIM qualifiers (LEADING or TRAILING or BOTH)
without the Trim character:

TRIM (LEADING|TRAILING|BOTH FROM Expression)

= You can specify the Trim character without one of the TRIM qualifiers:

TRIM (Trim character FROM Expression)

= You can specify the Expression without a qualifier or a Trim_character:

TRIM (Expression)

TRIM has the parameters:

Parameter

Description

TRIM (

LEADING | TRAILING
| BOTH

[Trim character]
FROM

Expression)

LEADING | TRAILING| BOTH are qualifiers to TRIM function.
LEADING removes all leading instances of Trim character from
Expression. TRAILING removes all trailing instances of
Trim_character from Expression. BOTH removes leading and
trailing instances of Trim_character from Expression.

Trim character is optional. If specified, it represents the CHAR,
VARCHAR2, NCHAR or NVARCHAR?2 operand or column used for
trimming Expression. Must be only one character. If you do not
specify Trim_character, it defaults to a single blank. If
Trim_character is a character literal, then enclose it in single
quotes.

FROM is required.

Expressionis the CHAR, VARCHAR2, NCHAR or NVARCHAR2
operand or column to be trimmed. If Expressionis a character
literal, then enclose it in single quotes.

3-80 Oracle TimesTen In-Memory Database SQL Reference

TRIM

Description

Parameter

Description

TRIM (
Trim character
FROM

Expression)

Removes both leading and trailing instances of Trim_character
from Expression.

Trim character is the CHAR, VARCHAR2, NCHAR or NVARCHAR?2
operand or column used for trimming Expression. Must be only
one character. If Trim character is a character literal, then
enclose it in single quotes.

FROM must follow Trim character. Assumes LEADING |
TRAILING | BOTH qualifiers have not been specified.

Expressionis the CHAR, VARCHAR2, NCHAR or NVARCHAR?2
operand or column to be trimmed. If Expressionis a character
literal, then enclose it in single quotes.

TRIM (

Expression)

If you specify Expression without a qualifier or
Trim_character, then leading and trailing blank spaces are
removed from Expression.

Expressionis the CHAR, VARCHAR2, NCHAR or NVARCHAR2
operand or column to be trimmed. If Expressionis a character
literal, then enclose it in single quotes.

= If you specify the LEADING qualifier, TRIM removes any leading characters equal
to Trim character from Expression.

= If you specify the TRAILING qualifier, TRIM removes any trailing characters equal
to Trim character from Expression.

= If you specify the BOTH qualifier (or no qualifier), TRIM removes leading and
trailing characters equal to Trim character from Expression.

» If you specify only Expression, then TRIM removes leading and trailing blank

spaces.

» If Expression is of type CHAR or VARCHAR?2, the data type returned is
VARCHAR2. If Expression is of type NCHAR or NVARCHAR?2, the data type
returned is NVARCHAR2. The returned data type length is equal to the data type
length of Expression.

» If Expressionis a data type defined with CHAR length semantics, the returned
length is expressed in CHAR length semantics.

s Ifeither Trim character or Expression is NULL, the resultis NULL.

= You can specify TT_CHAR, TT_VARCHAR, TT_NCHAR, and TT_NVARCHAR for
Trim character and Expression.lf Expressionis of type TT_CHAR or
TT_VARCHAR, the data type returned is TT_VARCHAR. If Expressionis of type
TT_NCHAR or TT_NVARCHAR, the data type returned is TT_NVARCHAR.

s If Trim character isof type NCHAR or NVARCHAR? and Expressionis of type
CHAR or VARCHAR?2, then Trim_character is demoted to CHAR or VARCHAR2
before TRIM is invoked. The conversion of Trim_character could be lost. If
Trim character is notin the database character set, then the query may
produce unexpected results.

s For CHAR, VARCHAR2, NCHAR, and NVARCHAR?2 types:

Expressions 3-81

TRIM

— If all the characters in Expression are removed by the TRIM function, then
the result is NULL.

s For TT_CHAR, TT_VARCHAR, TT_NCHAR and TT_NVARCHAR types:

— If all the characters in Expression are removed by the TRIM function, then
the result is the empty string.

Examples

Use TRIM function with qualifier to remove Trim character '0' from
Expression '0000TRIM Example0000':

Command> SELECT TRIM (LEADING 'O' FROM 'O000TRIM Example(0000') FROM dual;
< TRIM Example0000 >

1 row found.

Command> SELECT TRIM (TRAILING 'O' FROM 'O000TRIM Example0000') FROM dual;
< 0000TRIM Example >

1 row found.

Command> SELECT TRIM (BOTH 'O' FROM 'O000TRIM Example0000') FROM dual;

< TRIM Example >

1 row found.

Use TRIM function with qualifier to remove blank spaces. Do not specify a
Trim character. Default value for Trim_character is blank space:

Command> SELECT TRIM (LEADING FROM ' TRIM Example ') FROM dual;
< TRIM Example >

1 row found.

Command> SELECT TRIM (TRAILING FROM ' TRIM Example ') FROM dual;
< TRIM Example >

1 row found.

Command> SELECT TRIM (BOTH FROM ' TRIM Example ') FROM dual;

< TRIM Example >

1 row found.

Use TRIM function with Trim character '0'. Do not specify a qualifier. Leading
and trailing ' 0's are removed from Expression '0000TRIM Example0000':

Command> SELECT TRIM ('0O' FROM 'O000TRIM Example0000') FROM dual;
< TRIM Example >
1 row found.

Use TRIM function without a qualifier or Trim character. Leading and trailing
spaces are removed.

< TRIM Example >
1 row found.
Command> SELECT TRIM (' TRIM Example ') FROM dual;

3-82 Oracle TimesTen In-Memory Database SQL Reference

TRUNC (date)

TRUNC (date)

SQL syntax

Parameters

Description

Examples

Returns date with the time portion of the day truncated to the unit specified by the
format model fmt. The value returned is of type DATE. If you do not specify fmt, then
dateis truncated to the nearest day.

TRUNC (date [, fmt])

TRUNC (date) has the parameters:

Parameter Description

date The date that is truncated. Specify the DATE data type for date. The function
returns data type DATE with the time portion of the day truncated to the unit
specified by the format model. If you do not specify fmt, the date is
truncated to the nearest day. An error is returned if you do not specify the
DATE data type.

[, fmt] The format model truncating unit. Specify either a constant or a parameter
for fmt.

For the permitted format models to use in £mt, see "Format model for ROUND and
TRUNC date functions" on page 3-23.

Command> SELECT TRUNC (TO_DATE ('27-0CT-92', 'DD-MON-YY'), 'YEAR') FROM dual;
< 2092-01-01 00:00:00 >
1 row found.

Expressions 3-83

TRUNC (expression)

TRUNC (expression)

Returns a number truncated to a certain number of decimal places.

SQL syntax
TRUNC (Expression [,m])
Parameters

TRUNC has the parameters:

Parameter Description

Expression The Expression to truncate. Operands must be of type NUMBER. An error is
returned if operands are not of type NUMBER. The value returned is of type
NUMBER.

[,m] The number of decimal places to truncate to. If mis omitted, then the number
is truncated to 0 places. The value of m can be negative to truncate (make
zero) m digits left of the decimal point.

Examples

SELECT TRUNC (15.79,1) FROM dual;
< 15.7 >
1 row found.

SELECT TRUNC (15.79,-1) FROM dual;

< 10 >
1 row found.

3-84 Oracle TimesTen In-Memory Database SQL Reference

TT_HASH

TT_HASH

SQL syntax

Parameters

Description

Examples

The TT_HASH function returns the hash value of an expression or list of expressions.
This value is the value that is used by a hash index.

TT_HASH (Expression [,...])

TT_HASH has the parameter:

Parameter Description

Expression One or more expressions to be used to determine the hash value of the
[..] expression or list of expressions.

= Each expression must have a known data type and must be non-nullable. The hash
value of the expression depends on both the value of the expression and its type.
For example, TT_HASH of an TT_INTEGER with value 25 may be different from
TT_HASH of a NUMBER or BINARY_DOUBLE with value 25. If you specify a list of
expressions, the TT_HASH result depends on the order of the expressions in the
list.

= Since constants and expressions that are not simple column references are subject
to internal typing rules, over which applications have no control, the best way to
ensure that TT_HASH computes the desired value for expressions that are not
simple column references is to CAST the expression to the desired type.

s Theresult type of TT_HASH is TT_INTEGER in 32-bit mode and TT_BIGINT in 64
bit mode.

= TT_HASH can be used in a SQL statement anywhere an expression can be used.
For example, TT_HASH can be used in a SELECT list, a WHERE or HAVING clause,
an ORDER BY clause, or a GROUP BY clause.

= The output of error messages, trace messages, and ttAXactAdmin display the
hash value as a signed decimal so that the value matches TT_HASH output.

The following query finds the set of rows whose primary key columns hash to a given
hash value:

SELECT * FROM tl
WHERE TT_HASH (pkey_coll, pkey_col2, pkey col3) = 12345678;

Expressions 3-85

uiD

uiD

This function returns an integer (T'T_INTEGER) that uniquely identifies the session
user.

Examples

SELECT UID FROM dual;
< 10 >
1 row found.

3-86 Oracle TimesTen In-Memory Database SQL Reference

UNISTR

UNISTR

The UNISTR function takes as its argument a string that resolves to data of type
NVARCHAR2 and returns the value in UTF-16 format. Unicode escapes are supported.
You can specify the Unicode encoding value of the characters in the string.

SQL syntax
UNISTR ('String')
Parameters
UNISTR has the parameter:
Parameter Description
'String'’ The string passed to the UNISTR function. The string resolves to type
NVARCHAR2. TimesTen returns the value in UTF-16 format. You can specify
Unicode escapes as part of the string.
Examples

The following example invokes the UNISTR function passing as an argument the
string 'A\00E4a'. The value returned is the value of the string in UTF-16 format:

Command> SELECT UNISTR ('A\00E4a') FROM dual;
<Ada> 1 row found.

Expressions 3-87

USER functions

USER functions

TimesTen supports these USER functions:
s CURRENT_USER

= USER

s SESSION_USER

s SYSTEM USER

Each of these functions returns the name of the user that is currently connected to the
TimesTen database.

3-88 Oracle TimesTen In-Memory Database SQL Reference

USER functions

CURRENT_USER

Returns the name of the TimesTen user currently connected to the database.

SQL syntax

CURRENT_USER
Parameters

CURRENT_USER has no parameters.
Examples

To return the name of the user who is currently connected to the database:

SELECT CURRENT_USER FROM dual;

Expressions 3-89

USER

USER
Returns the name of the TimesTen user who is currently connected to the database.
SQL syntax
USER
Parameters
USER has no parameters.
Examples

To return the name of the user who is currently connected to the database:

SELECT USER FROM dual;

3-90 Oracle TimesTen In-Memory Database SQL Reference

USER functions

SESSION_USER

Returns the name of the TimesTen user currently connected to the database.

SQL syntax

SESSION_USER
Parameters

SESSION_USER has no parameters.
Examples

To return the name of the session user:

SELECT SESSION_USER FROM dual;

Expressions 3-91

SYSTEM_USER

SYSTEM_USER

Returns the name of the current database user as identified by the operating system.

SQL syntax

SYSTEM_USER
Parameters

SYSTEM_USER has no parameters.
Examples

To return the name of the operating system user:

SELECT SYSTEM_USER FROM dual;

3-92 Oracle TimesTen In-Memory Database SQL Reference

4

Search Conditions

A search condition specifies criteria for choosing rows to select, update, or delete.
Search conditions are parameters that can exist in clauses and expressions of any DML
statements, such as INSERT . . . SELECT, UPDATE and CREATE VIEW and some DDL
statements, such as CREATE VIEW.

Search Conditions 4-1

Search condition general syntax

Search condition general syntax

SQL syntax

Parameters

A search condition is a single predicate or several predicates connected by the logical

operators AND or OR. A predicate is an operation on expressions that evaluates to
TRUE, FALSE, or UNKNOWN. If a predicate evaluates to TRUE for a row, the row
qualifies for further processing. If the predicate evaluates to FALSE or NULL for a row,
the row is not available for operations.

[NOT]

{BetweenPredicate | ComparisonPredicate | InPredicate |
LikePredicate| NullPredicate | InfinitePredicate | NaNPredicate |
QuantifiedPredicate | (SearchCondition)}

[{AND | OR} [NOT]

{BetweenPredicate | ComparisonPredicate |InPredicate |
LikePredicate|NullPredicate | QuantifiedPredicate |(SearchCondition)}

1 I...]

Component Description
NOT, AND, OR Logical operators with the following functions:
= NOT negates the value of the predicate that follows it.
= AND evaluates to TRUE if both the predicates it joins evaluate
to TRUE.
= OR evaluates to TRUE if either predicate it joins evaluates to
TRUE, and to FALSE if both predicates evaluates to FALSE.
= See "Description” on page 4-3 for a description of how these
operators work when predicates evaluate to NULL.
BetweenPredicate Determines whether an expression is within a certain range of

values. For example: A BETWEEN B AND C is equivalent to A >=
B AND A<= C.

ComparisonPredicate

Compares two expressions or list of two expressions using one of
the operators <, <=, >, >=, =, <>.

InPredicate Determines whether an expression or list of expressions matches
an element within a specified set.

ExistsPredicate Determines whether a subquery returns any row.

LikePredicate Determines whether an expression contains a particular character
string pattern.

NullPredicate Determines whether a value is NULL.

InfinitePredicate

Determines whether an expression is infinite (positive or negative
infinity).

NaNPredicate

Determines whether an expression is the undefined result of an
operation ("not a number").

QuantifiedPredicate

Determines whether an expression or list of expressions bears a
particular relationship to a specified set.

(SearchCondition)

One of the above predicates, enclosed in parentheses.

4-2 Oracle TimesTen In-Memory Database SQL Reference

Search condition general syntax

Description

m Predicates in a search condition are evaluated as follows:

Predicates in parentheses are evaluated first.

NOT is applied to each predicate.
AND is applied next, left to right.
ORis applied last, left to right.

Figure 4-1 shows the values that result from logical operations. A question mark
(?) represents the NULL value.

Figure 4-1 Values that result from logical operations

AND|T F ? OR|T F ? NOT
T |T F ? T|T T T T |F
F |F F F F | T F ? F |T
? ? F ? 1T ? 7 ? ?

You can compare only compatible data types.

When the search condition for a row evaluates to NULL, the row does not satisfy
the search condition and the row is not operated on.

TT_TINYINT, TT_SMALLINT, TT_INTEGER, TT BIGINT, NUMBER,
BINARY_FLOAT and BINARY_DOUBLE are compatible.

CHAR, VARCHAR2, BINARY, and VARBINARY are compatible, regardless of

length.

CHAR, VARCHAR2, NCHAR, NVARCHAR2, TT_TIME, DATE and TIMESTAMP are

compatible.

See Chapter 3, "Expressions” for information on value extensions during
comparison operations.

See "Numeric data types" on page 1-15 for information about how TimesTen
compares values of different but compatible types.

Search Conditions 4-3

ALL/ NOT IN predicate (subquery)

ALL/ NOT IN predicate (subquery)

The ALL or NOT IN predicate indicates that the operands on the left side of the
comparison must compare in the same way with all of the values that the subquery
returns. The ALL predicate evaluates to TRUE if the expression or list of expressions
relates to all rows returned by the subquery as specified by the comparison operator.
Similarly, the NOT IN predicate evaluates to TRUE if the expression or list of
expressions does not equal the value returned by the subquery.

SQL syntax
RowValueConstructor {CompOp ALL | NOT IN} (Subquery)
The syntax for RowValueConstructor:
RowValueConstructorElement | (RowValueConstuctorList) | Subquery
The syntax for RowValueConstructorList:
RowValueConstructorElement [{, RowValueConstructorElement} ...]
The syntax for RowValueConstructorElement:
Expression | NULL
The syntax for CompOp:
{:‘<>|>|>:|<|<:}
Parameters
Component Description
Expression The syntax of expressions is defined under "Expression specification" on
page 3-3. Both numeric and non-numeric expressions are allowed for ALL
predicates, but both expression types must be compatible with each other.
= Is equal to.
<> Is not equal to.
> Is greater than.
>= Is greater than or equal to.
< Is less than.
<= Is less than or equal to.
Subguery The syntax of subqueries is defined under "Subqueries" on page 3-6
Description

s The ALL predicate, which returns zero or more rows, uses a comparison operator
modified with the keyword ALL. See "Numeric data types" on page 1-15 for
information about how TimesTen compares values of different but compatible
types.

» If RowValueConstructorList is specified only the operators = and <> are
allowed.

4-4 Oracle TimesTen In-Memory Database SQL Reference

ALL/ NOT IN predicate (subquery)

Examples
Examples of NOT IN with subqueries:

SELECT * FROM customers
WHERE cid NOT IN

(SELECT cust_id FROM returns)
AND cid > 5000;

SELECT * FROM customers

WHERE cid NOT IN

(SELECT cust_id FROM returns)

AND cid NOT IN

(SELECT cust_id FROM complaints);

SELECT COUNT(*) From customers
WHERE cid NOT IN

(SELECT cust_id FROM returns)

AND cid NOT IN

(SELECT cust_id FROM complaints);

Select all books that are not from exclBookList or if the price of the book is higher
than $20.

SELECT * FROM books
WHERE id NOT IN (SELECT id FROM exclBookList) OR books.price>20;

The following query returns the employee_id and job_id from the job_history
table. It illustrates use of expression list and subquery with the NOT IN predicate.

Command> SELECT employee_id, job_id FROM job_history
> WHERE (employee_id, job_id)
> NOT IN (SELECT employee_id, job_id FROM employees);

101, AC_ACCOUNT >

101, AC_MGR >

102, IT_PROG >

114, ST_CLERK >

122, ST _CLERK >

176, SA_MAN >

200, AC_ACCOUNT >

201, MK_REP >

rows found.

w A A AN AN AN AN AN A

Search Conditions 4-5

ALL/NOT IN predicate (value list)

ALL/NOT IN predicate (value list)

SQL syntax

Parameters

The ALL/NOT IN quantified predicate compares an expression or list of expressions
with a list of specified values. The ALL predicate evaluates to TRUE if all the values in
the ValueList relate to the expression or list of expressions as indicated by the
comparison operator. Similarly, the NOT IN predicate evaluates to TRUE if the
expression or list of expressions does not equal one of the values in the list.

RowValueConstructor {CompOp ALL \ NOT IN} ValueList

The syntax for RowValueConstructor:

RowValueConstructorElement | (RowValueConstuctorList) |

The syntax for RowValueConstructorList:

RowValueConstructorElement[{, RowValueConstructorElement} ...]

The syntax for RowValueConstructorElement:

Expression | NULL

The syntax for CompOp:
(=] <> |>]>]<|<=1}
The syntax for more than one element in the ValueList:

({Constant | ? | :DynamicParameter} [,...])

The syntax for one element in the ValueList not enclosed in parentheses:

Constant | ? | :DynamicParameter

The syntax for an empty ValueList:
()

The syntax for the ValueList for a list of expressions:

(({Constant | ? | :DynamicParameter} [,...]1))

Component Description

Expression Specifies a value to be obtained. The values in ValueList
must be compatible with the expression. For information on
the syntax of expressions, see "Expression specification" on

page 3-3.
= Is equal to.
<> Is not equal to.
> Is greater than.
>= Is greater than or equal to.
< Is less than.

4-6 Oracle TimesTen In-Memory Database SQL Reference

ALL/NOT IN predicate (value list)

Description

Examples

Component

Description

<=

Is less than or equal to.

ALL

The predicate is TRUE if all the values in the ValueList relate
to the expression or list of expressions as indicated by the
comparison operator.

ValueList

A list of values that are compared against the expression's or
list of expression's value. The ValueList cannot contain a
column reference or a subquery. The ValueList can be nested
if the left operand of the ValueList is a list.

Elements of the ValueList:
= Constant—Indicates a specific value. See "Constants" on
page 3-11.

= ?,:DynamicParameter—Placeholder for a dynamic
parameter in a prepared SQL statement. The value of the
dynamic parameter is supplied when the statement is
executed.

= Empty list, which are sometimes generated by SQL
generation tools.

» If Xisthe value of Expression,and (a,b, ..., z) represents the elementsin
ValueList, and OP is a comparison operator, then the following is true:

- X OP ALL (a,b,...,z) isequivalenttoX OP a AND X OP b
AND. ..AND X OP z.

s If Xis the value of Expressionand (a,b, ..., z) aretheelementsina
ValueList, then the following is true:

- X NOT IN (a,b,...,z) isequivalenttoNOT (X IN (a,b,...,z)).

s All character data types are compared in accordance with the current value of the
NLS_SORT session parameter.

» NULL cannot be specified in ValueList.

= See "Numeric data types" on page 1-15 for information about how TimesTen
compares values of different but compatible types.

= NOT INorNOT EXISTS with ALL can be specified in an OR expression.

= INand EXISTS with ALL can be specified in an OR expression.

s When evaluating an empty ValueList, the result of Expression NOT INis

true.

» If RowValueConstructorList is specified only the operators = and <> are

allowed.

To query an empty select list for a NOT IN condition:

SELECT * FROM tl WHERE x1 NOT IN ();

Search Conditions 4-7

ANY/ IN predicate (subquery)

ANY/ IN predicate (subquery)

SQL syntax

Parameters

Description

Examples

An ANY predicate compares two expressions using a comparison operator. The
predicate evaluates to TRUE if the first expression relates to anyrow returned by the
subquery as specified by the comparison operator. Similarly, the IN predicate
compares an expression or list of expressions with a table subquery. The IN predicate
evaluates to TRUE if the expression or list of expressions is equal to a value returned
by a subquery.

RowValueConstructor {CompOp ANY| IN} (Subquery)

The syntax for RowValueConstructor:

RowValueConstructorElement | (RowValueConstuctorList) | Subquery

The syntax for RowValueConstructorList:

RowValueConstructorElement|[{, RowValueConstructorElement} ...]

The syntax for RowValueConstructorElement:

Expression | NULL

The syntax for CompOp:

{= ‘ <> | > | >= | < | <=}
Component Description
Expression The syntax of expressions is defined under "Expression

specification" on page 3-3. Both numeric and non-numeric
expressions are allowed for ANY predicates, but both
expression types must be compatible with each other.

= Is equal to.

<> Is not equal to.

> Is greater than.

>= Is greater than or equal to.

< Is less than.

<= Is less than or equal to.

Subguery The sgngax of subqueries is defined under "Subqueries" on
page 3-6.

The ANY predicate, which returns zero or more rows, uses a comparison operator
modified with the keyword ANY. See "Numeric data types" on page 1-15 for
information about how TimesTen compares values of different but compatible types.

This example retrieves a list of customers having at least one unshipped order:

4-8 Oracle TimesTen In-Memory Database SQL Reference

ANY/ IN predicate (subquery)

SELECT customers.name FROM customers
WHERE customers.id = ANY

(SELECT orders.custid FROM orders
WHERE orders.status = 'unshipped');

This is an example of an IN predicate with subquery. It SELECTSs customers having at
least one unshipped order:

SELECT customers.name FROM customers
WHERE customers.id IN

(SELECT orders.custid FROM orders
WHERE orders.status = 'unshipped');

This example uses an aggregate query that specifies a subquery with IN to find the
maximum price of a book in the exc1BookList:

SELECT MAX(price) FROM books WHERE id IN (SELECT id FROM exclBookList);

This example illustrates the use of a list of expressions with the IN predicate and a
subquery.

SELECT * FROM tl WHERE (x1,yl) IN (SELECT x2,y2 FROM t2);

This example illustrates the use of a list of expressions with the ANY predicate and a
subquery.

SELECT * FROM tl WHERE (x1,yl) < ANY (SELECT x2,y2 FROM t2);

The following example illustrates the use of a list of expressions with the ANY
predicate.

Command> columnlabels on;
Command> SELECT * FROM tl;

X1, Y1
<1, 2>
<3, 4>

2 rows found.
Command> SELECT * FROM t2;

X2, Y2
<3, 4>
<1, 2>

2 rows found.

Search Conditions 4-9

ANY/ IN predicate (value list)

ANY/ IN predicate (value list)

The ANY/IN quantified predicate compares an expression or list of expressions with a
list of specified values. The ANY predicate evaluates to TRUE if one or more of the
values in the ValueList relate to the expression or list of expressions as indicated by
the comparison operator. Similarly, the IN predicate evaluates to TRUE if the
expression or list of expressions is equal to one of the values in the list.

SQL syntax
RowValueConstructor {CompOp {ANY| SOME} | IN} ValueList
The syntax for RowValueConstructor:
RowValueConstructorElement | (RowValueConstuctorList) |
The syntax for RowValueConstructorList:
RowValueConstructorElement[{, RowValueConstructorElement} ...]
The syntax for RowValueConstructorElement:
Expression | NULL
The syntax for CompOp:
(=] <> |>]>]<|<=1}
The syntax for more than one element in the ValueList:
({Constant | ? | :DynamicParameter} [,...])
The syntax for one element in the ValueList not enclosed in parentheses:
Constant | ? | :DynamicParameter
The syntax for an empty ValueList:
()
The syntax for the ValueList for a list of expressions:
(({Constant | ? | :DynamicParameter} [,...]1))

Parameters

Component Description

Expression Specifies a value to be obtained. The values in ValueList
must be compatible with the expression. For information on
the syntax of expressions, see "Expression specification" on

page 3-3.
= Is equal to.
<> Is not equal to.
> Is greater than.
>= Is greater than or equal to.
< Is less than.

4-10 Oracle TimesTen In-Memory Database SQL Reference

ANY/ IN predicate (value list)

Description

Examples

Component Description

<= Is less than or equal to.

{aNy | The predicate is TRUE if one or more of the values in the
-ValueList relate to the expression or list of expressions as
indicated by the comparison operator. SOME is a synonym for
ANY.

SOME }

ValueList A list of values that are compared against the expression's or
list of expression's value. The ValueList cannot contain a
column reference or a subquery. The ValueList can be
nested if the left operand of the ValueList is alist.

Elements of the ValueList:
s Constant—Indicates a specific value. See "Constants" on
page 3-11.

= ?,:DynamicParameter—Placeholder for a dynamic
parameter in a prepared SQL statement. The value of the
dynamic parameter is supplied when the statement is
executed.

= Empty list, which are sometimes generated by SQL
generation tools.

» If Xis the value of Expression,and (a,b, ..., z) represents the elementsin
ValueList, and OP is a comparison operator, then the following is true:

- X OP ANY (a,b,...,z) isequivalenttoX OP a OR X OP b OR...OR
X OP z.

s If Xis the value of Expressionand (a,b, ..., z) aretheelementsin a
ValueList, then the following is true:

- X IN (a,b,...,z)isequivalenttoX = a OR X = b OR...OR X = z.

= All character data types are compared in accordance with the current value of the
NLS_SORT session parameter.

= NULL cannot be specified in ValueList.

= See "Numeric data types" on page 1-15 for information about how TimesTen
compares values of different but compatible types.

= When evaluating an empty ValueList, the result of Expression IN is false.

Select all item numbers containing orders of 100, 200, or 300 items.

SELECT DISTINCT OrderItems.ItemNumber

FROM OrderItems

WHERE OrderItems.Quantity = ANY (100, 200, 300)

Get part numbers of parts whose weight is 12, 16, or 17.
SELECT Parts.PartNumber FROM Parts

WHERE Parts.Weight IN (12, 16, 17);

Get part number of parts whose serial numberis '1123-p-01"', '1733-AD-01",
:SerialNumber or : SerialInd, where : SerialNumber and : SerialInd are
dynamic parameters whose values are supplied at runtime.

SELECT PartNumber FROM Purchasing.Parts

Search Conditions 4-11

ANY/ IN predicate (value list)

WHERE SerialNumber
IN ('1123-P-01', '1733-AD-01', :SerialNumber, :SeriallInd);
To query an empty select list for IN condition:

SELECT * FROM tl WHERE x1 IN ();

Ilustrates the use of a list of expressions with in:
SELECT * FROM tl WHERE (x1,yl) IN ((1,2), (3,4));
The following example illustrates the use of a list of expressions for the IN predicate.

The query returns the department_name for departments with department_id =
240 and location_id = 1700.

Note: The expression on the right side of the IN predicate must be
enclosed in double parentheses (()).

Command> SELECT department_name FROM departments

> WHERE (department_id, location_id) IN ((240,1700));
< Government Sales >
1 row found.

4-12 Oracle TimesTen In-Memory Database SQL Reference

BETWEEN predicate

BETWEEN predicate

SQL syntax

Parameters

Description

Examples

A BETWEEN predicate determines whether a value is:
» Greater than or equal to a second value, and
» Less than or equal to a third value.

The predicate evaluates to TRUE if a value falls within the specified range.

Expressionl [NOT] BETWEEN Expression2 AND Expression3

Parameter Description

Expressionl, The syntax for expressions is defined in "Expression

Expression2, specification" on page 3-3. Both numeric and non-numeric

Expression3 expressions are allowed in BETWEEN predicates, but all
expressions must be compatible with each other.

» BETWEEN evaluates to FALSE and NOT BETWEEN evaluates to TRUE if the second
value is greater than the third value.

= Consult the following table if either Expression2 or Expression3 is NULL for
BETWEEN or NOT BETWEEN:

Expression2 Expression3 BETWEEN NOT BETWEEN
<= Expressionl NULL NULL NULL
> Expressionl NULL FALSE TRUE
NULL >= Expressionl NULL NULL
NULL < Expressionl NULL NULL

» Expression2and Expression3 constitute a range of possible values for which
Expression2 is the lowest possible value and Expression3 is the highest
possible value within the specified range. In the BETWEEN predicate, the low value
must be specified first.

Comparisons are conducted as described in "Comparison predicate" on page 4-14.

s The BETWEEN predicate is not supported for NCHAR types.

Parts sold for under $250.00 and over $1500.00 are discounted 25 percent.

UPDATE Purchasing.Parts
SET SalesPrice = SalesPrice * 0.75
WHERE SalesPrice NOT BETWEEN 250.00 AND 1500.00;

Search Conditions 4-13

Comparison predicate

Comparison predicate

A comparison predicate compares two expressions using a comparison operator. The
predicate evaluates to TRUE if the first expression relates to the second expression as
specified by the comparison operator.

SQL syntax
RowValueConstructor CompOp RowValueConstructor2
The syntax for RowValueConstructor:
RowValueConstructorElement | (RowValueConstuctorList) | ScalarSubquery
The syntax for RowValueConstructorList:
RowValueConstructorElement[{, RowValueConstructorElement} ...]
The syntax for RowValueConstructor2 (one expression)
Expression
The syntax for RowValueConstructor2 (list of expressions)
((Expression[,...1))
The syntax for CompOp:
(=] < |>]>]<| <=1}
Parameters
Component Description
Expression The syntax for expressions is defined under "Expression
specification” on page 3-3. Both numeric and non-numeric
expressions are allowed in comparison predicates, but
both expressions must be compatible with each other.
ScalarSubquery A subquery that returns a single value. Scalar subqueries
and their restrictions are defined under "Subqueries" on
page 3-6.
= Is equal to.
<> Is not equal to.
> Is greater than.
>= Is greater than or equal to.
< Is less than.
<= Is less than or equal to.
Description

s All character data types are compared in accordance with the current value of the
NLS_SORT session parameter.

» If RowValueConstructorList is specified only the operators = and <> are
allowed.

4-14 Oracle TimesTen In-Memory Database SQL Reference

Comparison predicate

Examples

= See "Numeric data types" on page 1-15 for information about how TimesTen
compares values of different but compatible types.

» If either side of a comparison predicate evaluates to UNKNOWN or NULL, this
implies that neither the predicate nor the negation of the predicate is TRUE.

s The NULL value itself cannot be used directly as an operand of an operator or
predicate. If used, it must be cast to the correct datatype. For example, (1 =
NULL) is not supported; however, (1 = CAST (NULL AS INT)) issupported.
This is in compliance with the ANSI SQL-92 specification.

Retrieve part numbers of parts requiring fewer than 20 delivery days:
SELECT PartNumber FROM Purchasing.SupplyPrice
WHERE DeliveryDays < 20;

The query returns the last_name of employees where salary=9500 and
commission_pct=.25.

Note: The expression on the right side of the equal sign must be
enclosed in double parentheses (()).

Command> SELECT last_name FROM employees

> WHERE (salary,commission_pct) = ((9500,.25));
< Bernstein >
1 row found.

The query returns the last_name of the employee whose manager_id = 205. The
employee's department_id and manager_1id is stored in both the employees and
departments tables. A subquery is used to extract the information from the
departments table.

Command> SELECT last_name FROM employees
> WHERE (department_id, manager_id) =
> (SELECT department_id, manager_id FROM departments
> WHERE manager_id = 205);

< Gietz >

1 row found.

Search Conditions 4-15

EXISTS predicate

EXISTS predicate

SQL syntax

Parameters

Description

Examples

An EXISTS predicate checks for the existence or nonexistence of a table subquery. The
predicate evaluates to TRUE if the subquery returns at least one row for EXISTS and
no rows for NOT EXISTS

[NOT] EXISTS (Subquery)

The EXISTS predicate has the following parameter:

Parameter Description

Subquery The syntax of subqueries is defined under "Subqueries" on page 3-6

= When a subquery is introduced with EXISTS, the subquery functions as an
existence test. EXISTS tests for the presence or absence of an empty set of rows. If
the subquery returns at least one row, the subquery evaluates to true.

= When a subquery is introduced with NOT EXISTS, the subquery functions as an
absence test. NOT EXISTS tests for the presence or absence of an empty set of
rows. If the subquery returns no rows, the subquery evaluates to true.

s Ifjoin order is issued using the t tOpt SetOrder built-in procedure that conflicts
with the join ordering requirements of the NOT EXISTS subquery, the specified
join order is ignored, TimesTen issues a warning and the query is executed.

» The following table describes supported and unsupported usages of EXISTS and
NOT EXISTS in TimesTen;

Query/subquery description Not Exists Exists

Aggregates in subquery Supported Supported
Aggregates in main query Supported Supported
Subquery in OR clause Supported Supported
Join ordering using the Limited support Supported

ttOptSetOrder built-in procedure

Get a list of customers having at least one unshipped order.

SELECT customers.name FROM customers
WHERE EXISTS (SELECT 1 FROM orders
WHERE customers.id = orders.custid
AND orders.status = 'unshipped');

Get a list of customers having no unshipped orders.

SELECT customers.name FROM customers
WHERE NOT EXISTS (SELECT 1 FROM orders
WHERE customers.id = orders.custid

4-16 Oracle TimesTen In-Memory Database SQL Reference

EXISTS predicate

AND orders.status = 'unshipped');

Search Conditions 4-17

IS INFINITE predicate

IS INFINITE predicate

An IS INFINITE predicate determines whether an expression is infinite (positive
infinity (INF) or negative infinity (- INF)).

SQL syntax

Expression IS [NOT] INFINITE
Parameters

Parameter Description

Expression Expression to test.
Description

= AnIS INFINITE predicate evaluates to TRUE if the expression is positive or
negative infinity.

= AnIS NOT INFINITE predicate evaluates to TRUE if expression is neither
positive nor negative infinity.

= The expression must either resolve to a numeric data type or to a data type that
can be implicitly converted to a numeric data type.

» Two positive infinity values are equal to each other. Two negative infinity values
are equal to each other.

= Expressions containing floating-point values may generate Inf, -Inf, or NaN.
This can occur either because the expression generated overflow or exceptional
conditions or because one or more of the values in the expression was Inf, -Inf,
or NaN. Inf and NaN are generated in overflow or division by 0 conditions.

s Inf, -Inf, and NaN values are not ignored in aggregate functions. NULL values
are. If you want to exclude Inf and NaN from aggregates (or from any selection),
use both the IS NOT NANand IS NOT INFINITE predicates.

= Negative infinity (- INF) sorts lower than all other values. Positive infinity (INF)
sorts higher than all other values, but lower than NaN ("not a number") and the
NULL value.

= For more information on Inf and NaN, see "INF and NAN" on page 1-30.

4-18 Oracle TimesTen In-Memory Database SQL Reference

IS NAN predicate

IS NAN predicate

SQL syntax

Parameters

Description

An IS NAN predicate determines whether an expression is the undefined result of an
operation (that is, is "not a number" or NaN).

Expression IS [NOT] NAN

Parameter Description

Expression Expression to test.

An IS NAN predicate evaluates to TRUE if the expression is "not a number."
An IS NOT NAN predicate evaluates to TRUE if expression is not "not a number."

The expression must either resolve to a numeric data type or to a data type that
can be implicitly converted to a numeric data type.

Two NaN ("not a number") values are equal to each other.

Expressions containing floating-point values may generate Inf, -Inf, or NaN.
This can occur either because the expression generated overflow or exceptional
conditions or because one or more of the values in the expression was Inf, -Inf,
or NaN. Inf and NaN are generated in overflow or division by 0 conditions.

Inf, -Inf, and NaN values are not ignored in aggregate functions. NULL values
are. If you want to exclude Inf and NaN from aggregates (or from any selection),
use both the IS NOT NANand IS NOT INFINITE predicates.

NaN ("not a number") sorts higher than all other values including positive infinity,
but lower than the NULL value.

For more information on Inf and NaN, see "INF and NAN" on page 1-30.

Search Conditions 4-19

IS NULL predicate

IS NULL predicate

An IS NULL predicate determines whether an expression has the value NULL. The
predicate evaluates to TRUE if the expression is NULL. If the NOT option is used, the
predicate evaluates to TRUE if the expression is NOT NULL.

SQL syntax
{ColumnName | Constant | (Expression)} IS [NOT] NULL
Parameters
Parameter Description
ColumnName The name of a column from which a value is to be taken.
Column names are discussed in Chapter 2, "Names,
Namespace and Parameters".
Constant A specific value. See "Constants" on page 3-11.
(Expression) Expression to test.
Examples

Vendors with no personal contact names are identified.

SELECT * FROM Purchasing.Vendors WHERE ContactName IS NULL;

4-20 Oracle TimesTen In-Memory Database SQL Reference

LIKE predicate

LIKE predicate

SQL syntax

Parameters

A LIKE predicate determines whether a CHAR, VARCHAR2, NCHAR, or NVARCHAR2
expression contains a given pattern. The predicate evaluates to TRUE if an expression
contains the pattern.

Expression [NOT] LIKE
{'PatternString'| {? | :DynamicParameter}}
[ESCAPE {'EscapeChar' | {? | :DynamicParameter}}]

Parameter Description

Expression The syntax of expressions is presented in Chapter 3,
"Expressions".

PatternString Describes what you are searching for in the expression.

The pattern may consist of characters only (including
digits and special characters). For example, NAME
LIKE 'Annie' evaluates to TRUE only for a name of
Annie with no spaces. Upper case and lower case are
significant.

You can also use the predicate to test for a partial
match by using the following symbols in the pattern:

_ Represents any single character.

For example:

BOB and TOM both satisfy the predicate NAME LIKE
'_O_".

% Represents any string of zero or more characters.

For example, MARIE and RENATE both satisfy the
predicate NAME LIKE 'SA%'.

You can use the _ and % symbols multiple times and in
any combination in a pattern. You cannot use these
symbols literally within a pattern unless you use the
ESCAPE clause and precede the symbols with the
escape character, described by the EscapeChar

parameter.

EscapeChar Describes an optional escape character which can be
used to interpret the symbols _ and % literally in the
pattern.

The escape character must be a single character. When
it appears in the pattern, it must be followed by the
escape character itself, the _ symbol or the % symbol.
Each such pair represents a single literal occurrence of
the second character in the pattern. The escape
character is always case sensitive. The escape character
cannot be _ or %.

? Indicates a dynamic parameter in a prepared SQL
statement. The parameter value is supplied when the

DynamicParam r .
ynamicbaramete statement is executed.

Search Conditions 4-21

LIKE predicate

Description

Examples

= Aslong as no escape character is specified, the _ or % in the pattern acts as a wild
card character. If an escape character is specified, then the wild card or escape
character that follows is treated literally. If the character following an escape
character is not a wild card or the escape character, an error results.

» If the value of the expression, the pattern, or the escape character is NULL, then the
LIKE predicate evaluates to NULL and the row is not operated on.

Find employees whose last name begins with ' Sm".

Command> SELECT employee_id, last_name,first_name FROM employees
> WHERE last_name LIKE 'Sm$%'
> ORDER BY employee_id,last_name, first_name;

< 159, Smith, Lindsey >

< 171, Smith, wWilliam >

2 rows found.

Find employees whose last name begins with ' SM'. This query returns no results
because there are no employees whose last_name begins with ' SM'.

Command> SELECT employee_id, last_name,first_name from employees
> WHERE last_name LIKE 'SM%'
> ORDER BY employee_id, last_name, first_name;

0 rows found.

Use a dynamic parameter denoted by ? to find employees whose last name begins
with 'Sm' at execution time.

Command> SELECT employee_id, last_name, first_name FROM employees
> WHERE last_name like ?
> ORDER BY employee_id, last_name, first_name;

Type '?' for help on entering parameter values.

Type '*' to end prompting and abort the command.

Type '-' to leave the parameter unbound.

Type '/;' to leave the remaining parameters unbound and execute the command.

Enter Parameter 1 '_QMARK_1' (VARCHAR2) > 'Sm%'
< 159, Smith, Lindsey >

< 171, Smith, wWilliam >

2 rows found.

Use a bind variable denoted by : a to find employees whose last name begins with
'Sm' at execution time.

Command> SELECT employee_id, last_name,first_name FROM employees
> WHERE last_name LIKE :a
> ORDER BY employee_id, last_name, first_name;

Type '?' for help on entering parameter values.

Type '*' to end prompting and abort the command.

Type '-' to leave the parameter unbound.

Type '/;' to leave the remaining parameters unbound and execute the command.

Enter Parameter 1 'A' (VARCHAR2) > 'Sm%'
< 159, Smith, Lindsey >

< 171, Smith, William >

2 rows found.

4-22 Oracle TimesTen In-Memory Database SQL Reference

LIKE predicate

For employees whose last name begins with 'Smit ', find the last name of the
manager. Display the first name and last name of the employee and the last name of
the manager.

Command> SELECT el.first name || ' ' || el.last_name||' works for '||e2.last_name
> FROM employees el, employees e2
> WHERE el.manager_id = e2.employee_id
> AND el.last_name like 'Smit';

< Lindsey Smith works for Partners >

< William Smith works for Cambrault >

2 rows found.

This query results in an error because the pattern references a column.

Command> SELECT el.first name || ' ' || el.last_name||' works for '||e2.last_name
> FROM employees el, employees e2
> WHERE el.manager_id = e2.employee_id
> AND 'Smith' like el.last_name;
1001: Syntax error in SQL statement before or at: "E1l", character position: 169
...nager_id = e2.employee_id AND 'Smith' like el.last_name

AN

The command failed.

Search Conditions 4-23

NCHAR and NVARCHAR2

NCHAR and NVARCHAR2

The LIKE predicate can be used for pattern matching of NCHAR and NVARCHAR2
strings. The pattern matching characters are:

Character Description

U+005F SPACING UNDERSCORE Represents any single Unicode character.

U+0025 PERCENT SIGN Represents any string of zero or more Unicode
characters.

Description
» The escape character is similarly supported as a single Unicode character or
parameter.
» The types of the LIKE operands can be any combination of character types.
= Case-insensitive and accent-insensitive NLS_SORT is supported with the LIKE
predicate.
Examples

In these examples, the Unicode character U+0021 EXCLAMATION MARK is being used
to escape the Unicode character U+005F SPACING UNDERSCORE. Unicode character
U+0025 PERCENT SIGN is not escaped, and assumes its pattern matching meaning.

VendorName is an NCHAR or NVARCHAR?2 column.

SELECT VendorName FROM Purchasing.Vendors
WHERE VendorName LIKE N'ACME!_%' ESCAPE N'!';

This example is equivalent:

SELECT VendorName FROM Purchasing.Vendors
WHERE VendorName LIKE N'ACME!\u005F\u0025' ESCAPE N'!"';

4-24 Oracle TimesTen In-Memory Database SQL Reference

O

SQL Statements

This chapter provides information about the SQL statements available in TimesTen.

SQL statements are generally considered to be either Data Manipulation Language
(DML) statements or Data Definition Language (DDL) statements.

DML statements modify database objects. INSERT, UPDATE and DELETE are examples
of DML statements.

DDL statements modify the database schema. CREATE TABLE and DROP TABLE are
examples of DDL statements.

Comments within SQL statements

A comment can appear between keywords, parameters, or punctuation marks in a
statement. You can include a comment in a statement in two ways:

= Begin the comment with a slash and an asterisk (/ *). Proceed with the text of the
comment. The text can span multiple lines. End the comment with an asterisk and
aslash. (*/). You do not need to separate the opening and terminating characters
from the text by a space or line break.

= Begin the comment with two hyphens (--). Proceed with the text of the comment.
The text cannot extend to a new line. End the comment with a line break.

SQL Statements 5-1

ALTER ACTIVE STANDBY PAIR

ALTER ACTIVE STANDBY PAIR

You can change an active standby pair by:
» Adding or dropping a subscriber database

= Altering store attributes. Only the PORT and TIMEOUT attributes can be set for
subscribers.

s Including tables, sequences or cache groups in the replication scheme
= Excluding tables, sequences or cache groups from the replication scheme

See "Making other changes to an active standby pair" in Oracle TimesTen In-Memory
Database TimesTen to TimesTen Replication Guide.

Required privilege

ADMIN
SQL syntax
ALTER ACTIVE STANDBY PAIR {
SubscriberOperation |
StoreOperation | InclusionOperation |
NetworkOperation } [...]
Syntax for SubscriberOperation:
{ADD | DROP } SUBSCRIBER FullStoreName
Syntax for StoreOperation:
ALTER STORE FullStoreName SET StoreAttribute
Syntax for InclusionOperation:
[{ INCLUDE | EXCLUDE }{TABLE [[Owner.]TableName [,...]]]
CACHE GROUP [[Owner.]CacheGroupName [,...11]
SEQUENCE [[Owner.]SequenceName [,...11} [,...]]
Syntax for NetworkOperation:
ADD ROUTE MASTER FullStoreName SUBSCRIBER FullStoreName
{ { MASTERIP MasterHost | SUBSCRIBERIP SubscriberHost }
PRIORITY Priority } [...]
DROP ROUTE MASTER FullStoreName SUBSCRIBER FullStoreName
{ MASTERIP MasterHost | SUBSCRIBERIP SubscriberHost } [...]
Parameters
Parameter Description
ADD SUBSCRIBER FullStoreName Indicates a subscriber database. FullStoreName

is the database file name specified in the
DataStore attribute of the DSN description.

5-2 Oracle TimesTen In-Memory Database SQL Reference

ALTER ACTIVE STANDBY PAIR

Parameter

Description

DROP SUBSCRIBER FullStoreName

Indicates that updates should no longer be sent to
the specified subscriber database. This operation
fails if the replication scheme has only one
subscriber. FullStoreName is the database file
name specified in the DataStore attribute of the
DSN description.

ALTER STORE FullStoreName SET
StoreAttribute

Indicates changes to the attributes of a database.
Only the PORT and TIMEOUT attributes can be set
for subscribers. FullStoreName is the database
file name specified in the DataStore attribute of
the DSN description.

For information on StoreAttribute clauses, see
"ALTER REPLICATION" on page 5-14.

FullStoreName

The database, specified as one of the following;:
u SELF
» The prefix of the database file name

For example, if the database path is
directory/subdirectory/data.ds0, then
data is the database name that should be used.

This is the database file name specified in the
DataStore attribute of the DSN description with
optional host ID in the form:

DataStoreName [ON Host]

Host can be either an IP address or a literal host
name assigned to one or more IP addresses, as
described in "Configuring host IP addresses" in
Oracle TimesTen In-Memory Database TimesTen to
TimesTen Replication Guide. Host names containing
special characters must be surrounded by double
quotes. For example: "MyHost-500".

{ INCLUDE | EXCLUDE}

{ [TABLE
[Owner.] TableNamel, ...] |

CACHE GROUP
[[Owner.] CacheGroupName] | [,...

SEQUENCE [[Owner.] SequenceName
[,...1}

[,...1

]

Includes in or excludes from replication the tables,
sequences or cache groups listed.

INCLUDE adds the tables, sequences or cache
groups to replication. Use one INCLUDE clause for
each object type (table, sequence or cache group).

EXCLUDE removes the tables, sequences or cache
groups from replication. Use one EXCLUDE clause
for each object type (table, sequence or cache

group).

ADD ROUTE MASTER FullStoreName
SUBSCRIBER FullStoreName

Adds NetworkOperation to replication scheme.
Allows you to control the network interface that a
master store uses for every outbound connection
to each of its subscriber stores. In the context of the
ADD ROUTE clause, each master database is a
subscriber of the other master database and each
read-only subscriber is a subscriber of both master
databases.

Can be specified more than once.

For FullStoreName, "ON host" must be
specified.

SQL Statements 5-3

ALTER ACTIVE STANDBY PAIR

Parameter Description

DROP ROUTE MASTER FullStoreName Drops NetworkOperation from replication
SUBSCRIBER FullStoreName scheme.

Can be specified more than once.

For FullStoreName, "ON host" must be

specified.
MASTERIP MasterHost | MasterHost and SubscriberHost are the IP
SUBSCRIBERIP SubscriberHost addresses for the network interface on the master

and subscriber stores. Specify in dot notation or
canonical format or in colon notation for IPV6.

Clause can be specified more than once. Valid for
both ADD and DROP ROUTE MASTER.

PRIORITY Priority Variable expressed as an integer from 1 to 99.
Denotes the priority of the IP address. Lower
integral values have higher priority. An error is
returned if multiple addresses with the same
priority are specified. Controls the order in which
multiple IP addresses are used to establish peer
connections.

Required syntax of NetworkOperation clause.
Follows MASTERIP MasterHost |
SUBSCRIBERIP SubscriberHost clause.

Description

= You must stop the replication agent before altering an active standby pair. The
exceptions are for those objects and statements that are automatically replicated
and included based on the values of the DDL._REPLICATION_LEVEL and
DDL_REPLICATION_ACTION attributes, as described in "ALTER SESSION" on
page 5-23.

= You may only alter the active standby pair replication scheme on the active
database. See "Making other changes to an active standby pair" in Oracle TimesTen
In-Memory Database TimesTen to TimesTen Replication Guide for more information.

s Use ADD SUBSCRIBER FullStoreName to add a subscriber to the replication
scheme.

s Use DROP SUBSCRIBER FullStoreName to drop a subscriber from the
replication scheme.

s UseALTER STORE FullStoreName SET StoreAttribute to change the
attributes for the specified database. Only the PORT and TIMEOUT attributes can
be set for subscribers.

= Use the INCLUDE or EXCLUDE clause to include the listed tables, sequences or
cache groups in the replication scheme or to exclude them from the replication
scheme. Use one INCLUDE or EXCLUDE clause for each object type (table, sequence
or cache group). The ALTER ACTIVE STANDBY statement is not necessary for
those objects and statements that are automatically replicated and included based
on the values of the DDL_REPLICATION_LEVEL and
DDL_REPLICATION_ACTION attributes, as described in "ALTER SESSION" on
page 5-23. However, if DDL._REPLICATION_LEVEL=2 and
DDL_REPLICATION_ACTION="EXCLUDE," use the INCLUDE clause to include
replicated objects into the replication scheme.

= When DDL_REPLICATION_LEVEL=2, the INCLUDE clause can only be used with
empty tables on the active database. The contents of the corresponding tables on

5-4 Oracle TimesTen In-Memory Database SQL Reference

ALTER ACTIVE STANDBY PAIR

Examples

See also

the standby and any subscribers will be truncated before the table is added to the
replication scheme.

= You cannot execute the ALTER ACTIVE STANDBY PAIR statement when Oracle
Clusterware is used with TimesTen.

Add a subscriber to the replication scheme.
ALTER ACTIVE STANDBY PAIR
ADD SUBSCRIBER repd;
Drop two subscribers from the replication scheme.

ALTER ACTIVE STANDBY PAIR
DROP SUBCRIBER rep3
DROP SUBSCRIBER rep4;

Alter the store attributes of the rep3 and rep4 databases.

ALTER ACTIVE STANDBY PAIR
ALTER STORE rep3 SET PORT 23000 TIMEOUT 180
ALTER STORE rep4 SET PORT 23500 TIMEOUT 180;

Add a table, a sequence and two cache groups to the replication scheme.

ALTER ACTIVE STANDBY PAIR
INCLUDE TABLE my.newtab
INCLUDE SEQUENCE my.newseq
INCLUDE CACHE GROUP my.newcgl, my.newcg?2;

Add NetworkOperation clause to active standby pair:

ALTER ACTIVE STANDBY PAIR
ADD ROUTE MASTER repl ON "machinel" SUBSCRIBER rep2 ON "machine2"
MASTERIP "1.1.1.1" PRIORITY 1 SUBSCRIBERIP "2.2.2.2" PRIORITY 1;

CREATE ACTIVE STANDBY PAIR
DROP ACTIVE STANDBY PAIR

SQL Statements 5-5

ALTER CACHE GROUP

ALTER CACHE GROUP

The ALTER CACHE GROUP statement allows changes to the state, interval and mode
of AUTOREFRESH.

Updates on Oracle tables can be propagated back to the TimesTen cache group with
the use of AUTOREFRESH. AUTOREFRESH can be enabled when the cache group is a
user managed cache group or is defined as READONLY with an AUTOREFRESH clause.

Any values or states set by ALTER CACHE GROUP are persistent. They are stored in
the database and survive daemon and cache agent restarts.

For a description of cache group types, see "User managed and system managed cache
groups" on page 5-54.

Required privilege

SQL syntax

Parameters

No privilege is required for the cache group owner.

ALTER ANY CACHE GROUP for another user's cache group.

This statement changes the AUTOREFRESH mode of the cache group, which determines
which rows are updated during an autorefresh operation:

ALTER CACHE GROUP [Owner.]GroupName
SET AUTOREFRESH MODE
{INCREMENTAL | FULL}

This statement changes the AUTOREFRESH interval on the cache group:

ALTER CACHE GROUP [Owner.]GroupName
SET AUTOREFRESH INTERVAL IntervalValue
{MINUTE[S] | SECOND[S] | MILLISECONDI[S] }

This statement alters the AUTOREFRESH state:

ALTER CACHE GROUP [Owner.]GroupName
SET AUTOREFRESH STATE
{ON | OFF | PAUSED}

Parameter Description
[Owner.] GroupName Name assigned to the new cache group.
AUTOREFRESH Indicates that changes to Oracle tables should be automatically

propagated to TimesTen. For details, see "TAUTOREFRESH in
cache groups" on page 5-62.

MODE Determines which rows in the cache are updated during an
autorefresh. If the INCREMENTAL clause is specified, TimesTen
refreshes only rows that have been changed on Oracle since the
last propagation. If the FULL clause is specified or if there is
neither FULL nor INCREMENTAL clause specified, TimesTen
updates all rows in the cache with each autorefresh. The default
mode is INCREMENTAL.

5-6 Oracle TimesTen In-Memory Database SQL Reference

ALTER CACHE GROUP

Description

See also

Parameter Description

INTERVAL Indicates the interval at which autorefresh should occur in units
of minutes, seconds or milliseconds. An integer value that
specifies how often AUTOREFRESH should be scheduled, in
minutes, seconds or milliseconds. The default value is 10
minutes. If the specified interval is not long enough for an
AUTOREFRESH to complete, a runtime warning is generated and
the next AUTOREFRESH waits until the current one finishes. An
informational message is generated in the support log if the wait
queue reaches 10.

IntervalValue

STATE Specifies whether AUTOREFRESH should be changed to on, off or
paused. By default, the AUTOREFRESH STATE is ON.

ON AUTOREFRESH is scheduled to occur at the specified interval.

OFF A scheduled AUTOREFRESH is cancelled, and TimesTen does not
try to maintain the information necessary for an INCREMENTAL
refresh. Therefore if AUTOREFRESH is turned on again at a later
time, the first refresh is FULL.

PAUSED A scheduled AUTOREFRESH is cancelled, but TimesTen tries to
maintain the information necessary for an INCREMENTAL refresh.
Therefore if AUTOREFRESH is turned on again at a later time, a
full refresh may not be necessary.

= Arefresh does not occur immediately after issuing ALTER CACHE GROUP. . .SET
AUTOREFRESH STATE. This statement only changes the state of AUTOREFRESH.
When the transaction that contains the ALTER CACHE GROUP statement is
committed, the cache agent is notified to schedule an AUTOREFRESH immediately,
but the commit goes through without waiting for the completion of the refresh.
The scheduling of the autorefresh operation is part of the transaction, but the
refresh itself is not.

n If you issue an ALTER CACHE GROUP... SET AUTOREFRESH STATE OFF
statement and there is an autorefresh operation currently running, then:

- If LockWait interval is 0, the ALTER statement fails with a lock timeout error.

— If LockWait interval is non-zero, then the current autorefresh transaction is
rolled back, and the ALTER statement continues. This affects all cache groups
with the same autorefresh interval.

= Replication cannot occur between cache groups with AUTOREFRESH and cache
groups without AUTOREFRESH.

» Ifthe ALTER CACHE GROUP statement is part of a transaction that is being
replicated, and if the replication scheme has the RETURN TWOSAFE attribute, the
transaction may fail.

CREATE CACHE GROUP

SQL Statements 5-7

ALTER FUNCTION

ALTER FUNCTION

The ALTER FUNCTION statement recompiles a standalone stored function. Explicit
recompilation eliminates the need for implicit runtime recompilation and prevents
associated runtime compilation errors and performance overhead.

To recompile a function that is part of a package, recompile the package using the
ALTER PACKAGE statement.

Required privilege

SQL syntax

Parameters

Description

No privilege is required for the PL/SQL function owner.

ALTER ANY PROCEDURE for another user's function.

ALTER FUNCTION [Owner.]FunctionName COMPILE
[compiler parameters_clause [...]]
[REUSE SETTINGS]

Parameter Description
[Owner.] FunctionName Name of the function to be recompiled.
COMPILE Required keyword that causes recompilation of the

function. If the function does not compile successfully, use
the ttIsgl command SHOW ERRORS to display the
compiler error messages.

compiler. parameters_clause Use this optional clause to specify a value for one of the
PL/SQL persistent compiler parameters. The PL/SQL
persistent compiler parameters are
PLSQL_OPTIMIZE_LEVEL, PLSCOPE_SETTINGS and
NLS_LENGTH_SEMANTICS.

You can specify each parameter once in the statement.

If you omit a parameter from this clause and you specify
REUSE SETTINGS, then if a value was specified for the
parameter in an earlier compilation, TimesTen uses that
earlier value. If you omit a parameter and either you do not
specify REUSE SETTINGS or no value has been specified
for the parameter in an earlier compilation, then TimesTen
obtains the value for the parameter from the session
environment.

REUSE SETTINGS Use this optional clause to prevent TimesTen from
dropping and reacquiring compiler switch settings. When
you specify REUSE SETTINGS, TimesTen preserves the
existing settings and uses them for the compilation of any
parameters for which values are not specified.

s The ALTER FUNCTION statement does not change the declaration or definition of
an existing function. To redeclare or redefine a function, use the CREATE
FUNCTION statement.

5-8 Oracle TimesTen In-Memory Database SQL Reference

ALTER FUNCTION

See also

TimesTen first recompiles objects upon which the function depends, if any of
those objects are invalid.

TimesTen also invalidates any objects that depend on the function, such as
functions that call the recompiled function or package bodies that define functions
that call the recompiled function.

If TimesTen recompiles the function successfully, then the function becomes valid.
If recompiling the function results in compilation errors, then TimesTen returns an
error and the function remains invalid. Use the t t Isql command SHOW ERRORS

to display compilation errors.

During recompilation, TimesTen drops all persistent compiler settings, retrieves
them again from the session, and stores them at the end of compilation. To avoid
this process, specify the REUSE SETTINGS clause.

CREATE FUNCTION

SQL Statements 5-9

ALTER PACKAGE

ALTER PACKAGE

The ALTER PACKAGE statement explicitly recompiles a package specification, package
body, or both. Explicit recompilation eliminates the need for implicit runtime
recompilation and prevents associated runtime compilation errors.

This statement recompiles all package objects together. You cannot use the ALTER
PROCEDURE or ALTER FUNCTION statement to individually recompile a procedure or
function that is part of a package.

Required privilege
No privilege is required for the package owner.

ALTER ANY PROCEDURE for another user's package.

SQL syntax

ALTER PACKAGE [Owner.] PackageName COMPILE
[PACKAGE | SPECIFICATION | BODY]
[compiler parameters_clause [...]]
[REUSE SETTINGS]

Parameters

Parameter Description

[Owner.] PackageName Name of the package to be recompiled.

COMPILE Required clause used to force the recompilation of the
package specification, package body, or both.

[PACKAGE | SPECIFICATION |BODY] Specify PACKAGE to recompile both the package
specification and the body. Specify SPECIFICATION to
recompile the package specification. Specify BODY to
recompile the package body.

PACKAGE is the default.

compiler parameters_clause Use this optional clause to specify a value for one of the
PL/SQL persistent compiler parameters. The PL/SQL
persistent compiler parameters are
PLSQL_OPTIMIZE_LEVEL, PLSCOPE_SETTINGS and
NLS_LENGTH_SEMANTICS.

You can specify each parameter once in the statement.

If you omit a parameter from this clause and you
specify REUSE SETTINGS, then if a value was specified
for the parameter in an earlier compilation, TimesTen
uses that earlier value. If you omit a parameter and
either you do not specify REUSE SETTINGS or no value
has been specified for the parameter in an earlier
compilation, then TimesTen obtains the value for the
parameter from the session environment.

REUSE SETTINGS Use this optional clause to prevent TimesTen from
dropping and reacquiring compiler switch settings.
When you specify REUSE SETTINGS, TimesTen
preserves the existing settings and uses them for the
compilation of any parameters for which values are not
specified.

5-10 Oracle TimesTen In-Memory Database SQL Reference

ALTER PACKAGE

Description

See also

When you recompile a package specification, TimesTen invalidates local objects
that depend on the specification, such as procedures that call procedures or
functions in the package. The body of the package also depends on the
specification. If you subsequently reference one of these dependent objects
without first explicitly recompiling it, then TimesTen recompiles it implicitly at
runtime.

When you recompile a package body, TimesTen does not invalidate objects that
depend on the package specification. TimesTen first recompiles objects upon
which the body depends, if any of those objects are invalid. If TimesTen
recompiles the body successfully, then the body become valid.

When you recompile a package, both the specification and the body are explicitly
recompiled. If there are no compilation errors, then the specification and body
become valid. If there are compilation errors, then TimesTen returns an error and
the package remains invalid.

CREATE PACKAGE

SQL Statements 5-11

ALTER PROCEDURE

ALTER PROCEDURE

The ALTER PROCEDURE statement recompiles a standalone stored procedure. Explicit
recompilation eliminates the need for implicit runtime recompilation and prevents
associated runtime compilation errors and performance overhead.

To recompile a procedure that is part of a package, recompile the package using the
ALTER PACKAGE statement.

Required privilege
No privilege is required for the procedure owner.

ALTER ANY PROCEDURE for another user's procedure.

SQL syntax

ALTER PROCEDURE [Owner.]ProcedureName COMPILE
[compiler parameters_clause [...]]
[REUSE SETTINGS]

Parameters

Parameter Description

[Owner.] ProcedureName Name of the procedure to be recompiled.

COMPILE Required keyword that causes recompilation of the
procedure. If the procedure does not compile successfully,
use the ttIsgl command SHOW ERRORS to display the
compiler error messages.

compiler parameters_clause Use this optional clause to specify a value for one of the
PL/SQL persistent compiler parameters. The PL/SQL
persistent compiler parameters are
PLSQL_OPTIMIZE_LEVEL, PLSCOPE_SETTINGS and
NLS_LENGTH_SEMANTICS.

You can specify each parameter once in the statement.

If you omit a parameter from this clause and you specify
REUSE SETTINGS, then if a value was specified for the
parameter in an earlier compilation, TimesTen uses that
earlier value. If you omit a parameter and either you do
not specify REUSE SETTINGS or no value has been
specified for the parameter in an earlier compilation, then
TimesTen obtains the value for the parameter from the
session environment.

REUSE SETTINGS Use this optional clause to prevent TimesTen from
dropping and reacquiring compiler switch settings. When
you specify REUSE SETTINGS, TimesTen preserves the
existing settings and uses them for the compilation of any
parameters for which values are not specified.

Description

s The ALTER PROCEDURE statement does not change the declaration or definition
of an existing procedure. To redeclare or redefine a procedure, use the CREATE
PROCEDURE statement.

5-12 Oracle TimesTen In-Memory Database SQL Reference

ALTER PROCEDURE

Examples

See also

s TimesTen first recompiles objects upon which the procedure depends, if any of
those objects are invalid.

s TimesTen also invalidates any objects that depend on the procedure, such as
procedures that call the recompiled procedure or package bodies that define
procedures that call the recompiled procedure.

» If TimesTen recompiles the procedure successfully, then the procedure becomes
valid. If recompiling the procedure results in compilation errors, then TimesTen
returns an error and the procedure remains invalid. Use the t tIsgl command
SHOW ERRORS to display compilation errors.

s During recompilation, TimesTen drops all persistent compiler settings, retrieves
them again from the session, and stores them at the end of compilation. To avoid
this process, specify the REUSE SETTINGS clause.

Query the system view USER_PLSQL_OBJECT_SETTINGS to check
PLSQL_OPTIMIZE_LEVEL and PLSCOPE_SETTINGS for procedure query._emp.
Alter query.emp by changing PL.SQL_OPTIMIZE_LEVEL to 3. Verify results.

Command> SELECT PLSQL_OPTIMIZE_LEVEL, PLSCOPE_SETTINGS

> FROM user_plsgl_object_settings WHERE name = 'QUERY_EMP';
< 2, IDENTIFIERS:NONE >
1 row found.

Command> ALTER PROCEDURE query_emp COMPILE PLSQL_OPTIMIZE_LEVEL = 3;
Procedure altered.
Command> SELECT PLSQL_OPTIMIZE_LEVEL, PLSCOPE_SETTINGS

> FROM user_plsqgl_object_settings WHERE name = 'QUERY_EMP';

< 3, IDENTIFIERS:NONE >
1 row found.

CREATE PROCEDURE

SQL Statements 5-13

ALTER REPLICATION

ALTER REPLICATION

The ALTER REPLICATION statement adds, alters, or drops replication elements and
changes the replication attributes of participating databases.

Most ALTER REPLICATION operations are supported only when the replication agent
is stopped (t tAdmin -repStop). However, it is possible to dynamically add a
subscriber database to a replication scheme while the replication agent is running. See
"Altering Replication" in Oracle TimesTen In-Memory Database TimesTen to TimesTen
Replication Guide for more information.

Required privilege
ADMIN

SQL syntax

The ALTER REPLICATION statement has the syntax:

ALTER REPLICATION [Owner.]ReplicationSchemeName
ElementOperation [...] | StoreOperation |
NetworkOperation [...]

Specify ElementOperation one or more times:

ADD ELEMENT ElementName
{DATASTORE | {TABLE [Owner.]TableName [CheckConflicts]} |
SEQUENCE [Owner.]SequenceName}
{ MASTER \ PROPAGATOR } FullStoreName
{ SUBSCRIBER FullStoreName [, ...]
[ReturnServiceAttribute]l } [... 1}
{ INCLUDE | EXCLUDE }{TABLE [[Owner.]TableNamel[,...]1] |
CACHE GROUP [[Owner.]CacheGroupNamel, ...]]|

SEQUENCE [[Owner.]SequenceNamel[,...11}[,...]
ALTER ELEMENT { ElementName \ * IN FullStoreName]
ADD SUBSCRIBER FullStoreName [, ...[ReturnServiceAttribute]

ALTER SUBSCRIBER FullStoreName [, ...] |
SET [ReturnServiceAttributel |
DROP SUBSCRIBER FullStoreName [, ...]
ALTER ELEMENT * IN FullStoreName
SET { MASTER \ PROPAGATOR } FullStoreName
ALTER ELEMENT ElementName
{SET NAME NewElementName | SET CheckConflicts}
ALTER ELEMENT ElementName
{ INCLUDE | EXCLUDE }{TABLE [Owner.]TableName |
CACHE GROUP [Owner.]CacheGroupName |
SEQUENCE [Owner.]SequenceName} [, ...]
DROP ELEMENT { ElementName | * IN FullStoreName }

CheckConflicts can only be set when replicating TABLE elements. The syntax is
described in "CHECK CONFLICTS" on page 5-95.

Syntax for ReturnServiceAttributeis:

{ RETURN RECEIPT [BY REQUEST] | NO RETURN }

StoreOperation clauses:

ADD STORE FullStoreName [StoreAttribute [... 1]
ALTER STORE FullStoreName SET StoreAttribute [...]

5-14 Oracle TimesTen In-Memory Database SQL Reference

ALTER REPLICATION

Parameters

Syntax for the StoreAttributeis:

[DISABLE RETURN {SUBSCRIBER | ALL} NumFailures]
[RETURN SERVICES {ON | OFF} WHEN [REPLICATION] STOPPED]
[DURABLE COMMIT {ON | OFF}]
[RESUME RETURN MilliSeconds]
[LOCAL COMMIT ACTION {NO ACTION| COMMIT}]
[RETURN WAIT TIME Seconds]
[COMPRESS TRAFFIC {ON | OFF}]
[PORT PortNumber]

[TIMEOUT Seconds]
[FAILTHRESHOLD Value]
[CONFLICT REPORTING SUSPEND AT Value]
[CONFLICT REPORTING RESUME AT Value]
[TABLE DEFINITION CHECKING {EXACT|RELAXED}]

Specify NetworkOperation one or more times:

ADD ROUTE MASTER FullStoreName SUBSCRIBER FullStoreName
{ { MASTERIP MasterHost | SUBSCRIBERIP SubscriberHost }
PRIORITY Priority } [...]

DROP ROUTE MASTER FullStoreName SUBSCRIBER FullStoreName
{ MASTERIP MasterHost | SUBSCRIBERIP SubscriberHost } [...]

Parameter Description

[Owner.]ReplicationScheme Name assigned to the replication scheme.
Name

ADD ELEMENT ElementName Adds a new element to the existing replication scheme.
ElementName is an identifier of up to 30 characters. With
DATASTORE elements, the ElementName must be unique
with respect to other DATASTORE element names within
the first 20 chars.

If the element is a DATASTORE, all tables and cache groups
are included in the database. SEQUENCE elements that are
part of the database do not have their return services
modified by this statement.

ADD ELEMENT ElementName Adds a new DATASTORE element to the existing
DATASTORE replication scheme. EIementName is an identifier of up
to 30 characters. With DATASTORE elements, the
ElementName must be unique with respect to other
{TABLE [[Owner.]TableName DATASTORE elementnames within the first 20 chars.
[,...11]

{INCLUDE | EXCLUDE}

INCLUDE includes in the database only the tables and

CACHE GROUP cache groups listed. Use one INCLUDE clause for each

[[Owner.] CacheGroupName object type (table, cache group or sequence).

L.l 00 EXCLUDE includes in the database all tables and cache
SEQUENCE groups except the tables, cache groups and sequences

[[Owner.]SequenceName[, .. listed. Use one EXCLUDE clause for each object type (table,
11y 0] cache group or sequence).

If the element is a sequence, RETURN attributes are not
applied, no conflict checking is supported and sequences
that cycle return an error.

ADD SUBSCRIBER Indicates an additional subscriber database.
FullStoreName FullStoreName is the database file name specified in
the DataStore attribute of the DSN description.

SQL Statements 5-15

ALTER REPLICATION

Parameter Description
ALTER ELEMENT * IN Makes a change to all elements for which
FullStoreName FullStoreName is the MASTER or PROPAGATOR.

FullStoreName is the database file name specified in

SET { MASTER | PROPAGATOR the DataStore attribute of the DSN description.

} FullStoreName
This syntax can be used on a set of element names to:

= Add, alter, or drop subscribers.

s Setthe MASTER or PROPAGATOR status of the element
set.

SEQUENCE elements that are part of the database being
altered do not have their return services modified by this
statement.

ALTER ELEMENT ElementName Name of the element to which a subscriber is to be added
or dropped.

ALTER ELEMENT Renames ElementNamel with the name ElementName?2.

7]l ementNamel You can only rename elements of type TABLE.

SET NAME ElementNameZ2

ALTER ELEMENT ElementName ElementName is the name of the element to be altered.

{ INCLUDE | EXCLUDE} INCLUDE adds to the database the tables and cache groups

(TABLE [Owner.] TableName | listed. Use one INCLUDE clause for each object type (table
or cache group).

CACHE GROUP

EXCLUDE removes from the database the tables and cache
[Owner.]CacheGroupName |

groups listed. Use one EXCLUDE clause for each object
SEQUENCE type (table, cache group or sequence).
[Owner.] SequenceName}

[] If the element is a sequence, RETURN attributes are not

applied, no conflict checking is supported and sequences
that cycle return an error.

ALTER SUBSCRIBER Indicates an alteration to a subscriber database to enable,
FullStoreName disable, or change the return receipt service.

FullStoreName is the database file name specified in
SET RETURN RECEIPT the DataStore attribute of the DSN description.

[BY REQUEST] |NO RETURN

CheckConflicts Check for replication conflicts when simultaneously
writing to bidirectionally replicating TABLE elements
between databases. You cannot check for conflicts when
replicating elements of type DATASTORE. See "CHECK
CONFLICTS" on page 5-95.

COMPRESS TRAFFIC {ON | Compress replicated traffic to reduce the amount of

OFF} network bandwidth. ON specifies that all replicated traffic
for the database defined by STORE be compressed. OFF
(the default) specifies no compression. See "Compressing
replicated traffic" in Oracle TimesTen In-Memory Database
TimesTen to TimesTen Replication Guide for details.

CONFLICT REPORTING Suspends conflict resolution reporting.

SUSPEND AT Value Value is a non-negative integer. The default is 0 and

means never suspend. Conflict reporting is suspended
when the rate of conflict exceeds Value. If you set Value
to 0, conflict reporting suspension is turned off.

Use this clause for table-level replication.

5-16 Oracle TimesTen In-Memory Database SQL Reference

ALTER REPLICATION

Parameter

Description

CONFLICT REPORTING RESUME
AT Value

Resumes conflict resolution reporting.

Value is a non-negative integer. Conflict reporting is
resumed when the rate of conflict falls below Value. The
defaultis 1.

Use this clause for table level replication.

DISABLE RETURN { SUBSCRIBER
| ALL} NumFailures

Set the return service failure policy so that return service
blocking is disabled after the number of timeouts specified
by NumFailures. Selecting SUBSCRIBER applies this
policy only to the subscriber that fails to acknowledge
replicated updates within the set timeout period. ALL
applies this policy to all subscribers should any of the
subscribers fail to respond. This failure policy can be
specified for either the RETURN RECEIPT or RETURN
TWOSAFE service.

If DISABLE RETURN is specified but RESUME RETURN is
not specified, the return services remain off until the
replication agent for the database has been restarted.

See "Managing return service timeout errors and
replication state changes" in Oracle TimesTen In-Memory
Database TimesTen to TimesTen Replication Guide for details.

DURABLE COMMIT {ON | OFF}

Set to override the DurableCommits setting on a
database and enable durable commit when return service
blocking has been disabled by DISABLE RETURN.

DROP ELEMENT * IN
FullStoreName

Deletes the replication description of all elements for
which FullStoreName is the MASTER. FullStoreName
is the database file name specified in the DataStore
attribute of the DSN description.

DROP ELEMENT ElementName

Deletes the replication description of ElementName.

DROP SUBSCRIBER
FullStoreName

Indicates that updates should no longer be sent to the
specified subscriber database. This operation fails if your
replication scheme has only one subscriber.
FullStoreName is the database file name specified in
the DataStore attribute of the DSN description.

FAILTHRESHOLD Value

The number of log files that can accumulate for a
subscriber database. If this value is exceeded, the
subscriber is set to the Failed state.

The value 0 means "No Limit." This is the default.

See "Setting the log failure threshold" in Oracle TimesTen
In-Memory Database TimesTen to TimesTen Replication Guide
for more information.

SQL Statements 5-17

ALTER REPLICATION

Parameter

Description

FullStoreName

The database, specified as one of the following;:
u SELF
s The prefix of the database file name

For example, if the database path is
directory/subdirectory/data.ds0, then data is
the database name.

This is the database file name specified in the DataStore
attribute of the DSN description with optional host ID in
the form:

DataStoreName [ON Host]

Host can be either an IP address or a literal host name
assigned to one or more IP addresses, as described in
"Configuring host IP addresses" in Oracle TimesTen
In-Memory Database TimesTen to TimesTen Replication Guide.
Host names containing special characters must be
surrounded by double quotes. For example:
"MyHost-500".

LOCAL COMMIT ACTION
{NO ACTION | COMMIT}

Specifies the default action to be taken for a RETURN
TWOSAFE transaction in the event of a timeout.

NO ACTION: On timeout, the commit function returns to
the application, leaving the transaction in the same state it
was in when it entered the commit call, with the exception
that the application is not able to update any replicated
tables. The application can only reissue the commit. The
transaction may not be rolled back. This is the default.

COMMIT: On timeout, the commit function attempts to
perform a COMMIT to end the transaction locally. No more
operations are possible on the same transaction.

This setting can be overridden for specific transactions by
calling the ttRepSyncSet procedure with the
localAction parameter.

MASTER FullStoreName

The database on which applications update the specified
element. The MASTER database sends updates to its
SUBSCRIBER databases. FullStoreName is the database
file name specified in the DataStore attribute of the DSN
description.

NO RETURN

Specifies that no return service is to be used. This is the
default.

For details on the use of the return services, see "Using a
return service" in Oracle TimesTen In-Memory Database
TimesTen to TimesTen Replication Guide.

PORT PortNumber

The TCP/IP port number on which the replication agent
on this database listens for connections. If not specified,
the replication agent allocates a port number
automatically.

All TimesTen databases that replicate to each other must
use the same port number.

PROPAGATOR FullStoreName

The database that receives replicated updates and passes
them on to other databases.

5-18 Oracle TimesTen In-Memory Database SQL Reference

ALTER REPLICATION

Parameter

Description

RESUME RETURN MilliSeconds

If return service blocking has been disabled by DISABLE
RETURN, this attribute sets the policy on when to re-enable
return service blocking. Return service blocking is
re-enabled as soon as the failed subscriber acknowledges
the replicated update in a period of time that is less than
the specified Mi11iSeconds.

If DISABLE RETURN is specified but RESUME RETURN is
not specified, the return services remain off until the
replication agent for the database has been restarted.

RETURN RECEIPT [BY
REQUEST]

Enables the return receipt service, so that applications that
commit a transaction to a master database are blocked
until the transaction is received by all subscribers.

RETURN RECEIPT applies the service to all transactions. If
you specify RETURN RECEIPT BY REQUEST, you can
use the ttRepSyncSet procedure to enable the return
receipt service for selected transactions. For details on the
use of the return services, see "Using a return service" in
Oracle TimesTen In-Memory Database TimesTen to TimesTen
Replication Guide.

RETURN SERVICES {ON |
OFF} WHEN [REPLICATION]
STOPPED

Set the return service failure policy so that return service
blocking is either enabled or disabled when the replication
agent is in the "stop" or "pause” state.

OFF is the default when using the RETURN RECEIPT
service. ON is the default when using the RETURN
TWOSAFE service.

See "Managing return service timeout errors and
replication state changes" in Oracle TimesTen In-Memory
Database TimesTen to TimesTen Replication Guide for details.

RETURN TWOSAFE [BY
REQUEST]

Enables the return twosafe service, so that applications
that commit a transaction to a master database are blocked
until the transaction is committed on all subscribers.

RETURN TWOSAFE applies the service to all transactions. If
you specify RETURN TWOSAFE BY REQUEST, you can
use the ttRepSyncsSet procedure to enable the return
receipt service for selected transactions. For details on the
use of the return services, see "Using a return service" in
Oracle TimesTen In-Memory Database TimesTen to TimesTen
Replication Guide.

RETURN WAIT TIME Seconds

Specifies the number of seconds to wait for return service
acknowledgement. The default value is 10 seconds. A
value of '0' means there is no timeout. Your application
can override this timeout setting by calling the
ttRepSyncSet procedure with the returnwait
parameter

SET {MASTER | PROPAGATOR}
FullStoreName

Sets the given database to be the MASTER or PROPAGATOR
of the given elements. The FullStoreName must the be
database's file base name.

SUBSCRIBER FullStoreName

A database that receives updates from the MASTER
databases. FullStoreName is the database file name
specified in the DataStore attribute of the DSN
description.

SQL Statements 5-19

ALTER REPLICATION

Description

Parameter

Description

TABLE DEFINITION CHECKING
{EXACT | RELAXED}

Specifies type of table definition checking that occurs on
the subscriber:

s EXACT - The tables must be identical on master and
subscriber.

= RELAXED - The tables must have the same key
definition, number of columns and column data
types.

The default is EXACT.

TIMEOUT Seconds

The amount of time a database waits for a response from
another database before resending the message. Default:
120 seconds.

ADD ROUTE MASTER
FullStoreName SUBSCRIBER
FullStoreName

Adds NetworkOperation to replication scheme. Allows
you to control the network interface that a master store
uses for every outbound connection to each of its
subscriber stores.

Can be specified more than once.

For FullStoreName, ON "host" must be specified.

DROP ROUTE MASTER
FullStoreName SUBSCRIBER
FullStoreName

Drops NetworkOperation from replication scheme.
Can be specified more than once.

For FullStoreName, ON "host " must be specified.

MASTERIP MasterHost |
SUBSCRIBERIP
SubscriberHost

MasterHost and SubscriberHost are the IP addresses
for the network interface on the master and subscriber
stores. Specify in dot notation or canonical format or in
colon notation for IPV6.

Clause can be specified more than once. Valid for both
ADD and DROP ROUTE MASTER.

PRIORITY Priority

Variable expressed as an integer from 1 to 99. Denotes the
priority of the IP address. Lower integral values have
higher priority. An error is returned if multiple addresses
with the same priority are specified. Controls the order in
which multiple IP addresses are used to establish peer
connections.

Required syntax of NetworkOperation clause. Follows
MASTERIP MasterHost | SUBSCRIBERIP
SubscriberHost clause.

= ALTER ELEMENT DROP SUBSCRIBER deletes a subscriber for a particular

replication element.

= ALTER ELEMENT SET NAME may be used to change the name of a replication

element when it conflicts with one already defined at another database. SET NAME
does not admit the use of * IN FullStoreName. The FullStoreName must be
the database's file base name. For example, if the database file name is data.dsO0,
then data is the file base name.

= ALTER ELEMENT SET MASTER may be used to change the master database for
replication elements. The * IN FullStoreName option must be used for the
MASTER operation. That is, a master database must transfer ownership of all of its
replication elements, thereby giving up its master role entirely. Typically, this
option is used in ALTER REPLICATION statements requested at SUBSCRIBER
databases after the failure of a (common) MASTER.

5-20 Oracle TimesTen In-Memory Database SQL Reference

ALTER REPLICATION

Examples

To transfer ownership of the master elements to the subscriber:

= Manually drop the replicated elements by executing an ALTER REPLICATION
DROP ELEMENT statement for each replicated table.

s Use ALTER REPLICATION ADD ELEMENT to add each table back to the
replication scheme, with the newly designated MASTER / SUBSCRIBER roles.

] ALTER REPLICATION ALTER ELEMENT SET MASTER does not automatically
retain the old master as a subscriber in the scheme. If this is desired, execute an
ALTER REPLICATION ALTER ELEMENT ADD SUBSCRIBER statement.

Note: Thereis no ALTER ELEMENT DROP MASTER. Each replication
element must have exactly one MASTER database, and the currently
designated MASTER cannot be deleted from the replication scheme.

= Stop the replication agent before you use the NetworkOperation clause.

This example sets up replication for an additional table westleads that is updated on
database west and replicated to database east.

ALTER REPLICATION rl
ADD ELEMENT e3 TABLE westleads
MASTER west ON "westcoast"
SUBSCRIBER east ON "eastcoast";

This example adds an additional subscriber (backup) to table westleads.

ALTER REPLICATION rl
ALTER ELEMENT e3
ADD SUBSCRIBER backup ON "backupserver";

This example changes the element name of table westleads from e3 to
newelementname.

ALTER REPLICATION rl
ALTER ELEMENT e3
SET NAME newelementname;

This example makes newwest the master for all elements for which west currently is
the master.

ALTER REPLICATION rl
ALTER ELEMENT * IN west
SET MASTER newwest;

This element changes the port number for east.
ALTER REPLICATION rl
ALTER STORE east ON "eastcoast" SET PORT 22251;
This example adds my . tabl table to the ds1 database element in my . repl
replication scheme.

ALTER REPLICATION my.repl
ALTER ELEMENT dsl DATASTORE
INCLUDE TABLE my.tabl;

SQL Statements 5-21

ALTER REPLICATION

This example adds my . cgl cache group to ds1 database in my . repl replication
scheme.

ALTER REPLICATION my.repl
ALTER ELEMENT dsl DATASTORE
INCLUDE CACHE GROUP my.cgl;

This example adds ds1 database to my . repl replication scheme. Include my . tab2
table, my . cg2 cache group, and my . cg3 cache group in the database.

ALTER REPLICATION my.repl
ADD ELEMENT dsl DATASTORE
MASTER rep2
SUBSCRIBER repl, rep3
INCLUDE TABLE my.tab2
INCLUDE CACHE GROUP my.cg2, my.cg3;

This example adds ds2 database to a replication scheme but exclude my . tabl table,
my . cg0 cache group and my . cgl cache group.

ALTER REPLICATION my.repl
ADD ELEMENT ds2 DATASTORE
MASTER rep2
SUBSCRIBER repl
EXCLUDE TABLE my.tabl
EXCLUDE CACHE GROUP my.cg0, my.cgl;

Add NetworkOperation clause:

ALTER REPLICATION r
ADD ROUTE MASTER repl ON "machinel" SUBSCRIBER rep2 ON "machine2"
MASTERIP "1.1.1.1" PRIORITY 1 SUBSCRIBERIP "2.2.2.2"
PRIORITY 1
MASTERIP "3.3.3.3" PRIORITY 2 SUBSCRIBERIP "4.4.4.4" PRIORITY 2;

Drop NetworkOperation clause:

ALTER REPLICATION r

DROP ROUTE MASTER repl ON "machinel" SUBSCRIBER rep2 ON "machine2"
MASTERIP "1.1.1.1" SUBSCRIBERIP "2.2.2.2"

MASTERIP "3.3.3.3" SUBSCRIBERIP "4.4.4.4";

See also

ALTER ACTIVE STANDBY PAIR
CREATE ACTIVE STANDBY PAIR
CREATE REPLICATION

DROP ACTIVE STANDBY PAIR
DROP REPLICATION

To drop a table from a database, see "Altering a replicated table" in Oracle TimesTen
In-Memory Database TimesTen to TimesTen Replication Guide.

5-22 Oracle TimesTen In-Memory Database SQL Reference

ALTER SESSION

ALTER SESSION

The ALTER SESSION statement changes session parameters dynamically.

Required privilege

None
SQL syntax
ALTER SESSION SET
{DDL_REPLICATION_ACTION |
DDL_REPLICATION LEVEL |
NLS_SORT = {BINARY| SortName}
NLS_LENGTH_SEMANTICS = {BYTE|CHAR} |
NLS_NCHAR_CONV_EXCP = {TRUE|FALSE} |
ISOLATION_LEVEL = {SERIALIZABLE | READ COMMITTED} |
PLSQL_TIMEOUT = n |
PLSQL_OPTIMIZE_LEVEL = {0|1]2]3}]
PLSCOPE_SETTINGS = {'IDENTIFIERS:ALL'|'IDENTIFIERS:NONE'} |
PLSQL_CONN_MEM LIMIT = n
REPLICATION_TRACK = <TrackNumber>
}
Parameters

Parameter Description

DDL_REPLICATION_ACTION To include a table in the active standby pair when the table is

={’INCLUDE"’ | "EXCLUDE’ } created, set the DDL._REPLICATION_ACTION connection
attribute to INCLUDE. If you do not want to include a table in
the active standby pair when the table is created, set
DDL_REPLICATION_ACTION to EXCLUDE. The default is
INCLUDE.

If set to EXCLUDE, a subsequent ALTER ACTIVE STANDBY
PAIR .. INCLUDE TABLE is required to be executed on the
active database to add the table to the replication scheme. All
tables must be empty on all active standby databases and
subscribers as the table contents will be truncated when this
statement is executed.

This attribute is only valid if DDIL,_REPLICATION_LEVEL=2.

See "Making DDL changes in an active standby pair" in the
Oracle TimesTen In-Memory Database TimesTen to TimesTen
Replication Guide for more information.

SQL Statements 5-23

ALTER SESSION

Parameter Description

DDL_REPLICATION_LEVEL= Indicates whether DDL is replicated across all databases in an
{1]2} active standby pair. The value can be one of the following:

s 1: Default. Add or drop a column to or from a replicated
table on the active database using ALTER TABLE. The
change is replicated to the table in the standby database.

= 2:Supports replication of the creation or dropping of
tables, synonyms or indexes from the active database to
the standby database. This does include creating or
dropping global temporary tables, but does not include
CREATE TABLE AS SELECT. The CREATE INDEX
statement is replicated only when the index is created on
an empty table.

See "Making DDL changes in an active standby pair" in the
Oracle TimesTen In-Memory Database TimesTen to TimesTen
Replication Guide for more information.

NLS_SORT={BINARY | Indicates which collation sequence to use for linguistic

SortName} Comparisons.

Append _CTI or _AT to either BINARY or the SortName value if
you want to do case-insensitive or accent-insensitive sorting.

If you do not specify NLS_SORT, the default is BINARY.

For a complete list of supported values for SortName, see
"Linguistic sorts" in Oracle TimesTen In-Memory Database
Operations Guide.

For more information on case-insensitive or accent-insensitive
sorting, see "Case-insensitive and accent-insensitive linguistic
sorts" in Oracle TimesTen In-Memory Database Operations Guide.

NLS_LENGTH_SEMANTICS Sets the default length semantics configuration. BYTE indicates
={BYTE | CHAR} byte length semantics. CHAR indicates character length
semantics. The default is BYTE.

For more information on length semantics, see "Length
semantics and data storage" in Oracle TimesTen In-Memory
Database Operations Guide.

NLS_NCHAR_CONV_EXCP = Determines whether an error should be reported when there is

{TRUE | FALSE} data loss during an implicit or explicit character type
conversion between NCHAR/NVARCHAR?2 data and
CHAR/VARCHAR?2 data. Specify TRUE to enable error reporting.
Specify FALSE to not report errors. The default is FALSE.

ISOLATION_LEVEL = Sets isolation level. Change takes effect starting with next

{SERIALIZABLE |READ transaction.
COMMITTED}

For a descriptions of the isolation levels, see Oracle TimesTen

In-Memory Database Operations Guide.

PLSQL_TIMEOUT= n Controls how long PL/SQL procedures run before being
automatically terminated. nrepresents the time, in seconds.
Specify 0 for no time limit or any positive integer. The default

is 30.

When you modify this value, the new value impacts PL/SQL
program units that are currently running as well as any other
program units subsequently executed in the same connection.

If PL/SQL is not enabled in your database and you specify this
attribute, TimesTen throws an error.

5-24 Oracle TimesTen In-Memory Database SQL Reference

ALTER SESSION

Description

Parameter Description

PLSQL_OPTIMIZE_LEVEL = Specifies the optimization level used to compile PL/SQL
{0]11]2]3} library units. The higher the setting, the more effort the

compiler makes to optimize PL/SQL library units. Possible
values are 0, 1, 2 or 3. The default is 2.

If PL/SQL is not enabled in your database and you specify this
attribute, TimesTen returns an error.

For more information, see "PLSQL_OPTIMIZE_LEVEL" in
Oracle TimesTen In-Memory Database Reference.

PLSCOPE_SETTINGS = Controls whether or not the PL/SQL compiler generates
' {IDENTIFIERS:ALL cross-reference information. Specify IDENTIFIERS:ALL to
| IDENTIFIERS:NONE} ' generate cross-reference information. The default is

IDENTIFIERS :NONE.

If PL/SQL is not enabled in your database and you specify this
attribute, TimesTen returns an error.

For more information, see "PLSCOPE_SETTINGS" in Oracle
TimesTen In-Memory Database Reference.

PLSQL_CONN_MEM_LIMIT = Specifies the maximum amount of process heap memory that

n

PL/SQL can use for this connection. n is an integer expressed
in megabytes. The default is 100.

If PL/SQL is not enabled in your database and you specify this
attribute, TimesTen returns an error.

For more information, see "PLSQL_CONN_MEM_LIMIT" in
Oracle TimesTen In-Memory Database Reference.

REPLICATION_TRACK = When parallel replication is configured, specify the track to
<TrackNumber> which the transactions belong for the current connection. All

transactions on replicated tables are associated with a track.
The track number setting is constant for the lifetime of the
connection, unless specifically reset. The default track number
is 0.

If the number specified is for a non-existent replication track X,
the transaction is assigned to a track number computed as X
modulo ReplicationParallelism.

You cannot change tracks in the middle of a transaction unless
all preceding operations have been read operations.

For more information, see "Increasing replication throughput
for other replication schemes" in Oracle TimesTen In-Memory
Database TimesTen to TimesTen Replication Guide.

The ALTER SESSION statement affects commands that are subsequently executed
by the session. The new session parameters take effect immediately.

The NLS_SORT setting affects materialized views and cache group maintenance.
Use the NLSSORT () SQL function rather than relying on the NLS_SORT setting.

Character length and byte length semantics are supported to resolve potential
ambiguity regarding column length and storage size. Multibyte encoding
character sets are supported (For example, UTF-8 or AL32UTF8). Multibyte
encodings require varying amounts of storage per character depending on the
character. For example, a UTF-8 character may require from 1 to 4 bytes.

If, for example, a column is defined as CHAR (10), all 10 characters fit in this
column regardless of character set encoding. However, for UTF -8 character set

SQL Statements 5-25

ALTER SESSION

encoding, up to 40 bytes are required. TimesTen supports character length and
byte length semantics to avoid such ambiguity.

= Operations involving character comparisons support linguistic sensitive collating
sequences. Case-insensitive sorts may affect DISTINCT value interpretation.
Supported collating sequence sensitive operations:

- MINMAX

— BETWEEN

- =l=,> >=< <=
— DISTINCT

— CASE

- GROUP BY

— HAVING

— ORDER BY

- 1IN

— LIKE

= Primary key indexes are based on the BINARY collating sequence. You cannot use
nonbinary NLS_SORT with equality searches on the primary key index.

s Implicit and explicit conversions between CHAR and NCHAR are supported.

s Conversions between CHAR and NCHAR are not allowed when using the
TIMESTENS character set.

= You can use the SQL string functions with the supported character sets. For
example, UPPER and LOWER functions support non-ASCII CHAR and VARCHAR2
characters as well as NCHAR and NVARCHAR2 characters.

s TIMESTENS character set restrictions:
— Character set conversions are not allowed.
— BINARY is the only acceptable collating sequence.
- CHAR semantics are ignored. Characters are single-byte.

- UPPER and LOWER functions support ASCII characters only. Results for
non-ASCII characters are undefined. TimesTen does not return an error.

= NLS_SORT settings other than BINARY could have a performance impact on
character operations.

= Choice of character set could have an impact on memory consumption for CHAR
and VARCHAR?2 column data.

» The character sets of all databases involved in a replication scheme must match.

s Toadd an existing table to an active standby pair, set
DDL_REPLICATION_LEVEL=2 and DDL_REPLICATION_ACTION to INCLUDE.
Alternatively, you can use the ALTER ACTIVE STANDBY PAIR INCLUDE
TABLE statement if DDI._ REPLICATION_ACTION is set to EXCLUDE. In this case,
the table must be empty and present on all databases before executing the ALTER
ACTIVE STANDBY PAIR INCLUDE TABLE statement as the table contents will
be truncated when this statement is executed.

= Objects are only replicated to TimesTen instances of release 11.2.1.8 or greater that
are in a replication scheme using an active standby pair.

5-26 Oracle TimesTen In-Memory Database SQL Reference

ALTER SESSION

Examples

Use the ALTER SESSION statement to change PLSQL_TIMEOUT to 60 seconds. Use a
second ALTER SESSION statement to change PLSQL_OPTIMIZE_LEVEL to 3. Then
call ttConfiguration to display the new values.

Command> ALTER SESSION SET PLSQL_TIMEOUT = 60;
Session altered.

Command> ALTER SESSION SET PLSQL_OPTIMIZE_LEVEL = 3;
Session altered.

Command> CALL TTCONFIGURATION () ;
< CkptFrequency, 600 >

< CkptLogVolume, 0 >

< CkptRate, 0 >

A .

PLSQL_OPTIMIZE LEVEL, 3 >
< PLSQL_TIMEOUT, 60 >

47 rows found.

In this example, set PLSQL_TIMEOUT to 20 seconds. Attempt to execute a program
that loops indefinitely. In 20 seconds, execution is terminated and an error is returned.

Command> ALTER SESSION SET PLSQL_TIMEOUT = 20;

Command> DECLARE v_timeout NUMBER;

> BEGIN

> LOOP

> v_timeout :=0;

> EXIT WHEN v_timeout < 0;
> END LOOP;

> END;

>/

8509: PL/SQL execution terminated; PLSQL_TIMEOUT exceeded

Call ttConfiguration to display the current PLSCOPE_SETTINGS value. Use the
ALTER SESSION statement to change the PLSCOPE_SETTINGS value to
IDENTIFIERS:ALL. Create a dummy procedure p. Query the system view
SYS.USER_PLSQL_OBJECT_SETTINGS to confirm that the new setting is applied to
procedure p.

Command> CALL TTCONFIGURATION () ;
< CkptFrequency, 600 >

< CkptLogVolume, 0 >

< CkptRate, 0 >

< PLSCOPE_SETTINGS, IDENTIFIERS:NONE >
47 rows found.

Command> ALTER SESSION SET PLSCOPE_SETTINGS = 'IDENTIFIERS:ALL';
Session altered.

Command> CREATE OR REPLACE PROCEDURE p IS
> BEGIN
> NULL;
> END;
>/
Procedure created.

SQL Statements 5-27

ALTER SESSION

Command> SELECT PLSCOPE_SETTINGS FROM SYS.USER_PLSQIL_OBJECT_SETTINGS WHERE
> NAME = 'p';

< IDENTIFIERS:ALL >

1 row found.

The following example uses the ALTER SESSION statement to change the NLS_SORT
setting from BINARY to BINARY_CI to BINARY_AI. The database and connection
character sets are WESIS0O8859P1.

Command> connect "dsn=cs;ConnectionCharacterSet=WE8IS08859P1";
Connection successful: DSN=cs;UID=user;DataStore=/datastore/user/cs;
DatabaseCharacterSet=WE8ISO8859P1;
ConnectionCharacterSet=WE8ISO8859P1; PermSize=32; TypeMode=0;
(Default setting AutoCommit=1)

Command>#Create the Table

Command> CREATE TABLE collatingdemo (letter VARCHAR2 (10));
Command>#Insert values

Command> INSERT INTO collatingdemo VALUES ('a');

1 row inserted.

Command> INSERT INTO collatingdemo VALUES ('A');

1 row inserted.

Command> INSERT INTO collatingdemo VALUES ('Y');

1 row inserted.

Command> INSERT INTO collatingdemo VALUES ('&a');

1 row inserted.

Command>#SELECT

Command> SELECT * FROM collatingdemo;

< a >

<A >

<Y >

< a >

4 rows found.

Command>#SELECT with ORDER BY

Command> SELECT * FROM collatingdemo ORDER BY letter;
<A >

<Y >

<a>

<a»>

4 rows found.

Command>#set NLS_SORT to BINARY_CI and SELECT
Command> ALTER SESSION SET NLS_SORT = BINARY CI;
Command> SELECT * FROM collatingdemo ORDER BY letter;
<a>

< A >

Y >

A >

a >

rows found.

Command>#Set NLS_SORT to BINARY_AI and SELECT
Command> ALTER SESSION SET NLS_SORT = BINARY_ATI;
Command> SELECT * FROM collatingdemo ORDER BY letter;
< a>

S A A A

< a >
<A >
<Y >
4 rows found.

The following example enables parallel replication and uses the ALTER SESSION
statement to change the replication track number to 5 for the current connection. The

5-28 Oracle TimesTen In-Memory Database SQL Reference

ALTER SESSION

connection attributes ReplicationParallelismis set to a value higher than 5 and
ReplicationApplyOrdering is set to 1.

Command> ALTER SESSION SET REPLICATION_TRACK = 5;
Session altered.

The following example enables replication of adding and dropping columns, tables,
synonyms and indexes by setting the following on the active database in an alter
standby replication pair: DDLReplicationLevel to 2 and
DDLReplicationAction to ' INCLUDE'.

Command > ALTER SESSION SET DDL_REPLICATION_LEVEL=2;
Session altered.

Command > ALTER SESSION SET DDL_REPLICATION_ACTION='INCLUDE';
Session altered.

SQL Statements 5-29

ALTER TABLE

ALTER TABLE

The ALTER TABLE statement changes an existing table definition.

Required privilege
No privilege is required for the table owner.
ALTER ANY TABLE for another user's table.

For ALTER TABLE...ADD FOREIGN KEY, the owner of the altered table must have
the REFERENCES privilege on the table referenced by the foreign key clause.

SQL syntax

To add columns:

ALTER TABLE [Owner.]TableName
ADD [COLUMN] ColumnName ColumnDataType

[DEFAULT DefaultVal] [[NOT] INLINE] [UNIQUE] [NULL]
or

ALTER TABLE [Owner.]TableName
ADD (ColumnName ColumnDataType
[DEFAULT DefaultVal] [[NOT] INLINE] [UNIQUE] [NULL] [, ... 1)
To remove columns:
ALTER TABLE [Owner.]TableName
DROP [COLUMN] ColumnName
or
ALTER TABLE [Owner.]TableName
DROP (ColumnName [, ...])
To add a primary key constraint using a range index:
ALTER TABLE [Owner.]TableName ADD CONSTRAINT ConstraintName
PRIMARY KEY (ColumnName [,...])
To add a primary key constraint using a hash index:

ALTER TABLE [Owner.]TableName ADD CONSTRAINT ConstraintName
PRIMARY KEY (ColumnName [,...])
[USE HASH INDEX PAGES = {RowPages | CURRENT}]

To add a foreign key and optionally add ON DELETE CASCADE:

ALTER TABLE [Owner.]TableName
ADD [CONSTRAINT ForeignKeyName] FOREIGN KEY
(ColumnName [,...]) REFERENCES RefTableName
[(ColumnName [,...])] [ON DELETE CASCADE]
To remove a foreign key:
ALTER TABLE [Owner.]TableName
DROP CONSTRAINT ForeignKeyName

To resize a hash index:

5-30 Oracle TimesTen In-Memory Database SQL Reference

ALTER TABLE

ALTER TABLE [Owner.]TableName

SET PAGES = {RowPages | CURRENT}

To change the primary key to use a hash index:
ALTER TABLE [Owner.]TableName

USE HASH INDEX PAGES = {RowPages | CURRENT}
Change the primary key to use a range index with the USE TREE INDEX clause:
ALTER TABLE [Owner.]TableName

USE TREE INDEX

To change the default value of a column:

ALTER TABLE [Owner.]TableName

MODIFY (ColumnName DEFAULT DefaultVal)

To add or drop a unique constraint on a column:
ALTER TABLE Owner.]TableName

{ADD | DROP} UNIQUE (ColumnName)

To remove the default value of a column that is nullable, by changing it to NULL:
ALTER TABLE [Owner.]TableName

MODIFY (ColumnName DEFAULT NULL)

To add LRU aging:

ALTER TABLE [Owner.]TableName

ADD AGING LRU [ON | OFF]

To add time-based aging:

ALTER TABLE [Owner.]TableName
ADD AGING USE ColumnName LIFETIME numl
{SECOND[S] | MINUTE[S] | HOUR[S] | DAY[S]}
[CYCLE num2 {SECOND[S] | MINUTE[S] | HOUR[S] | DAY[S] }]
[ON | OFF]
To change the aging state:
ALTER TABLE [Owner.]TableName
SET AGING {ON | OFF}
To drop aging:
ALTER TABLE [Owner.]TableName
DROP AGING
To change the lifetime for time-based aging;:
ALTER TABLE [Owner.]TableName
SET AGING LIFETIME numl {SECOND[S] | MINUTE[S] | HOUR[S] | DAY[S]}
To change the cycle for time-based aging;:

ALTER TABLE [Owner.]TableName
SET AGING CYCLE num2 {SECOND[S] | MINUTE[S] | HOUR[S] | DAY[S]}

SQL Statements 5-31

ALTER TABLE

Parameters

Parameter

Description

[Owner.] TableName

Identifies the table to be altered.

UNIQUE Specifies that in the column ColumnName each row must contain a
unique value.

MODIFY Specifies that an attribute of a given column is to be changed to a
new value.

DEFAULT Specifies that the column has a default value, DefaultVal. If NULL,

[DefaultVal |NULL]

specifies that the default value of the columns is to be dropped. If a
column with a default value of SYSDATE is added, the value of the
column of the existing rows only is the system date at the time the
column was added. If the default value is one of the USER functions
the column value is the user value of the session that executed the
ALTER TABLE statement. Currently, you cannot assign a default
value for the ROWID data type.

Altering the default value of a column has no impact on existing
TOWS.

ColumnName Name of the column for which the unique constraint or default
value is to be changed. A new column cannot have the same name as
an existing column or another new column.

ColumnDataType Type of the column to be added. Some types require additional

parameters. See Chapter 1, "Data Types" for the data types that can
be specified.

INLINE|NOT INLINE

By default, variable-length columns whose declared column length
is > 128 bytes are stored out of line. Variable-length columns whose
declared column length is <= 128 bytes are stored inline. The default
behavior can be overridden during table creation through the use of
the INLINE and NOT INLINE keywords.

ADD CONSTRAINT

Adds a primary key constraint to the table. Columns of the primary

ConstraintName key must be defined as NOT NULL.
PRIMARY KEY Specify ConstraintName as the name of the index used to enforce
(ColumnName : . -
the primary key constraint. Specify ColumnName as the name(s) of
[,... 1) I[USE the NOT NULL column(s) used for the primary key.
HASH INDEX PAGES = Specify the USE HASH INDEX clause to use a hash index for the
{RowPages | p
primary key. If not specified, a range index is used for the primary
CURRENT}] A . . L.
key constraint. Specify either RowPages (as a positive constant) or
CURRENT to calculate the page count value. If you specify CURRENT,
the current number of rows in the table is used to calculate the page
count value.
See "Column Definition" on page 5-114 for a description of hash
indexes and pages.
CONSTRAINT Specifies that a foreign key is to be dropped. Optionally specifies
that an added foreign key is named by the user.
ForeignKeyName Name of the foreign key to be added or dropped. All foreign keys

are assigned a default name by the system if the name was not
specified by the user. Either the user-provided name or system name
can be specified in the DROP FOREIGN KEY clause.

FOREIGN KEY

Specifies that a foreign key is to be added or dropped. See "FOREIGN
KEY" on page 5-111.

REFERENCES

Specifies that the foreign key references another table.

RefTableName

The name of the table that the foreign key references.

5-32 Oracle TimesTen In-Memory Database SQL Reference

ALTER TABLE

Parameter Description
[ON DELETE Enables the ON DELETE CASCADE referential action. If specified,
CASCADE] when rows containing referenced key values are deleted from a

parent table, rows in child tables with dependent foreign key values
are also deleted.

USE HASH INDEX
PAGES = {RowPages
| CURRENT}

Specifies that a hash index is to be used for the primary key. If the
primary key already uses a hash indeXx, then this clause is equivalent
to the SET PAGES clause.

USE TREE INDEX

Specifies that a range index is to be used for the primary key. If the
primary key already uses a range index, TimesTen ignores this
clause.

SET PAGES

Resizes the hash index based on the expected number of row pages
in the table. Each row page can contain up to 256 rows of data. This
number determines the number of hash buckets created for the hash
index. The minimum is 1. If your estimate is too small, performance
may be degraded. You can specify a constant (RowPages) or the
current number of row pages. See "Column Definition" on

page 5-114 for a description of hash indexes and pages.

RowPages

The number of row pages expected.

CURRENT

Use the number of row pages currently in use.

ADD AGING LRU
| OFF]

[ON

Adds least recently used (LRU) aging to an existing table that has no
aging policy defined.

The LRU aging policy defines the type of aging (least recently used
(LRU)), the aging state (ON or OFF) and the LRU aging attributes.

Set the aging state to either ON or OFF. ON indicates that the aging
state is enabled and aging is done automatically. OFF indicates that
the aging state is disabled and aging is not done automatically. In
both cases, the aging policy is defined. The default is ON.

LRU attributes are defined by calling the ttAgingLRUConfig
procedure. LRU attributes are not defined at the SQL level.

For more information about LRU aging, see "Implementing aging in
your tables" in Oracle TimesTen In-Memory Database Operations Guide.

SQL Statements 5-33

ALTER TABLE

Parameter

Description

ADD AGING USE
ColumnName. . . [ON|
OFF]

Adds time-based aging to an existing table that has no aging policy
defined.

The time-based aging policy defines the type of aging (time-based),
the aging state (ON or OFF) and the time-based aging attributes.

Set the aging state to either ON or OFF. ON indicates that the aging
state is enabled and aging is done automatically. OFF indicates that
the aging state is disabled and aging is not done automatically. In
both cases, the aging policy is defined. The default is ON.

Time-based aging attributes are defined at the SQL level and are
specified by the LIFETIME and CYCLE clauses.

Specify ColumnName as the name of the column used for time-based
aging. Define the column as NOT NULL and of data type
TIMESTAMP or DATE. The value of this column is subtracted from
SYSDATE, truncated using the specified unit (minute, hour, day) and
then compared to the LIFETIME value. If the result is greater than
the LIFETIME value, then the row is a candidate for aging.

The values of the column used for aging are updated by your
applications. If the value of this column is unknown for some rows,
and you do not want the rows to be aged, define the column with a
large default value (the column cannot be NULL).

You can define your aging column with a data type of
TT_TIMESTAMP or TT_DATE. If you choose data type TT_DATE,
then you must specify the LIFETIME unit as days.

For more information about time-based aging, see "Implementing
aging in your tables" in Oracle TimesTen In-Memory Database
Operations Guide.

LIFETIME Numl
{SECOND[S] |
MINUTE[S] |
HOUR[S] | DAY[S]

Specify the LIFETIME clause after the ADD AGING USE
ColumnName clause if you are adding the time-based aging policy to
an existing table. Specify the LIFETIME clause after the SET AGING
clause to change the LIFETIME setting.

The LIFETIME clause specifies the minimum amount of time data is
kept in cache.

Specify Numl as a positive integer constant to indicate the unit of
time expressed in seconds, minutes, hours or days that rows should
be kept in cache. Rows that exceed the LIFETIME value are aged out
(deleted from the table). If you define your aging column with data
type TT_DATE, then you must specify DAYS as the LIFETIME unit.

The concept of time resolution is supported. If DAYS is specified as
the time resolution, then all rows whose timestamp belongs to the
same day are aged out at the same time. If HOURS is specified as the
time resolution, then all rows with timestamp values within that
hour are aged at the same time. A LIFETIME of 3 days is different
than a LIFETIME of 72 hours (3*24) or a LIFETIME of 432 minutes
(3*24*60).

5-34 Oracle TimesTen In-Memory Database SQL Reference

ALTER TABLE

Description

HOUR[S] |DAY[S]}

Parameter Description

CYCLE Num2 Specify the optional CYCLE clause after the LIFETIME clause if you
{SECOND[S] | are adding the time-based aging policy to an existing table.
MINUTE[S] |

CYCLE is a time-based aging attribute.

The CYCLE clause indicates how often the system should examine
rows to see if data exceeds the specified LIFETIME value and
should be aged out (deleted).

Specify Num2 as a positive integer constant.

If you do not specify the CYCLE clause, then the default value is 5
minutes. If you specify 0 for Num2, then the aging thread wakes up
every second.

If the aging state is OFF, then aging is not done automatically and
the CYCLE clause is ignored.

Specify the CYCLE clause after the SET AGING clause to change the
CYCLE setting.

SET AGING {ON|OFF} Changes the aging state. The aging policy must be previously

defined. ON enables automatic aging. OFF disables automatic aging.
If you want to control aging with an external scheduler, then disable
aging and invoke the t tAgingScheduleNow built-in procedure.

DROP AGING Drops the aging policy from the table. After you define an aging

policy, you cannot alter it. Drop aging, then redefine.

SET AGING LIFETIME Use this clause to change the lifetime for time-based aging.
Numl {SECOND[S] |
MINUTE [S] | HOUR[S]

Numl must be a positive integer constant.

MINUTE[S] |
HOUR[S] |DAY[S]}

| DAY [S]} If you defined your aging column with data type TT_DATE, then
you must specify DAYS as the LIFETIME unit.

SET AGING CYCLE Use this clause to change the cycle for time-based aging.

Num2 {SECOND[S] |

Num2 must be a positive integer constant.

The ALTER TABLE statement cannot be used to alter a temporary table.

The ALTER TABLE ADD [COLUMN] ColumnName statement adds one or more
new columns to an existing table. The new columns are added to the end of all
existing rows of the table in one new partition. The ALTER TABLE ADD or DROP
COLUMN statement can be used to add or drop columns from replicated tables.

However, it cannot be used to alter a replicated table that is part of a TWOSAFE BY
REQUEST transaction. If DDLCommitBehavior=1, this operation results in error
8051. If DDLCommi tBehavior=0, the operation succeeds because a commit is
performed before the ALTER TABLE operation, resulting in the ALTER TABLE
operation being in a new transaction which is not part of the TWOSAFE BY
REQUEST transaction.

Columns referenced by materialized views cannot be dropped.

Only one partition is added to the table per statement regardless of the number of
columns added.

The new columns cannot be declared NOT NULL.

NULL is the initial value for all added columns, unless a default value is specified
for the new column.

SQL Statements 5-35

ALTER TABLE

s The total number of columns in the table cannot exceed 1000. In addition, the total
number of partitions in a table cannot exceed 1000, one of which is used by
TimesTen.

s Usethe ADD CONSTRAINT ... PRIMARY KEY clause to add a primary key
constraint to a regular table or to a detailed or materialized view table. Do not use
this clause on a table that already has a primary key.

= If youuse the ADD CONSTRAINT... PRIMARY KEY clause to add a primary key
constraint, and you do not specify the USE HASH INDEX clause, then a range
index is used for the primary key constraint.

» Ifatableis replicated and the replication agent is active, you cannot use the ADD
CONSTRAINT ... PRIMARY KEY clause. Stop the replication agent first.

= Do not specify the ADD CONSTRAINT ... PRIMARY KEY clause on a global
temporary table.

= Do not specify the ADD CONSTRAINT ... PRIMARY KEY clause on a cache
group table because cache group tables defined with a primary key must be
defined in the CREATE CACHE GROUP statement.

s Astheresult of an ALTER TABLE ADD statement, an additional read occurs for
each new partition during queries. Therefore, altered tables may have slightly
degraded performance. The performance can only by restored by dropping and
recreating the table, or by using the ttMigrate create -c -noRepUpgrade
command, and restoring the table using the ttRestore -r -noRepUpgrade
command. Dropping the added column does not recover the lost performance or
decrease the number of partitions.

s The ALTER TABLE DROP statement removes one or more columns from an
existing table. The dropped columns are removed from all current rows of the
table. Subsequent SQL statements must not attempt to make any use of the
dropped columns. You cannot drop columns that are in the table's primary key.
You cannot drop columns that are in any of the table's foreign keys until you have
dropped all foreign keys. You cannot drop columns that are indexed until all
indexes on the column have been dropped. ALTER TABLE cannot be used to drop
all of the columns of a table. Use DROP TABLE instead.

= When a column is dropped from a table, all commands referencing that table need
to be recompiled. An error may result at recompilation time if a dropped column
was referenced. The application must re-prepare those commands, and rebuild
any parameters and result columns. When a column is added to a table, the
commands that contain a SELECT * statement are invalidated. Only these
commands must be re-prepared. All other commands continue to work as
expected.

= When you drop a column, the column space is not freed.

= When you add a UNIQUE constraint, there is overhead incurred (in terms of
additional space and additional time). This is because an index is created to
maintain the UNIQUE constraint. You cannot use the DROP INDEX statement to
drop an index used to maintain the UNIQUE constraint.

= A UNIQUE constraint and its associated index cannot be dropped if it is being used
as a unique index on a replicated table.

s UseALTER TABLE...USE TREE INDEX if your application performs range
queries over a table's primary key.

s UseALTER TABLE...USE HASH INDEX if your application performs exact
match lookups on a table's primary key.

5-36 Oracle TimesTen In-Memory Database SQL Reference

ALTER TABLE

An error is generated if a table has no primary key and either the USE HASH
INDEX clause or the USE TREE INDEX clause is specified.

If ON DELETE CASCADE is specified on a foreign key constraint for a child table, a
user can delete rows from a parent table for which the user has the DELETE
privilege without requiring explicit DELETE privilege on the child table.

To change the ON DELETE CASCADE triggered action, drop then redefine the
foreign key constraint.

ON DELETE CASCADE is supported on detail tables of a materialized view. If you
have a materialized view defined over a child table, a deletion from the parent
table causes cascaded deletes in the child table. This, in turn, triggers changes in
the materialized view.

The total number of rows reported by the DELETE statement does not include
rows deleted from child tables as a result of the ON DELETE CASCADE action.

For ON DELETE CASCADE, since different paths may lead from a parent table to a
child table, the following rule is enforced:

Either all paths from a parent table to a child table are "delete" paths or all paths
from a parent table to a child table are "do not delete" paths.

— Specify ON DELETE CASCADE on all child tables on the "delete" path.

— This rule does not apply to paths from one parent to different children or from
different parents to the same child.

For ON DELETE CASCADE, a second rule is also enforced:

If a table is reached by a "delete" path, then all its children are also reached by a
"delete" path.

For ON DELETE CASCADE with replication, the following restrictions apply:

— The foreign keys specified with ON DELETE CASCADE must match between
the Master and subscriber for replicated tables. Checking is done at runtime. If
there is an error, the receiver thread stops working.

— All tables in the delete cascade tree have to be replicated if any table in the tree
is replicated. This restriction is checked when the replication scheme is created
or when a foreign key with ON DELETE CASCADE is added to one of the
replication tables. If an error is found, the operation is aborted. You may be
required to drop the replication scheme first before trying to change the
foreign key constraint.

- You must stop the replication agent before adding or dropping a foreign key
on a replicated table.

The ALTER TABLE ADD/DROP CONSTRAINT statement has the following
restrictions:

— When a foreign key is dropped, TimesTen also drops the index associated
with the foreign key. Attempting to drop an index associated with a foreign
key using the regular DROP INDEX statement results in an error.

— Foreign keys cannot be added or dropped on tables in a cache group.

— Foreign keys cannot be added or dropped on tables that participate in
TimesTen replication. If the operation is attempted on a table that is either
being replicated or is a replicated table, TimesTen returns an error.

— Foreign keys cannot be added or dropped on views or temporary tables.

SQL Statements 5-37

ALTER TABLE

Examples

= After you have defined an aging policy for the table, you cannot change the policy
from LRU to time-based or from time-based to LRU. You must first drop aging
and then alter the table to add a new aging policy.

s The aging policy must be defined to change the aging state.

s The following rules determine if a row is accessed or referenced for LRU aging:
- Any rows used to build the result set of a SELECT statement.
- Any rows used to build the result set of an INSERT SELECT statement.
- Any rows that are about to be updated or deleted.

s Compiled commands are marked invalid and need recompilation when you either
drop LRU aging from or add LRU aging to tables that are referenced in the
commands.

s Call the ttAgingScheduleNow procedure to schedule the aging process right
away regardless if the aging state is ON or OFF.

s For the time-based aging policy, you cannot add or modify the aging column. This
is because you cannot add or modify a NOT NULL column.

= Aging restrictions:
- You cannot drop the column that is used for time-based aging.
— Tables that are related by foreign keys must have the same aging policy.

— For LRU aging, if a child row is not a candidate for aging, neither this child
row nor its parent row are deleted. ON DELETE CASCADE settings are
ignored.

- For time-based aging, if a parent row is a candidate for aging, then all child
rows are deleted. ON DELETE CASCADE (whether specified or not) is ignored.

Add returnrate column to parts table.

ALTER TABLE parts ADD COLUMN returnrate DOUBLE;

Add numsssign and prevdept columns to contractor table.

ALTER TABLE contractor
ADD (numassign INTEGER, prevdept CHAR(30));

Remove addrl and addr2 columns from employee table.

ALTER TABLE employee DROP (addrl, addr2);

Drop the UNIQUE title column of the books table.

ALTER TABLE books DROP UNIQUE (title);

Add the x1 column to the t1 table with a default value of 5:

ALTER TABLE tl ADD (x1 INT DEFAULT 5);

Change the default value of column x1 to 2:

ALTER TABLE tl MODIFY (x1 DEFAULT 2);

5-38 Oracle TimesTen In-Memory Database SQL Reference

ALTER TABLE

Alter table primarykeytest to add the primary key constraint c1. Use the ttIsqgl
INDEXES command to show that the primary key constraint c1 is created and a range
index is used:

Command> CREATE TABLE primarykeytest (coll TT_INTEGER NOT NULL) ;
Command> ALTER TABLE primarykeytest ADD CONSTRAINT cl

> PRIMARY KEY (coll);

Command> INDEXES primarykeytest;

Indexes on table SAMPLEUSER.PRIMARYKEYTEST:
Cl: unique T-tree index on columns:
COL1
1 index found.

1 table found.

Alter table prikeyhash to add the primary key constraint c2 using a hash index. Use
the ttIsqgl INDEXES command to show that the primary key constraint c2 is created
and a hash index is used:

Command> CREATE TABLE prikeyhash (coll NUMBER (3,2) NOT NULL);
Command> ALTER TABLE prikeyhash ADD CONSTRAINT c2

> PRIMARY KEY (coll) USE HASH INDEX PAGES = 20;
Command> INDEXES prikeyhash;

Indexes on table SAMPLEUSER.PRIKEYHASH:
C2: unique hash index on columns:
CcoLl
1 index found.

1 table found.

Attempt to add a primary key constraint on a table already defined with a primary
key. You see an error:

Command> CREATE TABLE oneprikey (coll VARCHAR2 (30) NOT NULL,

> col2 TT _BIGINT NOT NULL, col3 CHAR (15) NOT NULL,
> PRIMARY KEY (coll,col2));

Command> ALTER TABLE oneprikey ADD CONSTRAINT c2

> PRIMARY KEY (coll,col2);

2235: Table can have only one primary key
The command failed.

Attempt to add a primary key constraint on a column that is not defined as NOT
NULL. You see an error:

Command> CREATE TABLE prikeynull (coll CHAR (30));
Command> ALTER TABLE prikeynull ADD CONSTRAINT c3

> PRIMARY KEY (coll);

2236: Nullable column cannot be part of a primary key
The command failed.

This example illustrates the use of range and hash indexes. It creates the pkey table
with col1 as the primary key. A range index is created by default. The table is then
altered to change the index on col1l to a hash index. The table is altered again to
change the index back to a range index.

Command> CREATE TABLE pkey (coll TT_INTEGER PRIMARY KEY, col2 VARCHAR2 (20));
Command> INDEXES pkey;
Indexes on table SAMPLEUSER.PKEY:

PKEY: unique T-tree index on columns:

SQL Statements 5-39

ALTER TABLE

COL1
1 index found.
1 table found.

Alter the pkey table to use a hash index:

Command> ALTER TABLE pkey USE HASH INDEX PAGES = CURRENT;
Command> INDEXES pkey;
Indexes on table SAMPLEUSER.PKEY:
PKEY: unique hash index on columns:
CcoLl
1 index found.
1 table found.

Alter the pkey table to use a range index with the USE TREE INDEX clause:

Command> ALTER TABLE pkey USE TREE INDEX;
Command> INDEXES pkey;
Indexes on table SAMPLEUSER.PKEY:
PKEY: unique T-Tree index on columns:
CoLl
1 index found.
1 table found.

This example generates an error when attempting to alter a table to define either a
range or hash index on a column without a primary key.

Command> CREATE TABLE illegalindex (Ccll CHAR (20));
Command> ALTER TABLE illegalindex USE TREE INDEX;
2810: The table has no primary key so cannot change its index type
The command failed.
Command> ALTER TABLE illegalindex USE HASH INDEX PAGES = CURRENT;
2810: The table has no primary key so cannot change its index type
The command failed.

These examples show how time resolution works with aging. In this example, lifetime
is 3 days.

s If (SYSDATE - ColumnValue) <= 3, donotage out the row.

s If (SYSDATE - ColumnValue) > 3, then the row is a candidate for aging.

s If (SYSDATE - ColumnValue) = 3 days, 22 hours, then row is not aged out
because lifetime was specified in days. The row would be aged out if lifetime had
been specified as 72 hours.

This example alters a table by adding LRU aging. The table has no previous aging
policy. The aging state is ON by default.

ALTER TABLE agingdemo3 ADD AGING LRU;
Command> DESCRIBE agingdemo3;
Table USER.AGINGDEMO3:

Columns:
*AGINGID NUMBER NOT NULL
NAME VARCHAR2 (20) INLINE

Aging lru on
1 table found.
(primary key columns are indicated with *)

This example alters a table by adding time-based aging. The table has no previous
aging policy. The agingcolumn column is used for aging. LIFETIME is 2 days.
CYCLE is 30 minutes.

5-40 Oracle TimesTen In-Memory Database SQL Reference

ALTER TABLE

ALTER TABLE agingdemo4

ADD AGING USE agingcolumn LIFETIME 2 DAYS CYCLE 30 MINUTES;
Command> DESCRIBE agingdemo4;
Table USER.AGINGDEMO4 :

Columns:
*AGINGID NUMBER NOT NULL
NAME VARCHAR2 (20) INLINE
AGINGCOLUMN TIMESTAMP (6) NOT NULL

Aging use AGINGCOLUMN lifetime 2 days cycle 30 minutes on

This example illustrates that after you create an aging policy, you cannot change it.
You must drop aging and redefine.

CREATE TABLE agingdemob
(agingid NUMBER NOT NULL PRIMARY KEY
,name VARCHAR2 (20)
,agingcolumn TIMESTAMP NOT NULL
)
AGING USE agingcolumn LIFETIME 3 DAYS OFF;
ALTER TABLE agingdemob
ADD AGING LRU;
2980: Cannot add aging policy to a table with an existing aging policy. Have to
drop the old aging first
The command failed.

Drop aging on the table and redefine with LRU aging.

ALTER TABLE agingdemob

DROP AGING;
ALTER TABLE agingdemo5

ADD AGING LRU;
Command> DESCRIBE agingdemo5;
Table USER.AGINGDEMOS5:

Columns:
*AGINGID NUMBER NOT NULL
NAME VARCHAR2 (20) INLINE
AGINGCOLUMN TIMESTAMP (6) NOT NULL

Aging lru on
1 table found.
(primary key columns are indicated with *)

This example alters a table by setting the aging state to OFF. The table has been
defined with a time-based aging policy. If you set the aging state to OFF, aging is not
done automatically. This is useful if you want to use an external scheduler to control
the aging process. Set aging state to OFF and then call the t tAgingScheduleNow
procedure to start the aging process.

Command> DESCRIBE agingdemo4;
Table USER.AGINGDEMO4:

Columns:
*AGINGID NUMBER NOT NULL
NAME VARCHAR2 (20) INLINE
AGINGCOLUMN TIMESTAMP (6) NOT NULL

Aging use AGINGCOLUMN lifetime 2 days cycle 30 minutes on

ALTER TABLE AgingDemo4
SET AGING OFF;

Note that when you describe agingdemo4, the aging policy is defined and the aging
state is set to OFF.

SQL Statements 5-41

ALTER TABLE

Command> DESCRIBE agingdemo4;
Table USER.AGINGDEMO4:

Columns:
*AGINGID NUMBER NOT NULL
NAME VARCHAR2 (20) INLINE
AGINGCOLUMN TIMESTAMP (6) NOT NULL

Aging use AGINGCOLUMN lifetime 2 days cycle 30 minutes off
1 table found.
(primary key columns are indicated with *)

Call ttAgingScheduleNow to invoke aging with an external scheduler:

Command> CALL ttAgingScheduleNow ('agingdemo4d');

Attempt to alter a table adding the aging column and then use that column for
time-based aging. An error is generated.

Command> DESCRIBE x;
Table USER1.X:
Columns:
*1D TT_INTEGER NOT NULL
1 table found.
(primary key columns are indicated with *)
Command> ALTER TABLE x ADD COLUMN t TIMESTAMP;
Command> ALTER TABLE x ADD AGING USE t LIFETIME 2 DAYS;
2993: Aging column cannot be nullable
The command failed.

Attempt to alter the LIFETIME clause for a table defined with time-based aging. The
aging column is defined with data type TT_DATE. An error is generated because the
LIFETIME unit is not expressed in DAYS.

Command> CREATE TABLE agingl (coll TT DATE NOT NULL) AGING USE
coll LIFETIME 2 DAYS;
Command> ALTER TABLE agingl SET AGING LIFETIME 2 HOURS;
2977: Only DAY lifetime unit is allowed with a TT DATE column
The command failed.

See also

CREATE TABLE

DROP TABLE

"Implementing aging in your tables" in Oracle TimesTen In-Memory Database Operations
Guide

5-42 Oracle TimesTen In-Memory Database SQL Reference

ALTER USER

ALTER USER

The ALTER USER statement allows a user to change the user's own password. A user
with the ADMIN privilege can change another user's password.

This statement also allows a user to change another user from internal to external or
from external to internal.

Required privilege
No privilege is required to change the user's own password.
ADMIN privilege is required to change another user's password.

ADMIN privilege is required to change users from internal to external and from
external to internal.

SQL syntax
ALTER USER user IDENTIFIED BY {password | "password"}
ALTER USER user IDENTIFIED EXTERNALLY
Parameters
Parameter Description
user Name of the user whose password is being changed.
IDENTIFIED BY Identification clause.
password | "password" Specifies the password that identifies the internal user to the
TimesTen database.
EXTERNALLY Identifies the operating system user to the TimesTen database. To
perform database operations as an external user, the process needs
a TimesTen external user name that matches the user name
authenticated by the operating system or network. A password is
not required by TimesTen because the user has been authenticated
by the operating system at login time.
Description
= Database users can be internal or external.
- Internal users are defined for a TimesTen database.
- External users are defined by an external authority, such as the operating
system. External users cannot be assigned a TimesTen password.
= If you are an internal user connected as user, execute this statement to change
your TimesTen password.
» Passwords are case-sensitive.
= You cannot alter a user across a client/server connection. You must use a direct
connection when altering a user.
Examples

To change the password for internal user terry to "12345" from its current setting,
use:

SQL Statements 5-43

ALTER USER

ALTER USER terry IDENTIFIED BY "12345";

User altered.

To change user terry to an external user:

ALTER USER terry IDENTIFIED EXTERNALLY;

User altered.

To change user terry back to an internal user, provide a password:

ALTER USER terry IDENTIFIED BY "secret";
User altered.

See also

CREATE USER
DROP USER
GRANT
REVOKE

5-44 Oracle TimesTen In-Memory Database SQL Reference

CALL

CALL

Use the CALL statement to invoke a TimesTen built-in procedure or to execute a
PL/SQL procedure or function that is standalone or part of a package from within
SQL.

Required privilege

The privileges required for invoking each TimesTen built-in procedure are listed in the
description of each procedure in the "Built-In Procedures" section in the Oracle
TimesTen In-Memory Database Reference.

No privileges are required for an owner calling its own PL/SQL procedure or function
that is standalone or part of a package using the CALL statement. For all other users,
the EXECUTE privilege on the procedure or function or on the package in which it is
defined is required.

SQL syntax
To call a TimesTen built-in procedure:
CALL [TimesTenBuiltIn [(arguments)]
When calling PL./SQL procedures or functions that are standalone or part of a
package, you can either call these by name or as the result of an expression.
To call a PL/SQL procedure:
CALL [Owner.] [Package.]ProcedureName [(arguments)]
To call a PL/SQL function that returns a parameter, one of the following are
appropriate:

CALL [Owner.] [Package.]FunctionName [(arguments)] INTO :return param

Note: A user's own PL/SQL procedure or function takes precedence
over a TimesTen built-in procedure with the same name.

Parameters

Parameter Description

TimesTenBuiltIn Name of the TimesTen built-in procedure. For a full list of
TimesTen built-in procedures, see "Built-In Procedures" in the
Oracle TimesTen In-Memory Database Reference.

[Owner.] ProcedureName Name of the PL/SQL procedure. You can optionally specify the
owner of the procedure.

[Owner.] FunctionName Name of the PL/SQL function. You can optionally specify the
owner of the function.

arguments Specify 0 or more arguments for the PL/SQL procedure or
function.

INTO If the routine is a function, the INTO clause is required.

return_param Specify the host variable that stores the return value of the
function.

SQL Statements 5-45

CALL

Description

Examples

Detailed information on how to execute PL/SQL procedures or functions with the
CALL statement in TimesTen is provided in "How to execute PL/SQL procedures and
functions" in the Oracle TimesTen In-Memory Database PL/SQL Developer's Guide, "Using
CALL to execute procedures and functions" in the Oracle TimesTen In-Memory Database
C Developer’s Guide, or "Using CALL to execute procedures and functions” in the Oracle
TimesTen In-Memory Database Java Developer’s Guide.

The following is the definition of the mytest function:

create or replace function mytest return number is
begin
return 1;
end;
/

Perform the following to execute the mytest function in a CALL statement:

Command> variable n number;
Command> call mytest() into :n;
Command> print n;

N 1

The following example creates a function that returns the salary of the employee
whose employee ID is specified as input, then calls the function and displays the result
that was returned.

Command> CREATE OR REPLACE FUNCTION get_sal
(p_1id employees.employee_id$TYPE)
v_sal employees.salary$TYPE := 0;

BEGIN
SELECT salary INTO v_sal FROM employees

WHERE employee_id = p_id;
RETURN v_sal;
END get_sal;
/

RETURN NUMBER IS

V V.V V V V V V

Function created.

Command> variable n number;
Command> call get_sal(100) into :n;
Command> print n;

N : 24000

5-46 Oracle TimesTen In-Memory Database SQL Reference

COMMIT

COMMIT

The COMMIT statement ends the current transaction and makes permanent all changes
performed in the transaction. A transaction is a sequence of SQL statements treated as
a single unit.

Required privilege

None
SQL syntax
COMMIT [WORK]
Parameters
The COMMIT statement allows the following optional keyword:
Parameter Description
[WORK] Optional clause supported for compliance with the SQL standard.
COMMIT and COMMIT WORK are equivalent.
Description
s Until you commit a transaction:

- You can see any changes you have made during the transaction but other
users cannot see the changes. After you commit the transaction, the changes
are visible to other users' statements that execute after the commit.

- You can roll back (undo) changes made during the transaction with the
ROLLBACK statement.

n This statement releases transaction locks.
s For passthrough, the Oracle transaction will also be committed.
= A commit closes all open cursors.
Examples
Insert row into regions table of the HR schema and commit transaction. First set
autocommit to 0:
Command> SET AUTOCOMMIT 0;
Command> INSERT INTO regions VALUES (5, 'Australia');
1 row inserted.
Command> COMMIT;
Command> SELECT * FROM regions;
< 1, Europe >
< 2, Americas >
< 3, Asia >
< 4, Middle East and Africa >
< 5, Australia >
5 rows found.
See also

ROLLBACK

SQL Statements 5-47

CREATE ACTIVE STANDBY PAIR

CREATE ACTIVE STANDBY PAIR

This statement creates an active standby pair. It includes an active master database, a
standby master database, and may also include one or more read-only subscribers.
The active master database replicates updates to the standby master database, which

propagates the updates to the subscribers.

Required privilege
ADMIN

SQL syntax

CREATE ACTIVE STANDBY PAIR
FullStoreName, FullStoreName [ReturnServiceAttribute]

[SUBSCRIBER FullStoreName [,...]]

[STORE FullStoreName [StoreAttribute [...1]]

[NetworkOperation [...]]

[{ INCLUDE | EXCLUDE }{TABLE [[Owner.]TableName [,...]]]
CACHE GROUP [[Owner.]CacheGroupName [,...]]\
SEQUENCE [[Owner.]SequenceName [,...11} [,...]]

The syntax for ReturnServiceAttributeis

{ RETURN RECEIPT [BY REQUEST] |
RETURN TWOSAFE [BY REQUEST] |
NO RETURN }

Syntax for StoreAttributeis:

DISABLE RETURN {SUBSCRIBER | ALL} NumFailures]

RETURN SERVICES {ON | OFF} WHEN [REPLICATION] STOPPED]
DURABLE COMMIT {ON | OFF}]

RESUME RETURN MilliSeconds]

LOCAL COMMIT ACTION {NO ACTION | COMMIT}]

RETURN WAIT TIME Seconds]

COMPRESS TRAFFIC {ON | OFF}

PORT PortNumber]

TIMEOUT Seconds]

FAILTHRESHOLD Value]

Syntax for NetworkOperation:

ROUTE MASTER FullStoreName SUBSCRIBER FullStoreName
{ { MASTERIP MasterHost \ SUBSCRIBERIP SubscriberHost }
PRIORITY Priority } [...]

5-48 Oracle TimesTen In-Memory Database SQL Reference

CREATE ACTIVE STANDBY PAIR

Parameters

Parameter

Description

FullStoreName

The database, specified as one of the following;:
] SELF
s The prefix of the database file name

For example, if the database path is
directory/subdirectory/data.ds0, then data
is the database name that should be used.

This is the database file name specified in the
DataStore attribute of the DSN description with
optional host ID in the form:

DataStoreName [ON Host]

Host can be either an IP address or a literal host name
assigned to one or more IP addresses, as described in
"Configuring host IP addresses" in Oracle TimesTen
In-Memory Database TimesTen to TimesTen Replication
Guide. Host names containing special characters must
be surrounded by double quotes. For example:
"MyHost-500".

RETURN RECEIPT [BY REQUEST]

Enables the return receipt service, so that applications
that commit a transaction to an active master database
are blocked until the transaction is received by the
standby master database.

Specifying RETURN RECEIPT applies the service to all
transactions. If you specify RETURN REQUEST BY
REQUEST, you can use the t tRepSyncSet procedure
to enable the return receipt service for selected
transactions. For details on the use of the return
services, see "Using a return service" in Oracle TimesTen
In-Memory Database TimesTen to TimesTen Replication
Guide.

RETURN TWOSAFE [BY REQUEST]

Enables the return twosafe service, so that applications
that commit a transaction to an active master database
are blocked until the transaction is committed on the
standby master database.

Specifying RETURN TWOSAFE applies the service to all
transactions. If you specify RETURN TWOSAFE BY
REQUEST, you can use the t tRepSyncSet procedure
to enable the return receipt service for selected
transactions.

For details on the use of the return services, see "Using
a return service" in Oracle TimesTen In-Memory Database
TimesTen to TimesTen Replication Guide.

DISABLE RETURN {SUBSCRIBER
| ALL} NumFailures

Set the return service failure policy so that return
service blocking is disabled after the number of
timeouts specified by NumFailures.

Specifying SUBSCRIBER is the same as specifying ALL.
Both settings refer to the standby master database.

This failure policy can be specified for either the
RETURN RECEIPT or RETURN TWOSAFE service.

See "Managing return service timeout errors and
replication state changes" in Oracle TimesTen In-Memory
Database TimesTen to TimesTen Replication Guide for
details.

SQL Statements 5-49

CREATE ACTIVE STANDBY PAIR

Parameter

Description

RESUME RETURN Milliseconds

If DISABLE RETURN has disabled return service
blocking, this attribute sets the policy for when to
re-enable the return service.

NO RETURN

Specifies that no return service is to be used. This is the
default.

For details on the use of the return services, see "Using
a return service" in Oracle TimesTen In-Memory Database
TimesTen to TimesTen Replication Guide.

RETURN WAIT TIME Seconds

Specifies the number of seconds to wait for return
service acknowledgement. A value of 0 means that
there is no waiting. The default value is 10 seconds.

The application can override this timeout setting by
using the returnWait parameter in the
ttRepSyncsSet built-in procedure.

SUBSCRIBER FullStoreName
[,...11

A database that receives updates from a master
database. FullStoreName is the database file name
specified in the DataStore attribute of the DSN
description.

STORE FullStoreName
[StoreAttribute [...]]

Defines the attributes for the specified database.
Attributes include PORT, TIMEOUT and
FAILTHRESHOLD. FullStoreName is the database file
name specified in the DataStore attribute of the DSN
description.

{INCLUDE | EXCLUDE}

{TABLE
[[Owner.]TableNamel[,...]]|

CACHE GROUP

[[Owner.] CacheGroupName
[,...11]

SEQUENCE

[[Owner.] SequenceName
[,...11}

[,...]

An active standby pair replicates an entire database by
default.

INCLUDE includes only the listed tables, sequences or
cache groups to replication. Use one INCLUDE clause
for each object type (table, sequence or cache group).

EXCLUDE removes tables, sequences or cache groups
from the replication scheme. Use one EXCLUDE clause
for each object type (table, sequence or cache group).

DURABLE COMMIT {ON | OFF'}

Set to override the DurableCommits setting on a
database and enable durable commit when return
service blocking has been disabled by DISABLE
RETURN.

FAILTHRESHOLD Value

The number of log files that can accumulate for a
subscriber database. If this value is exceeded, the
subscriber is set to the Failed state.The value 0 means
"No Limit." This is the default.

See "Setting the log failure threshold" in Oracle
TimesTen In-Memory Database TimesTen to TimesTen
Replication Guide for more information.

5-50 Oracle TimesTen In-Memory Database SQL Reference

CREATE ACTIVE STANDBY PAIR

Parameter

Description

LOCAL COMMIT ACTION
{NO ACTION | COMMIT}

Specifies the default action to be taken for a return
twosafe transaction in the event of a timeout.

Note: This attribute is valid only when the RETURN
TWOSAFE or RETURN TWOSAFE BY REQUEST attribute
is set in the SUBSCRIBER clause.

NO ACTION: On timeout, the commit function returns
to the application, leaving the transaction in the same
state it was in when it entered the commit call, with the
exception that the application is not able to update any
replicated tables. The application can reissue the
commit or rollback the call. This is the default.

COMMIT: On timeout, the commit function attempts to
perform a COMMIT to end the transaction locally. No
more operations are possible on the same transaction.

This setting can be overridden for specific transactions
by calling the localAction parameter in the
ttRepSyncSet procedure.

MASTER FullStoreName

The database on which applications update the
specified element. The MASTER database sends updates
to its SUBSCRIBER databases. The FullStoreName
must be the database specified in the DataStore
attribute of the DSN description.

PORT PortNumber

The TCP/IP port number on which the replication
agent for the database listens for connections. If not
specified, the replication agent automatically allocates a
port number.

In an active standby pair, the standby master database
listens for updates from the active master database.
Read-only subscribers listen for updates from the
standby master database.

ROUTE MASTER FullStoreName
SUBSCRIBER FullStoreName

Denotes the NetworkOperation clause. If specified,
allows you to control the network interface that a
master store uses for every outbound connection to
each of its subscriber stores. In the context of the ROUTE
clause, each master database is a subscriber of the other
master database and each read-only subscriber is a
subscriber of both master databases.

Can be specified more than once.

For FullStoreName, ON "host" must be specified.

MASTERIP MasterHost |
SUBSCRIBERIP SubscriberHost

MasterHost and SubscriberHost are the IP
addresses for the network interface on the master and
subscriber stores. Specify in dot notation or canonical
format or in colon notation for IPV6.

Clause can be specified more than once.

PRIORITY Priority

Variable expressed as an integer from 1 to 99. Denotes
the priority of the IP address. Lower integral values
have higher priority. An error is returned if multiple
addresses with the same priority are specified. Controls
the order in which multiple IP addresses are used to
establish peer connections.

Required syntax of NetworkOperation clause.
Follows MASTERIP MasterHost | SUBSCRIBERIP
SubscriberHost clause.

SQL Statements 5-51

CREATE ACTIVE STANDBY PAIR

Description

Examples

Parameter Description

TIMEOUT Seconds Set the maximum number of seconds a database waits

before re-sending a message to an unresponsive
database.

In an active standby pair, the active master database
sends messages to the standby master database. The
standby master database sends messages to the
read-only subscribers.

CREATE ACTIVE STANDBY PAIR isimmediately followed by the names of the
two master databases. The master databases are later designated as ACTIVE and
STANDBY using the ttRepStateSet built-in procedure. See "Setting up an active
standby pair with no cache groups" in Oracle TimesTen In-Memory Database
TimesTen to TimesTen Replication Guide.

The SUBSCRIBER clause lists one or more read-only subscriber databases. You can
designate up to 127 subscriber databases.

Replication between the active master database and the standby master database
can be RETURN TWOSAFE, RETURN RECEIPT, or asynchronous. RETURN
TWOSAFE ensures no transaction loss.

Use the INCLUDE and EXCLUDE clauses to exclude the listed tables, sequences and
cache groups from replication, or to include only the listed tables, sequences and
cache groups, excluding all others.

If the active standby pair has the RETURN TWOSAFE attribute and replicates a
cache group, a transaction may fail if:

— The transaction that is being replicated contains an ALTER TABLE statement
or an ALTER CACHE GROUP statement

— The transaction contains an INSERT, UPDATE or DELETE statement on a
replicated table, replicated cache group or an asynchronous writethrough
cache group

Using an active standby pair to replicate read-only cache groups and
asynchronous writethrough (AWT) cache groups is supported.

You cannot use an active standby pair to replicate synchronous writethrough
(SWT) cache groups. If you are using an active standby pair to replicated a
database with SWT cache groups, you must either drop or exclude the SWT cache
groups.

You cannot execute the CREATE ACTIVE STANDBY PAIR statement when Oracle
Clusterware is used with TimesTen.

This example creates an active standby pair whose master databases are repl and
rep2. There is one subscriber, rep3. The type of replication is RETURN RECEIPT. The
statement also sets PORT and TIMEOUT attributes for the master databases.

CREATE ACTIVE STANDBY PAIR repl, rep2 RETURN RECEIPT
SUBSCRIBER rep3
STORE repl PORT 21000 TIMEOUT 30
STORE rep2 PORT 22000 TIMEOUT 30;

Specify NetworkOperation clause to control network interface:

5-52 Oracle TimesTen In-Memory Database SQL Reference

CREATE ACTIVE STANDBY PAIR

CREATE ACTIVE STANDBY PAIR repl, rep2
ROUTE MASTER repl ON "machinel" SUBSCRIBER rep2 ON "machine2"
MASTERIP "1.1.1.1" PRIORITY 1 SUBSCRIBERIP "2.2.2.2" PRIORITY 1;

See also

ALTER ACTIVE STANDBY PAIR
DROP ACTIVE STANDBY PAIR

SQL Statements 5-53

CREATE CACHE GROUP

CREATE CACHE GROUP

The CREATE CACHE GROUP statement:
» Creates the table defined by the cache group

= Loads all new information associated with the cache group in the appropriate
system tables.

A cache group is a set of tables related through foreign keys that cache data from tables
in an Oracle database. There is one root table that does not reference any of the other
tables. All other cache tables in the cache group reference exactly one other table in the
cache group. In other words, the foreign key relationships form a tree.

A cache table is a set of rows satisfying the conditions:
= The rows constitute a subset of the rows of a vertical partition of an Oracle table.
» The rows are stored in a TimesTen table with the same name as the Oracle table.

If a database has more than one cache group, the cache groups must correspond to
different Oracle (and TimesTen) tables.

Cache group instance refers to a row in the root table and all the child table rows related
directly or indirectly to the root table rows.

User managed and system managed cache groups
A cache group can be either system managed or user managed.

A system managed cache group is fully managed by TimesTen and has fixed properties.
System managed cache group types include:

= Read-only cache groups are updated in the Oracle database, and the updates are
propagated from Oracle to the cache.

= Asynchronous writethrough (AWT) cache groups are updated in the cache and
the updates are propagated to the Oracle database. Transactions continue
executing on the cache without waiting for a commit on Oracle.

= Synchronous writethrough (SWT) cache groups are updated in the cache and the
updates are propagated to the Oracle database. Transactions are committed on the
cache after notification that a commit has occurred on Oracle.

Because TimesTen manages system managed cache groups, including loading and
unloading the cache group, certain statements and clauses cannot be used in the
definition of these cache groups, including;:

= WHERE clauses in AWT and SWT cache group definitions
s READONLY, PROPAGATE and NOT PROPAGATE in cache table definitions
= AUTOREFRESH in AWT and SWT cache group definitions

The FLUSH CACHE GROUP and REFRESH CACHE GROUP operations are not allowed
for AWT and SWT cache groups.

You must stop the replication agent before creating an AWT cache group.

A user managed cache group must be managed by the application or user. PROPAGATE in
a user managed cache group is synchronous. The table-level READONLY keyword can
only be used for user managed cache groups.

In addition, both TimesTen and Oracle must be able to parse all WHERE clauses.

5-54 Oracle TimesTen In-Memory Database SQL Reference

CREATE CACHE GROUP

Explicitly loaded cache groups and dynamic cache groups
Cache groups can be explicitly or dynamically loaded.

In cache groups that are explicitly loaded, new cache instances are loaded manually
into the TimesTen cache tables from the Oracle tables using a LOAD CACHE GROUP or
REFRESH CACHE GROUP statement or automatically using an autorefresh operation.

In a dynamic cache group, new cache instances can be loaded manually into the
TimesTen cache tables by using a LOAD CACHE GROUP or on demand using a
dynamic load operation. In a dynamic load operation, data is automatically loaded
into the TimesTen cache tables from the cached Oracle tables when a SELECT,
UPDATE, DELETE or INSERT statement is issued on one of the cache tables, where the
data is not present in the cache table but does exist in the cached Oracle table. A
manual refresh or automatic refresh operation on a dynamic cache group can result in
the updating or deleting of existing cache instances, but not in the loading of new
cache instances.

Any cache group type (read-only, asynchronous writethrough, synchronous
writethrough, user managed) can be defined as an explicitly loaded cache group.

Any cache group type can be defined as a dynamic cache group except a user managed
cache group that has both the AUTOREFRESH cache group attribute and the
PROPAGATE cache table attribute.

Data in a dynamic cache group is aged out because LRU aging is defined by default.
Use the ttAgingLRUConfig built-in procedure to override the space usage
thresholds for LRU aging. You can also define time-based aging on a dynamic cache
group to override LRU aging.

For more information on explicitly loaded and dynamic cache groups, see Oracle
In-Memory Database Cache User’s Guide. For more information about the dynamic load
operation, see "Dynamically loading a cache group" in Oracle In-Memory Database Cache
User’s Guide.

Local and global cache groups
You can create either local or global cache groups.

In a local cache group, data in the cache tables are not shared across TimesTen
databases even if the databases are members of the same cache grid. Therefore, the
databases can have overlapping data or the same data. Any cache group type can be
defined as a local cache group. A local cache group can be either dynamically or
explicitly loaded.

In a global cache group, data in the cache tables are shared among TimesTen databases
within a cache grid. Updates to the same data by different grid members are
coordinated by the grid. Only an AWT cache group can be defined as a global cache

group.
For more information on local and global cache groups, see "Defining Cache Groups"

in the Oracle In-Memory Database Cache User’s Guide. In addition, see "Example of data
sharing among the grid members" in Oracle In-Memory Database Cache User's Guide.

Required privilege
CREATE CACHE GROUP or CREATE ANY CACHE GROUP and

CREATE TABLE (if all tables in the cache group are owned by the current user) or
CREATE ANY TABLE (if at least one of the tables in the cache group is not owned by
the current user).

SQL Statements 5-55

CREATE CACHE GROUP

SQL syntax
There are CREATE CACHE GROUP statements for each type of cache group:

= CREATE READONLY CACHE GROUP

s CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP

s CREATE SYNCHRONOUS WRITETHROUGH CACHE GROUP

s CREATE USERMANAGED CACHE GROUP

There is one CREATE CACHE GROUP statement to create a global cache group:

s CREATE WRITETHROUGH GLOBAL CACHE GROUP

CREATE READONLY CACHE GROUP
For read-only cache groups, the syntax is:

CREATE [DYNAMIC] READONLY CACHE GROUP [Owner.]GroupName
[AUTOREFRESH
[MODE {INCREMENTAL | FULL}]
[INTERVAL IntervalValue {MINUTE[S] | SECOND[S] | MILLISECOND[S] }]
[STATE {ON|OFF |PAUSED}]
]
FROM
{[Owner.]TableName (
{ColumnDefinition[,...]}
[, PRIMARY KEY(ColumnNamel,...])]
[,FOREIGN KEY (ColumnName [,...])
REFERENCES RefTableName (ColumnName [,...])
[ON DELETE CASCADE]
[UNIQUE HASH ON (HashColumnNamel,...]) PAGES=PrimaryPages]
[AGING USE ColumnName
LIFETIME Numl {SECOND[S] | MINUTE([S] |HOUR[S] | DAY[S]}
[CYCLE Num2 {SECOND[S] | MINUTE[S] |HOUR[S] |DAY[S]}]
[ON|OFF]
]
[WHERE ExternalSearchCondition]
Yoo 1

CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP
For asynchronous writethrough cache groups, the syntax is:

CREATE [DYNAMIC] [ASYNCHRONOUS] WRITETHROUGH CACHE GROUP [Owner.]GroupName
FROM
{[Owner.]TableName (
{ColumnDefinition[,...]}
[, PRIMARY KEY (ColumnNamel,...]1)]
[FOREIGN KEY (ColumnName [,...])
REFERENCES RefTableName (ColumnName [,...]1)]
[ON DELETE CASCADE]
UNIQUE HASH ON (HashColumnNamel[,...]) PAGES=PrimaryPages]
[AGING {LRU]|
USE ColumnName
LIFETIME Numl {SECOND[S] | MINUTE[S] |HOUR[S] |DAY[S]}
[CYCLE Num2 {SECOND[S] | MINUTE[S] |HOUR[S] |DAY[S]}]
} [ON | OFF]

YL

5-56 Oracle TimesTen In-Memory Database SQL Reference

CREATE CACHE GROUP

CREATE SYNCHRONOUS WRITETHROUGH CACHE GROUP
For synchronous writethrough cache groups, the syntax is:

CREATE [DYNAMIC] SYNCHRONOUS WRITETHROUGH
CACHE GROUP [Owner.]GroupName
FROM
{[Owner.] TableName (
{ColumnDefinition[,...]}
[, PRIMARY KEY (ColumnNamel[,...])]
[FOREIGN KEY (ColumnName [,...])

REFERENCES RefTableName (ColumnName [,...])}]
[ON DELETE CASCADE]
[UNIQUE HASH ON (HashColumnNamel[,...]) PAGES=PrimaryPages]
[AGING {LRU|

USE ColumnName
LIFETIME Numl {SECOND[S] | MINUTE[S] |HOUR[S] |DAY[S]}
[CYCLE Num2 {SECOND[S] | MINUTE[S] |HOUR[S] |DAY[S]}]

} [ON| OFF]
YoLooou1s

CREATE USERMANAGED CACHE GROUP
For user managed cache groups, the syntax is:

CREATE [DYNAMIC] [USERMANAGED] CACHE GROUP [Owner.]GroupName
[AUTOREFRESH
[MODE {INCREMENTAL | FULL}]
[INTERVAL IntervalValue {MINUTE[S] | SECOND[S] | MILLISECOND[S] }]
[STATE {ON|OFF | PAUSED}]
]
FROM
{[Owner.] TableName (
{ColumnDefinition[,...]}
[, PRIMARY KEY (ColumnNamel[,...])]
[FOREIGN KEY (ColumnNamel[,...])
REFERENCES RefTableName (ColumnName [,...]1)]
[ON DELETE CASCADE]
[, {READONLY | PROPAGATE | NOT PROPAGATE}]
[UNIQUE HASH ON (HashColumnNamel[,...]) PAGES=PrimaryPages]
[AGING {LRU|
USE ColumnName
LIFETIME Numl {SECOND[S] | MINUTE[S] |HOUR[S] |DAY[S]}
[CYCLE Num2 {SECOND[S] | MINUTE[S] |HOUR[S] |DAY[S]}]
} [ON| OFF]
]
[WHERE ExternalSearchCondition]

| P

CREATE WRITETHROUGH GLOBAL CACHE GROUP

The following syntax demonstrates how to create a global cache group to cache data
within a cache grid. Specify the DYNAMIC attribute to enable dynamic load from the
Oracle database for the cache group.

CREATE [DYNAMIC] [ASYNCHRONOUS] WRITETHROUGH GLOBAL CACHE GROUP [Owner.]GroupName
FROM
{[Owner.] TableName (
{ColumnDefinition[,...]}
[, PRIMARY KEY (ColumnNamel[,...])]
[FOREIGN KEY (ColumnName [,...])
REFERENCES RefTableName (ColumnName [,...])]

SQL Statements 5-57

CREATE CACHE GROUP

[ON DELETE CASCADE]
UNIQUE HASH ON (HashColumnNamel[,...]) PAGES=PrimaryPages]
[AGING {LRU|
USE ColumnName
LIFETIME Numl {SECOND[S] | MINUTE[S] |HOUR[S] |DaY[S]}
[CYCLE Num2 {SECOND[S] | MINUTE[S] |HOUR[S] |DAY[S]}]
} [ON| OFF]

| P

Parameters
Following are the parameters for the cache group definition before the FROM keyword:

Parameter Description

[Owner.] GroupName Owner and name assigned to the new cache group.

[DYNAMIC] If specified, a dynamic cache group is created.

AUTOREFRESH The AUTOREFRESH parameter automatically propagates changes

from the Oracle database to the cache group. For details, see
"AUTOREFRESH in cache groups" on page 5-62.

MODE [INCREMENTAL | Determines which rows in the cache are updated during an

FULL] autorefresh. If the INCREMENTAL clause is specified, TimesTen
refreshes only rows that have been changed on Oracle since the
last propagation. If the FULL clause is specified, TimesTen
updates all rows in the cache with each autorefresh. The default
autorefresh mode is INCREMENTAL.

INTERVAL Indicates the interval at which autorefresh should occur in units

IntervalValue of minutes, seconds or milliseconds. IntervalValueis an
integer value that specifies how often autorefresh should be
scheduled, in MINUTES, SECONDS or MILLISECONDS. The
default TntervalValue value is 5 minutes. If the specified
interval is not long enough for an autorefresh to complete, a
runtime warning is generated and the next autorefresh waits
until the current one finishes. An informational message is
generated in the support log if the wait queue reaches 10.

STATE [ON | OFF | Specifies whether autorefresh should be ON or OFF or PAUSED

PAUSED] when the cache group is created. You can alter this setting later
by using the ALTER CACHE GROUP statement. By default, the
AUTOREFRESH state is PAUSED.

FROM Designates one or more table definitions for the cache group.

Everything after the FROM keyword comprises the definitions of the Oracle tables
cached in the cache group. The syntax for each table definition is similar to that of a
CREATE TABLE statement. However, primary key constraints are required for the
cache group table.

Table definitions have the following parameters:

Parameter Description

[Owner.] TableName Owner and name to be assigned to the new table. If you do
not specify the owner name, your login becomes the owner
name for the new table.

ColumnDefinition Name of an individual column in a table, its data type and
whether or not it is nullable. Each table must have at least
one column. See "Column Definition" on page 5-114.

5-58 Oracle TimesTen In-Memory Database SQL Reference

CREATE CACHE GROUP

Parameter

Description

PRIMARY KEY
(ColumnNamel[,...]1)

Specifies that the table has a primary key. Primary key
constraints are required for a cache group. ColumnName is
the name of the column that forms the primary key for the
table to be created. Up to 16 columns can be specified for
the primary key. Cannot be specified with UNIQUE in one
specification.

FOREIGN KEY
(ColumnNamel[,...]1)

Specifies that the table has a foreign key. ColumnName is
the name of the column that forms the foreign key for the
table to be created. See "FOREIGN KEY" on page 5-111.

REFERENCES RefTableName
(ColumnNamel[,...])

Specifies the table which the foreign key is associated with.
RefTableName is the name of the referenced table and
ColumnName is the name of the column referenced in the
table.

[ON DELETE CASCADE]

Enables the ON DELETE CASCADE referential action. If
specified, when rows containing referenced key values are
deleted from a parent table, rows in child tables with
dependent foreign key values are also deleted.

READONLY

Specifies that changes cannot be made on the cached table.

PROPAGATE|NOT PROPAGATE

Specifies whether changes to the cached table are
automatically propagate to the corresponding Oracle table
at commit time.

UNIQUE HASH ON
(HashColumnName)

Specifies that a hash index is created on this table.
HashColumnName identifies the column that is to
participate in the hash key of this table. The columns
specified in the hash index must be identical to the columns
in the primary key.

PAGES=PrimaryPages

Specifies the expected number of pages in the table. The
PrimaryPages number determines the number of hash
buckets created for the hash index. The minimum is 1. If
your estimate is too small, performance is degraded. See
"CREATE TABLE" on page 5-109 for more information.

WHERE
ExternalSearchCondition

The WHERE clause evaluated by Oracle for the cache group
table. This WHERE clause is added to every LOAD and
REFRESH operation on the cache group. It may not directly
reference other tables. It is parsed by both TimesTen and
Oracle. See "Using a WHERE clause" in Oracle In-Memory
Database Cache User's Guide.

SQL Statements 5-59

CREATE CACHE GROUP

Parameter Description

AGING LRU [ON | OFF] If specified, defines the LRU aging policy on the root table.
The LRU aging policy applies to all tables in the cache
group. The LRU aging policy defines the type of aging
(least recently used (LRU)), the aging state (ON or OFF) and
the LRU aging attributes.

Set the aging state to either ON or OFF. ON indicates that the
aging state is enabled and aging is done automatically. OFF
indicates that the aging state is disabled and aging is not
done automatically. In both cases, the aging policy is
defined. The default is ON.

In dynamic cache groups, LRU aging is set ON by default.
You can specify time-based aging instead. Aging is
disabled by default on an explicitly loaded global cache
group.

LRU aging cannot be specified on a cache group with the
autorefresh attribute, unless the cache group is dynamic.

LRU attributes are defined by calling the
ttAgingLRUConfig procedure. LRU attributes are not
defined at the SQL level.

For more information about LRU aging, see "Implementing
aging on a cache group" in Oracle In-Memory Database Cache
User’s Guide.

AGING USE If specified, defines the time-based aging policy on the root

ColumnName. .. [ON|OFF] table. The time-based aging policy applies to all tables in
the cache group. The time-based aging policy defines the
type of aging (time-based), the aging state (ON or OFF) and
the time-based aging attributes.

Set the aging state to either ON or OFF. ON indicates that the
aging state is enabled and aging is done automatically. OFF
indicates that the aging state is disabled and aging is not
done automatically. In both cases, the aging policy is
defined. The default is ON.

Time-based aging attributes are defined at the SQL level
and are specified by the LIFETIME and CYCLE clauses.

Specify ColumnName as the name of the column used for
time-based aging. Define the column as NOT NULL and of
data type TIMESTAMP or DATE. The value of this column is
subtracted from SYSDATE, truncated using the specified
unit (second, minute, hour, day) and then compared to the
LIFETIME value. If the result is greater than the LIFETIME
value, then the row is a candidate for aging.

The values of the column used for aging are updated by
your applications. If the value of this column is unknown
for some rows, and you do not want the rows to be aged,
define the column with a large default value (the column
cannot be NULL).

Aging is disabled by default on an explicitly loaded global
cache group.

For more information about time-based aging, see
"Implementing aging on a cache group" in Oracle
In-Memory Database Cache User’s Guide.

5-60 Oracle TimesTen In-Memory Database SQL Reference

CREATE CACHE GROUP

Description

Parameter

Description

LIFETIME Numl

{SECOND[S] |[MINUTE[S] | HOUR

[SIDAY[S]}

LIFETIME is a time-based aging attribute and is a required
clause.

Specify the LIFETIME clause after the AGING USE
ColumnName clause.

The LIFETIME clause specifies the minimum amount of
time data is kept in cache.

Specify Numl as a positive integer constant to indicate the
unit of time expressed in seconds, minutes, hours or days
that rows should be kept in cache. Rows that exceed the
LIFETIME value are aged out (deleted from the table).

The concept of time resolution is supported. If DAYS is
specified as the time resolution, then all rows whose
timestamp belongs to the same day are aged out at the
same time. If HOURS is specified as the time resolution, then
all rows with timestamp values within that hour are aged
at the same time. A LIFETIME of 3 days is different than a
LIFETIME of 72 hours (3*24) or a LIFETIME of 432
minutes (3*24*60).

[CYCLE Num2 {SECOND[S]
MINUTE[S]
|HOUR[S] |DAY[S]}]

CYCLE is a time-based aging attribute and is optional.
Specify the CYCLE clause after the LIFETIME clause.

The CYCLE clause indicates how often the system should
examine rows to see if data exceeds the specified
LIFETIME value and should be aged out (deleted).

Specify Num2 as a positive integer constant.

If you do not specify the CYCLE clause, then the default
value is 5 minutes. If you specify 0 for Num2, then the
aging thread wakes up every second.

If the aging state is OFF, then aging is not done
automatically and the CYCLE clause is ignored.

s Two cache groups cannot have the same owner name and group name. If you do
not specify the owner name, your login becomes the owner name for the new

cache group.

s Dynamic parameters are not allowed in the WHERE clause.

s Oracle temporary tables cannot be cached.

= Each table must correspond to a table in the Oracle database.

= You cannot use lowercase delimited identifiers to name your cache tables. Table
names in TimesTen are case-insensitive and are stored as uppercase. The name of
the cache table must be the same as the Oracle table name. Uppercase table names
on TimesTen will not match mixed case table names on Oracle. As a workaround,
create a synonym for your table in Oracle and use that synonym as the table name
for the cache group. This workaround is not available for read-only cache groups
or cache groups with the AUTOREFRESH parameter set.

s Each column in the cache table must match each column in the Oracle table, both
in name and in data type. See "Mappings between Oracle and TimesTen data
types" in Oracle In-Memory Database Cache User's Guide. In addition, each column
name must be fully qualified with an owner and table name when referenced in a

WHERE clause.

SQL Statements 5-61

CREATE CACHE GROUP

s The WHERE clause can only directly refer to the cache group table. Tables that are
not in the cache group can only be referenced with a subquery.

= Generally, you do not have to fully qualify the column names in the WHERE clause
of the CREATE CACHE GROUP, LOAD CACHE GROUP, UNLOAD CACHE GROUP,
REFRESH CACHE GROUP or FLUSH CACHE GROUP statements. However, since
TimesTen automatically generates queries that join multiple tables in the same
cache group, a column needs to be fully qualified if there is more than one table in
the cache group that contains columns with the same name.

= By default, a range index is created to enforce the primary key for a cache group
table. Use the UNIQUE HASH clause to specify a hash index for the primary key.

- If your application performs range queries over a cache group table's primary
key, then choose a range index for that cache group table by omitting the
UNIQUE HASH clause.

- If, however, your application performs only exact match lookups on the
primary key, then a hash index may offer better response time and
throughput. In such a case, specify the UNIQUE HASH clause. See "CREATE
TABLE" on page 5-109 for more information on the UNIQUE HASH clause.

- UseALTER TABLE to change the representation of the primary key index for a
table.

= For cache group tables with the PROPAGATE attribute and for tables of SWT and
AWT cache groups, foreign keys specified with ON DELETE CASCADE must be a
proper subset of foreign keys with ON DELETE CASCADE in the Oracle tables.

AUTOREFRESH in cache groups

The AUTOREFRESH parameter automatically propagates changes from the Oracle
database to TimesTen cache groups. For explicitly loaded cache groups, deletes,
updates and inserts are automatically propagated from the Oracle database to the
cache group. For dynamic cache groups, only deletes and updates are propagated.
Inserts to the specified Oracle tables are not propagated to dynamic cache groups.
They are dynamically loaded into IMDB Cache when referenced by the application.
They can also be explicitly loaded by the application.

To use autorefresh with a cache group, you must specify AUTOREFRESH when you
create the cache group. You can change the MODE, STATE and INTERVAL
AUTOREFRESH settings after a cache group has been created by using the ALTER
CACHE GROUP command. Once a cache group has been specified as either
AUTOREFRESH or PROPAGATE, you cannot change these attributes.

TimesTen supports FULL or INCREMENTAL AUTOREFRESH. In FULL mode, the entire
cache is periodically unloaded and then reloaded. In INCREMENTAL mode, TimesTen
installs triggers in the Oracle database to track changes and periodically updates only
the rows that have changed in the specified Oracle tables. The first incremental refresh
is always a full refresh, unless the autorefresh state is PAUSED. The default mode is
INCREMENTAL.

FULL AUTOREFRESH is more efficient when most of the Oracle table rows have been
changed. INCREMENTAL AUTOREFRESH is more efficient when there are fewer
changes.

TimesTen schedules an autorefresh operation when the transaction that contains a
statement with AUTOREFRESH specified is committed. The statement types that cause
autorefresh to be scheduled are:

5-62 Oracle TimesTen In-Memory Database SQL Reference

CREATE CACHE GROUP

= A CREATE CACHE GROUP statement in which AUTOREFRESH is specified, and the
AUTOREFRESH state is specified as ON.

s AnALTER CACHE GROUP statement in which the AUTOREFRESH state has been
changed to ON.

= A LOAD CACHE GROUP statement on an empty cache group whose autorefresh
state is PAUSED.

The specified interval determines how often autorefresh occurs.

The current STATE of AUTOREFRESH can be ON, OFF or PAUSED. By default, the
autorefresh state is PAUSED.

The NOT PROPAGATE attribute cannot be used with the AUTOREFRESH attribute.

Aging in cache groups
= You can implement sliding windows with time-based aging. See "Configuring a
sliding window" in Oracle In-Memory Database Cache User’s Guide.

= After you have defined an aging policy for the table, you cannot change the policy
from LRU to time-based or from time-based to LRU. You must first drop aging
and then alter the table to add a new aging policy.

s The aging policy must be defined to change the aging state.

= LRU and time-based aging can be combined in one system. If you use only LRU
aging, the aging thread wakes up based on the cycle specified for the whole
database. If you use only time-based aging, the aging thread wakes up based on
an optimal frequency. This frequency is determined by the values specified in the
CYCLE clause for all tables. If you use both LRU and time-based aging, then the
thread wakes up based on a combined consideration of both types.

s Call the ttAgingScheduleNow procedure to schedule the aging process right
away regardless if the aging state is ON or OFF.

» The following rules determine if a row is accessed or referenced for LRU aging:
— Any rows used to build the result set of a SELECT statement.
- Any rows used to build the result set of an INSERT. . . SELECT statement.
- Any rows that are about to be updated or deleted.

s Compiled commands are marked invalid and need recompilation when you either
drop LRU aging from or add LRU aging to tables that are referenced in the
commands.

» For LRU aging, if a child row is not a candidate for aging, then neither this child
row nor its parent row are deleted. ON DELETE CASCADE settings are ignored.

» For time-based aging, if a parent row is a candidate for aging, then all child rows
are deleted. ON DELETE CASCADE (whether specified or not) is ignored.

» Specify either the LRU aging or time-based aging policy on the root table. The
policy applies to all tables in the cache group.

= For the time-based aging policy, you cannot add or modify the aging column. This
is because you cannot add or modify a NOT NULL column.

= Restrictions on defining aging for a cache group:

- LRU aging is not supported on a cache group defined with the autorefresh
attribute, unless it is a dynamic cache group.

SQL Statements 5-63

CREATE CACHE GROUP

- Aging is disabled by default on an explicitly loaded global cache group.

— The aging policy cannot be added, altered, or dropped for read-only cache
groups or cache groups with the AUTOREFRESH attribute while the cache
agent is active. Stop the cache agent first.

- You cannot drop the column that is used for time-based aging.

Cache grid

To cache data in a cache grid, you must create an asynchronous writethrough global
cache group. Before you can create this cache group, the TimesTen database must be
associated with a cache grid. For more information on creating and using a cache grid
and creating and using global cache groups, see "Cache grid" and "Global cache
group" in Oracle In-Memory Database Cache User's Guide.

Examples
Create a read-only cache group:

CREATE READONLY CACHE GROUP customerorders
AUTOREFRESH INTERVAL 10 MINUTES
FROM
customer (custid INT NOT NULL,
name CHAR(100) NOT NULL,
addr CHAR(100),
zip INT,
region CHAR(10),
PRIMARY KEY (custid)),
ordertab (orderid INT NOT NULL,
custid INT NOT NULL,
PRIMARY KEY (orderid),
FOREIGN KEY (custid) REFERENCES customer (custid));

Create an asynchronous writethrough cache group:

CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP cstomers
FROM
customer (custid INT NOT NULL,

name CHAR(100) NOT NULL,

addr CHAR(100),

zip INT,

PRIMARY KEY (custid));

Create a synchronous writethrough cache group:

CREATE SYNCHRONOUS WRITETHROUGH CACHE GROUP customers
FROM
customer (custid INT NOT NULL,

name CHAR(100) NOT NULL,

addr CHAR(100),

zip INT,

PRIMARY KEY (custid));

Create a user managed cache group:

CREATE USERMANAGED CACHE GROUP updateanywherecustomers
AUTOREFRESH

MODE INCREMENTAL

INTERVAL 30 SECONDS

STATE ON
FROM

5-64 Oracle TimesTen In-Memory Database SQL Reference

CREATE CACHE GROUP

customer (custid INT NOT NULL,
name CHAR(100) NOT NULL,
addr CHAR(100),
zip INT,
PRIMARY KEY (custid),
PROPAGATE) ;

Create a cache group with time-based aging. Specify agetimestamp as the column
for aging. Specify LIFETIME 2 hours, CYCLE 30 minutes. Aging state is not specified,
so the default setting (ON) is used.

CREATE READONLY CACHE GROUP agingcachegroup
AUTOREFRESH
MODE INCREMENTAL
INTERVAL 5 MINUTES
STATE PAUSED
FROM
customer (customerid NUMBER NOT NULL,
agetimestamp TIMESTAMP NOT NULL,
PRIMARY KEY (customerid))
AGING USE agetimestamp LIFETIME 2 HOURS CYCLE 30 MINUTES;

Command> DESCRIBE customer;
Table USER.CUSTOMER:

Columns:
*CUSTOMERID NUMBER NOT NULL
AGETIMESTAMP TIMESTAMP (6) NOT NULL

AGING USE AgeTimestamp LIFETIME 2 HOURS CYCLE 30 MINUTES ON
1 table found.
(primary key columns are indicated with *)

Use a synonym for a mixed case delimited identifier table name in the Oracle database
so the mixed case table name can be cached in TimesTen. First attempt to cache the
mixed case Oracle table name. You see the error "Could not find

'NameofTable' in Oracle™:

Command> AUTOCOMMIT O;
Command> PASSTHROUGH 3;
Command> CREATE TABLE "MixedCase" (coll NUMBER PRIMARY KEY NOT NULL);
Command> INSERT INTO "MixedCase" VALUES (1);

1 row inserted.
Command> COMMIT;
Command> CREATE CACHE GROUP MixedCasel from "MixedCase"

(coll NUMBER PRIMARY KEY NOT NULL) ;

5140: Could not find SAMPLEUSER.MIXEDCASE in Oracle. May not have privileges.

The command failed.

Now, using the PassThrough attribute, create the synonym "MIXEDCASE" in the
Oracle database and use that synonym as the table name.

Command> AUTOCOMMIT O;

Command> PASSTHROUGH 3;

Command> CREATE SYNONYM "MIXEDCASE" FOR "MixedCase";

Command> COMMIT;

Command> CREATE CACHE GROUP MixedCase2 FROM "MIXEDCASE"
(coll NUMBER PRIMARY KEY NOT NULL) ;

Warning 5147: Cache group contains synonyms

Command> COMMIT;

Attempt to use a synonym name with a read-only cache group or a cache group with
the AUTOREFRESH attribute. You see an error:

SQL Statements 5-65

CREATE CACHE GROUP

Command> AUTOCOMMIT O0;

Command> PASSTHROUGH 3;

Command> CREATE SYNONYM "MIXEDCASE_AUTO" FOR "MixedCase";

Command> COMMIT;

Command> CREATE READONLY CACHE GROUP MixedCase3 AUTOREFRESH MODE
INCREMENTAL INTERVAL 10 MINUTES FROM "MIXEDCASE_AUTO"
(Coll NUMBER PRIMARY KEY NOT NULL) ;

5142: Autorefresh is not allowed on cache groups with Oracle synonyms

The command failed.

See also

ALTER CACHE GROUP
ALTER TABLE

DROP CACHE GROUP
FLUSH CACHE GROUP
LOAD CACHE GROUP
UNLOAD CACHE GROUP

5-66 Oracle TimesTen In-Memory Database SQL Reference

CREATE FUNCTION

CREATE FUNCTION

The CREATE FUNCTION statement creates a standalone stored function.

Required privilege
CREATE PROCEDURE (if owner) or CREATE ANY PROCEDURE (if not owner).

SQL syntax

CREATE [OR REPLACE] FUNCTION [Owner.]FunctionName
[(arguments [IN|OUT|IN OUT] [NOCOPY] datatype [DEFAULT exprll,...])]
RETURN datatype [invoker_ rights clause] [DETERMINISTIC]
{IS|AS} plsgl_function body

The syntax for the invoker_rights_clause:

AUTHID {CURRENT_USER | DEFINER}

You can specify invoker_rights_clause or DETERMINISTIC in any order.

Parameters

Parameter Description

OR REPLACE Specify OR REPLACE to re-create the function if it already
exists. Use this clause to change the definition of an
existing function without dropping and re-creating it.
When you re-create a function, TimesTen recompiles it.

FunctionName Name of function.

arguments Name of argument or parameter. You can specify 0 or
more parameters for the function. If you specify a
parameter, you must specify a data type for the parameter.
The data type must be a PL/SQL data type.

For more information on PL/SQL data types, see Oracle
TimesTen In-Memory Database PL/SQL Packages Reference.

IN| OUT |IN OUT Parameter modes.

IN is a read-only parameter. You can pass the parameter's
value into the function but the function cannot pass the
parameter's value out of the function and back to the
calling PL/SQL block.The value of the parameter cannot be
changed.

OUT is a write-only parameter. Use an OUT parameter to
pass a value back from the function to the calling PL/SQL
block. You can assign a value to the parameter.

IN OUT is a read/write parameter. You can pass values
into the function and return a value back to the calling
program (either the original, unchanged value or a new
value set within the function.

IN is the default.

SQL Statements 5-67

CREATE FUNCTION

Parameter Description

NOCOPY Specify NOCOPY to instruct TimesTen to pass the parameter
as fast as possible. You can enhance performance when
passing a large value such as a record, an index-by-table,
or a varray to an OUT or IN OUT parameter. IN parameters
are always passed NOCOPY.

For more information on NOCOPY, see Oracle Database SQL
Language Reference.

DEFAULT expr Use this clause to specify a default value for the parameter.
You can specify : = in place of the keyword DEFAULT.

RETURN datatype Required clause. A function must return a value. You must
specify the data type of the return value of the function.

Do not specify a length, precision, or scale for the data
type.
The data type is a PL/SQL data type.

For more information on PL/SQL data types, see Oracle
TimesTen In-Memory Database PL/SQL Packages Reference.

invoker rights_clause Lets you specify whether the function executes with the
privileges of the user who owns it or with the privileges of
the CURRENT_USER.

Specify CURRENT_USER to indicate that the function
executes with the privileges of the CURRENT_USER.

Specify DEFINER to indicate that the function executes
with the privileges of the owner of the function.

DEFINER is the default.

For more information, see Oracle Database SQL Language
Reference.

DETERMINISTIC Specify DETERMINISTIC to indicate that the function
should return the same result value whenever it is called
with the same values for its parameters.

For more information on the DETERMNISTIC clause, see
Oracle Database SQL Language Reference.

IS|as Specify either IS or AS to declare the body of the function.

plsqgl_function_spec Specifies the function body.

Restrictions

TimesTen does not support:

s parallel enable clause. You can specify the clause, but it has no effect.
m call_ spec clause

s AS EXTERNAL

The CREATE FUNCTION statement is not replicated.

When you create or replace a function, the privileges granted on the function remain
the same. If you drop and re-create the object, the object privileges that were granted
on the original object are revoked.

Examples

Create function get_sal with one input parameter. Return salary as type NUMBER.

Command> CREATE OR REPLACE FUNCTION get_sal

5-68 Oracle TimesTen In-Memory Database SQL Reference

CREATE FUNCTION

(p_1id employees.employee_id%TYPE) RETURN NUMBER IS
v_sal employees.salary%TYPE := 0;
BEGIN
SELECT salary INTO v_sal FROM employees
WHERE employee_id = p_id;
RETURN v_sal;
END get_sal;
/

V V.V V V V V V

Function created.

See also

Oracle TimesTen In-Memory Database PL/SQL Packages Reference and Oracle Database SQL
Language Reference

SQL Statements 5-69

CREATE INDEX

CREATE INDEX

The CREATE INDEX statement creates either a range index or a bitmap index on one
or more columns of a table or materialized view and assigns a name to the new index.

Required privilege
No privilege is required for table or materialized view owner.

INDEX for another user's table or materialized view.

SQL syntax

CREATE [UNIQUE | BITMAP] INDEX [Owner.]IndexName ON
[Owner.] TableName ({ColumnName [ASC | DESC]}
L. 1)

Parameters

Parameter Description

UNIQUE Prohibits duplicates in the index. If UNIQUE is specified, each
possible combination of index key column values can occur in
only one row of the table. If UNIQUE is omitted, duplicate values
are allowed. When you create a unique index, all existing rows
must have unique values in the indexed columns. If you specify
UNIQUE, TimesTen creates a range index.

A range index:

= Speeds up range searches (but can also be used for efficient
equality searches)

= Is optimized for in-memory data management

= Provides efficient sorting by column value

BITMAP Specify CREATE BITMAP INDEX to create an index where the
information about rows with each unique value is encoded in a
bitmap. Each bit in the bitmap corresponds to a row in the table.

Use a bitmap index for columns that do not have many unique
values.

[Owner.] IndexName Name to be assigned to the new index. A table cannot have two
indexes with the same name. If the owner is specified, it must be
the same as the owner of the table.

[Owner.] TableName Designates the table or materialized view for which an index is to
be created.

ColumnName Name of a column to be used as an index key. You can specify up
to 16 columns in order from major index key to minor index key.

[ASC|DESC] Specifies the order of the index to be either ascending (the
default) or descending. In TimesTen, this parameter is currently
ignored.

Description
= If you do not specify UNIQUE or BITMAP, TimesTen creates a range index.

= Specify a bitmap index on each column to increase the performance of complex
queries that specify multiple predicates on multiple columns connected by the AND
or OR operator. At runtime, TimesTen finds bitmaps of rows that satisfy each

5-70 Oracle TimesTen In-Memory Database SQL Reference

CREATE INDEX

predicate and bitmaps from different predicates are combined using bitwise
logical operation and then the resultant bitmaps are converted to qualified rows.

Bitmap indexes are used to satisfy these predicates:

— Equality predicates. For example: 'x1 = 1'

- Range predicates. For example: 'yl > 10' and'zl BETWEEN 1 and 10'
— AND predicates. For example: 'x1 > 10 AND yl > 10'

— OR predicates. For example: 'x1 > 10 OR yl > 10'

- Complex predicates with AND or OR. For example: ' (x1 > 10 AND yl >
10) OR (zl1 > 10)'

- NOT EQUAL predicate with AND. For example: 'x1 = 1 and yl1 != 1'
Bitmap indexes:
— COUNT (*) optimization counts rowids from bitmaps.

— Are used to optimize queries that group by a prefix of columns of the bitmap
index.

— Are used to optimize distinct queries and order by queries.
- Are used in a MERGE join.

The CREATE INDEX statement enters the definition of the index in the system
catalog and initializes the necessary data structures. Any rows in the table are then
added to the index. In TimesTen, performance is the same regardless of whether
the table is created, indexed and populated or created, then populated and
indexed.

If UNIQUE is specified, all existing rows must have unique values in the indexed
column(s).

The new index is maintained automatically until the index is deleted by a DROP
INDEX statement or until the table associated with it is dropped.

Any prepared statements that reference the table with the new index are
automatically prepared again the next time they are executed. Then the statements
can take advantage, if possible, of the new index.

NULL compares higher than all other values for sorting.

An index on a temporary table cannot be created by a connection if any other
connection has a non-empty instance of the table.

If you are using linguistic comparisons, you can create a linguistic index. A
linguistic index uses sort key values and storage is required for these values. Only
one unique value for NLS_SORT is allowed for an index. For more information on
linguistic indexes and linguistic comparisons, see "Using linguistic indexes" in
Oracle TimesTen In-Memory Database Operations Guide.

If you create indexes that are redundant, TimesTen generates warnings or errors.
Call ttRedundantIndexCheck to see the list of redundant indexes for your
tables.

In a replicated environment for an active standby pair, if
DDL_REPLICATION_LEVEL=2 when you execute the CREATE INDEX on the
active database, the index will be replicated to all databases in the replication
scheme. The table on which the index is created must be empty. See "Making DDL
changes in an active standby pair" in the Oracle TimesTen In-Memory Database
TimesTen to TimesTen Replication Guide for more information.

SQL Statements 5-71

CREATE INDEX

Examples

Create a table and then create a bitmap index on the table. Use the ttIsgl SHOWPLAN
command to verify that the bitmap index is used in the query:

Command> CREATE TABLE tabl (id NUMBER) ;

Command> INSERT INTO tabl VALUES (10);

1 row inserted.

Command> INSERT INTO tabl VALUES (20);

1 row inserted.

Command> CREATE BITMAP INDEX bitmap_id ON tabl (id);
Command> COMMIT;

Command> SET AUTOCOMMIT OFF;

Command> SHOWPLAN 1;

Command> SELECT * FROM tabl WHERE id = 10;

Query Optimizer Plan:

STEP: 1
LEVEL: 1
OPERATION: RowLkBitmapScan
TBLNAME : TABL
IXNAME : BITMAP_ID
INDEXED CONDITION: TAB1.ID = 10
NOT INDEXED: <NULL>

< 10 >

1 row found.

The regions table in the HR schema creates a unique index on region_id. Issue the
ttIsgl INDEXES command on table regions. You see the unique range index
regions.

Command> INDEXES REGIONS;

Indexes on table SAMPLEUSER.REGIONS:
REGIONS: unique T-tree index on columns:
REGION_ID
(referenced by foreign key index COUNTR_REG_FK on table SAMPLEUSER.COUNTRIES)
1 index found.

1 table found.

Attempt to create a unique index i on table regions indexing on column
region_id. You see a warning message:

Command> CREATE UNIQUE INDEX i ON regions (region_id);
Warning 2232: New index I is identical to existing index REGIONS; consider
dropping index I

Call ttRedundantIndexCheck to see warning message for this index:

Command> CALL ttRedundantIndexCheck ('regions');

< Index SAMPLEUSER.REGIONS.I is identical to index SAMPLEUSER.REGIONS.REGIONS;
consider dropping index SAMPLEUSER.REGIONS.I >

1 row found.

Create table redundancy and define columns col1 and col2. Create two user
indexes on coll and col2. You see an error message when you attempt to create the
second index r2. Index r1 is created. Index r2 is not created.

Command> CREATE TABLE redundancy (coll CHAR (30), col2 VARCHAR2 (30));

5-72 Oracle TimesTen In-Memory Database SQL Reference

CREATE INDEX

See also

Command> CREATE INDEX rl ON redundancy (coll, col2);
Command> CREATE INDEX r2 ON redundancy (coll, col2);

2231: New index R2 would be identical to existing index R1
The command failed.

Issue the tt Isgql command INDEXES on table redundancy to show that only index
rl is created:

Command> INDEXES redundancy;

Indexes on table SAMPLEUSER.REDUNDANCY:
R1l: non-unique T-tree index on columns:
coLl
COL2
1 index found.

1 table found.

This unique index ensures that all part numbers are unique.

CREATE UNIQUE INDEX purchasing.partnumindex
ON purchasing.parts (partnumber);

Create a linguistic index named german_index on table employeesl. If you want to
have more than one linguistic sort, create a second linguistic index.

Command> CREATE TABLE employeesl (id CHARACTER (21),
id2 character (21));
Command> CREATE INDEX german_index ON employeesl
(NLSSORT (id, 'NLS_SORT=GERMAN')) ;
Command> CREATE INDEX german_index2 ON employeesl
NLSSORT (id2, 'nls_sort=german_ci'));
Command> indexes employeesl;
Indexes on table SAMPLEUSER.EMPLOYEESI:
GERMAN_INDEX: non-unique T-tree index on columns:
NLSSORT (ID, 'NLS_SORT=GERMAN')
GERMAN_INDEX2: non-unique T-tree index on columns:
NLSSORT (ID2, 'nls_sort=german_ci')
2 indexes found.
1 table found.

DROP INDEX

SQL Statements 5-73

CREATE MATERIALIZED VIEW

CREATE MATERIALIZED VIEW

The CREATE MATERIALIZED VIEW statement creates a view of the table specified in
the SelectQuery clause. The original tables used to create a view are referred to as
detail tables. The view can be refreshed synchronously or asynchronously with regard
to changes in the detail tables. If you create an asynchronous materialized view, you
must first create a materialized view log on the detail table. See "CREATE
MATERIALIZED VIEW LOG" on page 5-80.

Required privilege

SQL syntax

Parameters

= User executing the statement must have CREATE MATERIALIZED VIEW (if
owner) or CREATE ANY MATERIALIZED VIEW (if not owner).

s Owner of the materialized view must have SELECT on the detail tables.

s Owner of the materialized view must have CREATE TABLE.

CREATE MATERIALIZED VIEW ViewName
[REFRESH
{ FAST | COMPLETE } |
[NEXT SYSDATE [+NUMTODSINTERVAL (IntegerLiteral, IntervalUnit)]]
| NEXT SYSDATE[+NUMTODSINTERVAL (IntegerLiteral,IntervalUnit)]
]
AS SelectQuery
[PRIMARY KEY (ColumnName [,...])]

[UNIQUE HASH ON (HashColumnName [,...]) PAGES = PrimaryPages]
Parameter Description
ViewName Name assigned to the new view.
REFRESH Specifies an asynchronous materialized view.
FAST | COMPLETE Refresh methods. FAST specifies incremental

refresh. COMPLETE specifies full refresh.

NEXT SYSDATE If NEXT SYSDATE is specified without
NUMTODSINTERVAL, the materialized view is
refreshed incrementally every time a detail table
is modified. The refresh occurs in a separate
transaction immediately after the transaction
that modifies the detail table has been
committed. You cannot specify a full refresh
(COMPLETE) every time a detail table is
modified.

If NEXT SYSDATE is omitted, then the
materialized view will not be refreshed
automatically. It must be refreshed manually.

If NEXT SYSDATE is provided without FAST or
COMPLETE specified, COMPLETE is the default
refresh method.

5-74 Oracle TimesTen In-Memory Database SQL Reference

CREATE MATERIALIZED VIEW

Description

Parameter Description
[+NUMTODSINTERVAL (IntegerLiteral, If specified, the materialized view is refreshed at
IntervalUnit)] the specified interval. IntegerLiteral must

be an integer. IntervalUnit must be one of
the following values: 'DAY ', 'HOUR',
'MINUTE', 'SECOND"'.

If [NEXT

SYSDATE [+NUMTODSINTERVAL (IntegerLit
eral) , IntervalUnit] is not specified, the
materialized view is not refreshed
automatically. You can manually refresh the
view by using the REFRESH MATERIALIZED

VIEW statement.

SelectQuery Select column from the detail tables to be used
in the view.

ColumnName Name of the column(s) that forms the primary

key for the view to be created. Up to 16 columns
can be specified for the primary key. Each result
column name of a viewed table must be unique.
The column name definition cannot contain the
table or owner component.

UNIQUE HASH ON Hash index for the table. Only unique hash

indexes are created. This parameter is used for
equality predicates. UNIQUE HASH ON requires
that a primary key be defined.

HashColumnName Column defined in the view that is to participate

in the hash key of this table. The columns
specified in the hash index must be identical to
the columns in the primary key.

PrimaryPages Specifies the expected number of pages in the

table. This number determines the number of
hash buckets created for the hash index. The
minimum is 1. If your estimate is too small,
performance is degraded. See "CREATE
TABLE" on page 5-109 section for more
information.

Restrictions on synchronous materialized view and detail tables:

A materialized view is read-only and cannot be updated directly. A materialized
view is updated only when changes are made to the associated detail tables.
Therefore a materialized view cannot be the target of a DELETE, UPDATE or
INSERT statement.

Materialized views defined on replicated tables may result in replication failures
or inconsistencies if the materialized view is specified so that overflow or
underflow conditions occur when the materialized view is updated.

Detail tables can be replicated, but materialized views themselves cannot be
replicated. If detail tables are replicated, TimesTen automatically updates the
corresponding views.

A materialized view and its detail tables cannot be part of a cache group.
Referential constraints cannot be defined on materialized views.

If REFRESH is specified, at least one of the refresh options of refresh method (FAST
or COMPLETE) or the refresh interval (NEXT SYSDATE) must be specified. If you

SQL Statements 5-75

CREATE MATERIALIZED VIEW

omit REFRESH, the materialized view is updated synchronously with updates
from the detail tables.

If you create an asynchronous materialized view with REFRESH FAST, it is
recommend that you update the statistics on the materialized view log,
materialized view and the base table on which the materialized view is created to
increase the performance for the base table and updates on the materialized view.

By default, a range index is created to enforce the primary key for a materialized
view. Use the UNIQUE HASH clause to specify a hash index for the primary key.

- If your application performs range queries over a materialized view's primary
key, then choose a range index for that view by omitting the UNIQUE HASH
clause.

- If your application performs only exact match lookups on the primary key,
then a hash index may offer better response time and throughput. In such a
case, specify the UNIQUE HASH clause. See "CREATE TABLE" on page 5-109
for more information about the UNIQUE HASH clause.

Use ALTER TABLE to change the representation of the primary key index or resize
a hash index.

You cannot add or drop columns in the materialized view with the ALTER TABLE
statement. To change the structure of the materialized view, drop and re-create the
view.

You can create indexes on the materialized view with the CREATE INDEX SQL
statement.

Use the DROP [MATERIALIZED] VIEW statement to drop a materialized view.

There are several restrictions on the query that is used to define the materialized view:

A SELECT * query in a materialized view definition is expanded when the view
is created. Columns added to the detail table after a materialized view is created
do not affect the materialized view.

Temporary tables cannot be used in a materialized view definition.
Nonmaterialized views and derived tables cannot be used to define a materialized
view.

All columns in the GROUP BY list must be included in the select list.
Aggregate view must include a COUNT (*) in the select list.
SUM and COUNT are allowed, but not expressions involving them, including AVG.

The following cannot be used in a SELECT statement that is creating a materialized
view:

— DISTINCT

FIRST

- HAVING

— ORDER BY
— UNION

— UNION ALL
- MINUS

— INTERSECT

5-76 Oracle TimesTen In-Memory Database SQL Reference

CREATE MATERIALIZED VIEW

- JOIN

— User functions: USER, CURRENT_USER, SESSION_USER
— Subqueries

— NEXTVAL and CURRVAL

— Derived tables and joined tables

= Each expression in the select list must have a unique name. The name of a simple
column expression is that column's name unless a column alias is defined. ROWID
is considered an expression and needs an alias.

s NoO SELECT FOR UPDATE or SELECT FOR INSERT statements can be used on a
view.

= Each inner table can only be outer joined with at most one table.

= Selfjoins are allowed. A self join is a join of a table to itself. This table appears
twice in the FROM clause and is followed by table aliases that qualify column
names in the join condition.

There are no additional restrictions on asynchronous materialized views with full
(COMPLETE) refresh.

In addition to the restrictions in a SELECT statement that is creating a materialized
view, the following restrictions apply when creating asynchronous materialized views
with incremental (FAST) refresh:

= Aggregate functions are not supported
= Outer joins are not supported.

s The SELECT list must include the ROWID or the primary key columns for all the
detail tables.

s The materialized view log must be created for each detail table in the
asynchronous material view with incremental refresh before creating the
asynchronous materialized view.

s The materialized view log must include all the columns used in the asynchronous
materialized views.

s TimesTen creates a unique index for a asynchronous materialized views that are
refreshed incrementally. The index is created on the primary key or ROWID of the
detail tables included in the SELECT list.

Invalid materialized views

The owner of a materialized view must have the SELECT privilege on its detail tables.
The SELECT privilege is implied by the SELECT ANY TABLE and ADMIN system
privileges. When the SELECT privilege or a higher-level system privilege on the detail
tables is revoked from the owner of the materialized view, the materialized view
becomes invalid.

You can select from an invalid asynchronous materialized view. Refreshing an invalid
asynchronous materialized view fails with an error.

Selecting from an invalid synchronous materialized view fails with an error. Updates
to the detail tables of an invalid synchronous materialized view do not update the
materialized view.

You can identify invalid materialized views by using the ttIsgl describe
command and by inspecting the STATUS column of the SYS.DBA_OBJECTS,

SQL Statements 5-77

CREATE MATERIALIZED VIEW

SYS.ALL_OBJECTS or SYS.USER_OBJECTS system tables. See Oracle TimesTen
In-Memory Database System Tables and Limits Reference .

If the revoked privilege is restored, you can make an invalid materialized view valid
again by:

= Dropping and then re-creating the materialized view

= Refreshing an invalid asynchronous materialized view if it was originally
specified with complete refreshes

For more information, see "Object privileges for materialized views" in Oracle TimesTen
In-Memory Database Operations Guide.

Examples

Create a materialized view of columns from the customer and bookorder tables.

CREATE MATERIALIZED VIEW custorder AS
SELECT custno, custname, ordno, book
FROM customer, bookorder
WHERE customer.custno=bookorder.custno;

Create a materialized view of columns x1 and y1 from the t1 table.

CREATE MATERIALIZED VIEW v1 AS SELECT x1, yl FROM tl
PRIMARY KEY (x1) UNIQUE HASH (x1) PAGES=100;

Create a materialized view from an outer join of columns x1 and y1 from the t1 and
t2 tables.

CREATE MATERIALIZED VIEW v2 AS SELECT x1, yl FROM tl, t2
WHERE x1=x2 (+);

Create an asynchronous materialized view called empmatview with incremental
refresh. The materialized view will be refreshed immediately after updates to
employees have been committed. The columns in empmatview are employee_id
and email. You must create a materialized view log before you create an
asynchronous materialized view.

CREATE MATERALIZED VIEW empmatview

REFRESH FAST NEXT SYSDATE

AS SELECT employee_id, email FROM employees;
107 rows materialized.

Create an asynchronous materialized view called empmatviewl with complete
refresh. A full refresh of the materialized view occurs every 10 days. The columns in
empmatview are employee_id and email. You must create a materialized view log
before you create an asynchronous materialized view.

CREATE MATERIALIZED VIEW empmatviewl
REFRESH COMPLETE NEXT SYSDATE+NUMTODSINTERVAL (10, 'day')
AS SELECT employee_id, email FROM employees;

107 rows materialized.

The following example creates a materialized view empmatview2 based on selected
columns employee_id and email from table employees. After the materialized
view is created, create an index on the materialized view column mvemp_id of the
materialized view empmatview?2.

CREATE MATERIALIZED VIEW empmatview2
AS SELECT employee_id mvemp_id, email mvemail
FROM employees;

5-78 Oracle TimesTen In-Memory Database SQL Reference

CREATE MATERIALIZED VIEW

107 rows materialized.

CREATE INDEX empmvindex ON empmatview2 (mvemp_id);

See also

CREATE MATERIALIZED VIEW LOG
CREATE TABLE

CREATE VIEW

DROP [MATERIALIZED] VIEW
REFRESH MATERIALIZED VIEW

SQL Statements 5-79

CREATE MATERIALIZED VIEW LOG

CREATE MATERIALIZED VIEW LOG

The CREATE MATERIALIZED VIEW LOG statement creates a log in which changes to
the detail table are recorded. The log is required for an asynchronous materialized
view that is refreshed incrementally. The log must be created before the materialized
view is created. The log is a table in the user's schema called
MVLOGS$_detailTableID, where detailTableIDis a system-generated ID.

This statement also creates other objects for internal use:
= A global temporary table called MVLGT$_detailTableID
= A sequence called MVSEQS_detailTableID

The objects are dropped when the DROP MATERIALIZED VIEW LOG statement is
executed.

Required privileges
SELECT on the detail table and

CREATE TABLE or CREATE ANY TABLE (if not owner).

SQL syntax
CREATE MATERIALIZED VIEW LOG ON tableName
[WITH
{ PRIMARY KEY[, ROWID] |
ROWID[, PRIMARY KEY } [(columnName[,...])]
| (columnName[,...])
]
Parameters
Parameter Description
tableName Name of the detail table for the materialized view
[(columnNamel[, ...]) Listof columns for which changes will be recorded in the log. You
cannot include the primary key columns in the column list when
you specify the PRIMARY KEY option.
Description

s Use the WITH clause to indicate the keys and columns for which changes will be
recorded in the materialized view log. If you specify the WITH clause, the
following applies:

— Specify either the PRIMARY KEY or ROWID when using the WITH clause.
However, if the WITH clause is specified without either option, it defaults
implicitly to use PRIMARY KEY.In addition, the materialized view log
defaults to use PRIMARY KEY if the WITH clause is omitted altogether.

— Specify PRIMARY KEY to record changes in the primary key columns.

— Specify the ROWID option to record the rowid of all changed rows. The ROWID
option is useful when the table does not have a primary key or when you do
not want to use the primary key when you create the materialized view.

5-80 Oracle TimesTen In-Memory Database SQL Reference

CREATE MATERIALIZED VIEW LOG

Examples

See also

- You can specify both PRIMARY KEY and ROWID. The materialized view log
may be used by more than one asynchronous materialized view using the
specified table as the detail table. However, you can only specify one
PRIMARY KEY clause, one ROWID clause and one column list for a
materialized view log.

= Only one materialized view log is created for a table, even if the table is the detail
table for more than one materialized view with FAST refreshes. Make sure to
include all the columns that are used in different asynchronous materialized views
with FAST refresh.

= A materialized view log cannot be created using a materialized view as the table
or for tables in cache groups.

= A materialized view log cannot be altered to add or drop columns.

Create a materialized view log on the employees table. Include employee_id (the
primary key) and email in the log.

CREATE MATERIALIZED VIEW LOG ON employees WITH PRIMARY KEY (email);

You can create the same materialized view log on the employees table without
specifying PRIMARY KEY, which is the default and so is implied, as follows:

CREATE MATERIALIZED VIEW LOG ON employees WITH (email);

To create a materialized view log on the employees table with only the primary key,
execute the following:

CREATE MATERIALIZED VIEW LOG ON employees;

Create a materialized view log on the employees table. Include employee_id (the
primary key) and row id in the log.

Command> create materialized view log on employees with primary key, rowid;

Create a materialized view log on the employees table. Include row id in the log.
Command> create materialized view log on employees with rowid;

Create a materialized view log on the employees table. Include row id, primary key
(employee_id) and email in the log.

Command> create materialized view log on employees with rowid, primary key
(email) ;

Create a materialized view log on the employees table. Include primary key, by
default), and two other columns of email and last_name in the log.

Command> create materialized view log on employees with (email, last_name);

CREATE MATERIALIZED VIEW
DROP MATERIALIZED VIEW LOG

SQL Statements 5-81

CREATE PACKAGE

CREATE PACKAGE

The CREATE PACKAGE statement creates the specification for a standalone package,
which is an encapsulated collection of related procedures, functions, and other
program objects stored together in your database. The package specification declares
these objects. The package body defines these objects.

Required privilege
CREATE PROCEDURE (if owner) or CREATE ANY PROCEDURE (if not owner).

SQL syntax

CREATE [OR REPLACE] PACKAGE [Owner.]PackageName
[invoker_ rights_clause] {IS|AS}
plsqgl_package spec

The syntax for the invoker rights_clause:

AUTHID {CURRENT_USER | DEFINER}

Parameters

Parameter Description

OR REPLACE Specify OR REPLACE to re-create the package specification
if it already exists. Use this clause to change the
specification of an existing package without dropping and
recreating the package. When you change a package
specification, TimesTen recompiles it.

PackageName Name of the package.

invoker_rights_clause Lets you specify whether the package executes with the
privileges and in the database of the user who owns it or
with the privileges and in the database of the
CURRENT_USER.

Specify CURRENT_USER to indicate that the package
executes with the privileges of the CURRENT_USER.

Specify DEFINER to indicate that the package executes
with the privileges of the owner of the database in which
the package resides.

DEFINER is the default.

For more information, see Oracle Database SQL Language
Reference.

Is|as Specify either IS or AS to declare the body of the function.

plsqgl_package spec Specifies the package specification. Can include type
definitions, cursor declarations, variable declarations,
constant declarations, exception declarations and PL/SQL
subprogram declarations.

Description
The CREATE PACKAGE statement is not replicated.

5-82 Oracle TimesTen In-Memory Database SQL Reference

CREATE PACKAGE

When you create or replace a package, the privileges granted on the package remain
the same. If you drop and re-create the object, the object privileges that were granted
on the original object are revoked.

See also

Oracle TimesTen In-Memory Database PL/SQL Packages Reference and Oracle Database SQL
Language Reference

SQL Statements 5-83

CREATE PACKAGE BODY

CREATE PACKAGE BODY

The CREATE PACKAGE BODY statement creates the body of a standalone package. A
package is an encapsulated collection of related procedures, functions, and other
program objects stored together in your database. A package specification declares
these objects. A package body defines these objects.

Required privilege

SQL syntax

Parameters

Description

See also

CREATE PROCEDURE (if owner) or CREATE ANY PROCEDURE (if not owner).

CREATE [OR REPLACE] PACKAGE BODY [Owner.]PackageBody
{1S|AS} plsql package_body

Parameter Description

OR REPLACE Specify OR REPLACE to re-create the package body if it already
exists. Use this clause to change the body of an existing
package without dropping and recreating it. When you change
a package body, TimesTen recompiles it.

PackageBody Name of the package body.

IS|as Specify either IS or AS to declare the body of the function.

plsqgl_package_body Specifies the package body which consists of PL/SQL
subprograms.

The CREATE PACKAGE BODY statement is not replicated.

When you create or replace a package body, the privileges granted on the package
body remain the same. If you drop and re-create the object, the object privileges that
were granted on the original object are revoked.

Oracle TimesTen In-Memory Database PL/SQL Packages Reference and Oracle Database SQL
Language Reference

5-84 Oracle TimesTen In-Memory Database SQL Reference

CREATE PROCEDURE

CREATE PROCEDURE

The CREATE PROCEDURE statement creates a standalone stored procedure.

Required privilege

SQL syntax

Parameters

CREATE PROCEDURE (if owner) or CREATE ANY PROCEDURE (if not owner).

CREATE [OR REPLACE] PROCEDURE [Owner.]ProcedureName
[(arguments [IN|OUT|IN OUT] [NOCOPY] datatype [DEFAULT exprll,...])]
[invoker_rights_clause] [DETERMINISTIC]
{IS|AS} plsgl_procedure_body

The syntax for the invoker_rights_clause:

AUTHID {CURRENT_USER | DEFINER}

You can specify invoker_rights_clause or DETERMINISTIC in any order.

Parameter Description

OR REPLACE Specify OR REPLACE to re-create the procedure if it already
exists. Use this clause to change the definition of an existing
procedure without dropping and recreating it. When you
re-create a procedure, TimesTen recompiles it.

ProcedureName Name of procedure.

arguments Name of argument/parameter. You can specify 0 or more
parameters for the procedure. If you specify a parameter, you
must specify a data type for the parameter. The data type must
be a PL/SQL data type.

For more information on PL/SQL data types, see Oracle
Database SQL Language Reference.

[IN| OUT |IN OUT] Parameter modes.

IN is a read-only parameter. You can pass the parameter's value
into the procedure but the procedure cannot pass the
parameter's value out of the procedure and back to the calling
PL/SQL block.The value of the parameter cannot be changed.

OUT is a write-only parameter. Use an OUT parameter to pass a
value back from the procedure to the calling PL/SQL block.
You can assign a value to the parameter.

IN OUT is a read/write parameter. You can pass values into
the procedure and return a value back to the calling program
(either the original, unchanged value or a new value set within
the procedure.

IN is the default.

SQL Statements 5-85

CREATE PROCEDURE

Restrictions

Description

Examples

Parameter

Description

NOCOPY

Specify NOCOPY to instruct TimesTen to pass the parameter as
fast as possible. Can enhance performance when passing a large
value such as a record, an index-by-table, or a varray to an OUT
or IN OUT parameter. IN parameters are always passed
NOCOPY.

For more information on NOCOPY, see Oracle Database SQL
Language Reference

DEFAULT expr

Use this clause to specify a DEFAULT value for the parameter.
You can specify : = in place of the keyword DEFAULT.

invoker_ rights clause

Lets you specify whether the procedure executes with the
privileges and in the database of the user who owns it or with
the privileges and in the database of the CURRENT_USER.

Specify CURRENT_USER to indicate that the procedure executes
with the privileges of the CURRENT_USER.

Specify DEFINER to indicate that the procedure executes with
the privileges of the owner of the database in which the
procedure resides.

DEFINER is the default.

For more information, see Oracle Database SQL Language
Reference.

DETERMINISTIC

Specify DETERMINISTIC to indicate that the procedure should
return the same result value whenever it is called with the same
values for its parameters.

For more information on the DETERMNISTIC clause, see Oracle
Database SQL Language Reference.

IS|as

Specify either IS or AS to declare the body of the procedure.

plsqgl_procedure_body

Specifies the procedure body.

TimesTen does not support:

m call_ spec clause

s AS EXTERNAL clause

The CREATE PROCEDURE statement is not replicated.

s The namespace for PL/SQL procedures is distinct from the TimesTen built-in
procedures. You can create a PL/SQL procedure with the same name as a
TimesTen built-in procedure.

= When you create or replace a procedure, the privileges granted on the procedure
remain the same. If you drop and re-create the object, the object privileges that
were granted on the original object are revoked.

Create a procedure query._emp to retrieve information about an employee. Pass the
employee_1id 171 to the procedure and retrieve the Iast_name and salary into

two OUT parameters.

Command> CREATE OR REPLACE PROCEDURE query_emp
> (p_1id IN employees.employee_id%TYPE,

5-86 Oracle TimesTen In-Memory Database SQL Reference

CREATE PROCEDURE

p_name OUT employees.last_name$TYPE,
p_salary OUT employees.salary$TYPE) IS

BEGIN
SELECT last_name, salary INTO p_name, p_salary
FROM employees
WHERE employee_id = p_id;

END query_emp;

/

V V.V V V V V V

Procedure created.

See also

Oracle TimesTen In-Memory Database PL/SQL Packages Reference and Oracle Database SQL
Language Reference

SQL Statements 5-87

CREATE REPLICATION

CREATE REPLICATION

TimesTen SQL configuration for replication provides a programmable way to
configure replication. The configuration can be embedded in C, C++ or Java code.
Replication can be configured locally or from remote systems using client/server.

In addition, you need to use the t tRepAdmin utility to maintain operations not
covered by the supported SQL statements. Use t tRepAdmin to change replication
state, duplicate databases, list the replication configuration and view replication
status.

The CREATE REPLICATION statement:
» Defines a replication scheme at a participating database.

» Installs the specified configuration in the executing database's replication system
tables.

= Typically consists of one or more replication element specifications and zero or
more STORE specifications.

Required privilege
ADMIN

Definitions

A replication element is an entity that TimesTen synchronizes between databases. A
replication element can be a whole table or a database. A database can include most
types of tables and cache groups. It can include only specified tables and cache groups,
or include all tables except specified tables and cache groups. It cannot include
temporary tables or views, whether materialized or nonmaterialized.

A replication scheme is a set of replication elements, as well as the databases that
maintain copies of these elements.

When replicating cache groups:

= When replicating cache groups between databases, both cache groups must be
identical, with the exception of the settings for AUTOREFRESH and PROPAGATE.

= When replicating a cache group with AUTOREFRESH, the cache group on the
subscriber must set the autorefresh STATE to OFF. In a bidirectional replication
scheme, one of the cache groups must set the autorefresh STATE to OFF.

= If a master cache group specifies PROPAGATE, the subscriber cache group must set
the autorefresh STATE to OFF.

For more detailed information on SQL configuration for replication, see Oracle
TimesTen In-Memory Database TimesTen to TimesTen Replication Guide.

SQL syntax

CREATE REPLICATION [Owner.]ReplicationSchemeName
{ ELEMENT ElementName
{ DATASTORE | { TABLE [Owner.]TableName [CheckConflicts]} |
SEQUENCE [Owner.]SequenceName}
{ MASTER | PROPAGATOR } FullStoreName
[TRANSMIT { NONDURABLE | DURABLE }]
{ SUBSCRIBER FullStoreName [, ...]
[ReturnServiceAttribute] } [, ...] }

5-88 Oracle TimesTen In-Memory Database SQL Reference

CREATE REPLICATION

Parameters

[...]
[{INCLUDE | EXCLUDE}
{TABLE [[Owner.]TableName[,...]] |
CACHE GROUP [[Owner.]CacheGroupName|
SEQUENCE [[Owner.]SequenceNamel, ...]
[STORE FullStoreName [StoreAttribute [... 111
[NetworkOperation|...]]

11
...1]
.

—_ o~ ~

Syntax for CheckConflictsis described in "CHECK CONFLICTS" on page 5-95.
Syntax for ReturnServiceAttribute:

{ RETURN RECEIPT [BY REQUEST] |
RETURN TWOSAFE [BY REQUEST] |
NO RETURN }

Syntax for StoreAttribute:

DISABLE RETURN {SUBSCRIBER | ALL} NumFailures]
RETURN SERVICES {ON | OFF} WHEN [REPLICATION] STOPPED]
DURABLE COMMIT {ON | OFF}]

RESUME RETURN MilliSeconds]

LOCAL COMMIT ACTION {NO ACTION | COMMIT}]
RETURN WAIT TIME Seconds]

COMPRESS TRAFFIC {ON | OFF}

PORT PortNumber]

TIMEOUT Seconds]

FAILTHRESHOLD Value]

CONFLICT REPORTING SUSPEND AT Value]

CONFLICT REPORTING RESUME AT Value]

TABLE DEFINITION CHECKING {RELAXED|EXACT}]

Syntax for NetworkOperation:

ROUTE MASTER FullStoreName SUBSCRIBER FullStoreName
{ { MASTERIP MasterHost \ SUBSCRIBERIP SubscriberHost }
PRIORITY Priority } [...]

Parameter Description

[Owner.]ReplicationScheme Name assigned to the new replication scheme. Replication
Name schemes should have names that are unique from all other
database objects.

CheckConflicts Check for replication conflicts when simultaneously
writing to bidirectionally replicated databases. See
"CHECK CONFLICTS" on page 5-95.

COMPRESS TRAFFIC {ON | Compress replicated traffic to reduce the amount of

OFF} network bandwidth. ON specifies that all replicated traffic
for the database defined by STORE be compressed. OFF
(the default) specifies no compression. See "Compressing
replicated traffic" in Oracle TimesTen In-Memory Database
TimesTen to TimesTen Replication Guide for details.

CONFLICT REPORTING Suspends conflict resolution reporting.

SUSPEND AT Value Value is a non-negative integer. The default is 0 and

means never suspend. Conflict reporting is suspended
when the rate of conflict exceeds Value. If you set Value
to 0, conflict reporting suspension is turned off.

Use this clause for table-level replication.

SQL Statements 5-89

CREATE REPLICATION

Parameter

Description

CONFLICT REPORTING RESUME
AT Value

Resumes conflict resolution reporting.

Value is a non-negative integer. Conflict reporting is
resumed when the rate of conflict falls below Value.
defaultis 1.

The

Use this clause for table level replication.

DATASTORE

Define entire database as element. This type of element can
only be defined for a master database that is not
configured with an element of type TABLE in the same or a
different replication scheme. See "Defining replication
elements" in Oracle TimesTen In-Memory Database TimesTen
to TimesTen Replication Guide.

{ INCLUDE | EXCLUDE}

{ [TABLE [Owner.] TableName
[,...11]

CACHE GROUP

[[Owner.] CacheGroupName

L..11]

SEQUENCE

[[Owner.] SequenceName]l, . .

11y L.l

INCLUDE includes in the DATASTORE element only the
tables, sequences or cache groups listed. Use one INCLUDE
clause for each object type (table, sequence or cache
group).

EXCLUDE includes in the DATASTORE element all tables,
sequences or cache groups except for those listed. Use one
EXCLUDE clause for each object type (table, sequence or
cache group).

DISABLE RETURN
{SUBSCRIBER|ALL}
NumFailures

Set the return service failure policy so that return service
blocking is disabled after the number of timeouts specified
by NumFailures. Selecting SUBSCRIBER applies this
policy only to the subscriber that fails to acknowledge
replicated updates within the set timeout period. ALL
applies this policy to all subscribers should any of the
subscribers fail to respond. This failure policy can be
specified for either the RETURN RECEIPT or RETURN
TWOSAFE service.

If DISABLE RETURN is specified but RESUME RETURN is
not specified, the return services remain off until the
replication agent for the database has been restarted.

See "Managing return service timeout errors and
replication state changes" in Oracle TimesTen In-Memory
Database TimesTen to TimesTen Replication Guide for details.

DURABLE COMMIT {ON|OFF}

Set to override the DurableCommits setting on a
database and enable durable commit when return service
blocking has been disabled by DISABLE RETURN.

ELEMENT ElementName

The entity that TimesTen synchronizes between databases.
TimesTen supports the entire database (DATASTORE) and
whole tables (TABLE) as replication elements.

ElementName is the name given to the replication
element. The ElementName for a TABLE element can be
up to 30 characters in length. The EIementName for a
DATASTORE element must be unique with respect to other
DATASTORE element names within the first 20 chars. Each
ElementName must be unique within a replication
scheme. Also, you cannot define two element descriptions
for the same element.

See "Defining replication elements" in Oracle TimesTen
In-Memory Database TimesTen to TimesTen Replication Guide
for details.

5-90 Oracle TimesTen In-Memory Database SQL Reference

CREATE REPLICATION

Parameter

Description

FAILTHRESHOLD Value

The number of log files that can accumulate for a
subscriber database. If this value is exceeded, the
subscriber is set to the Failed state.The value 0 means
"No Limit." This is the default.

See "Setting the log failure threshold" in Oracle TimesTen
In-Memory Database TimesTen to TimesTen Replication Guide.

FullStoreName

The database, specified as one of the following;:
] SELF
= The prefix of the database file name

For example, if the database path is
directory/subdirectory/data.ds0, then data is
the database name that should be used.

This is the database file name specified in the DataStore
attribute of the DSN description with optional host ID in
the form:

DataStoreName [ON Host]

Host can be either an IP address or a literal host name
assigned to one or more IP addresses, as described in
"Configuring host IP addresses" in Oracle TimesTen
In-Memory Database TimesTen to TimesTen Replication Guide.
Host names containing special characters must be
surrounded by double quotes. For example:
"MyHost-500". Host names can be up to 30 characters
long.

LOCAL COMMIT ACTION({NO
ACTION|COMMIT}

Specifies the default action to be taken for a return twosafe
transaction in the event of a timeout.

Note: This attribute is only valid when the RETURN
TWOSAFE or RETURN TWOSAFE BY REQUEST attribute is
set in the SUBSCRIBER clause.

NO ACTION: On timeout, the commit function returns to
the application, leaving the transaction in the same state it
was in when it entered the commit call, with the exception
that the application is not able to update any replicated
tables. The application can reissue the commit or rollback
the call. This is the default.

COMMIT: On timeout, the commit function attempts to
perform a COMMIT to end the transaction locally. No more
operations are possible on the same transaction.

This setting can be overridden for specific transactions by
calling the 1ocalAction parameter in the
ttRepSyncSet procedure.

MASTER FullStoreName

The database on which applications update the specified
element. The MASTER database sends updates to its
SUBSCRIBER databases. The FullStoreName mustbe the
database specified in the DataStore attribute of the DSN
description.

NO RETURN

Specifies that no return service is to be used. This is the
default.

For details on the use of the return services, see "Using a
return service" in Oracle TimesTen In-Memory Database
TimesTen to TimesTen Replication Guide.

PORT PortNumber

The TCP/IP port number on which the replication agent
for the database listens for connections. If not specified, the
replication agent automatically allocates a port number.

SQL Statements 5-91

CREATE REPLICATION

Parameter Description

PROPAGATOR FullStoreName The database that receives replicated updates and passes
them on to other databases. The FullStoreName must be
the database specified in the DataStore attribute of the
DSN description.

RESUME RETURN MilliSeconds If return service blocking has been disabled by DISABLE
RETURN, this attribute sets the policy on when to re-enable
return service blocking. Return service blocking is
re-enabled as soon as the failed subscriber acknowledges
the replicated update in a period of time that is less than
the specified Mil1iSeconds.

If DISABLE RETURN is specified but RESUME RETURN is
not specified, the return services remain off until the
replication agent for the database has been restarted.

RETURN RECEIPT [BY Enables the return receipt service, so that applications that
REQUEST] commit a transaction to a master database are blocked
until the transaction is received by all subscribers.

RETURN RECEIPT applies the service to all transactions. If
you specify RETURN REQUEST BY REQUEST, you can use
the ttRepSyncSet procedure to enable the return receipt
service for selected transactions. For details on the use of
the return services, see "Using a return service" in Oracle
TimesTen In-Memory Database TimesTen to TimesTen
Replication Guide

RETURN SERVICES {ON|OFF} Set the return service failure policy so that return service
WHEN [REPLICATION] blocking is either unchanged or disabled when the
STOPPED replication agent is in the Stop or Pause state.

OFF is the default when using the return receipt service. ON
is the default when using the return twosafe service

See "Managing return service timeout errors and
replication state changes" in Oracle TimesTen In-Memory
Database TimesTen to TimesTen Replication Guide for details.

RETURN TWOSAFE [BY Enables the return twosafe service, so that applications
REQUEST] that commit a transaction to a master database are blocked
until the transaction is committed on all subscribers.

Note: This service can only be used in a bidirectional
replication scheme where the elements are defined as
DATASTORE.

Specifying RETURN TWOSAFE applies the service to all
transactions. If you specify RETURN TWOSAFE BY
REQUEST, you can use the t tRepSyncSet procedure to
enable the return receipt service for selected transactions.
For details on the use of the return services, see "Using a
return service" in Oracle TimesTen In-Memory Database
TimesTen to TimesTen Replication Guide.

RETURN WAIT TIME Seconds Specifies the number of seconds to wait for return service
acknowledgement. The default value is 10 seconds. A
value of '0' means that there is no timeout. Your
application can override this timeout setting by calling the
returnWait parameter in the ttRepSyncSet

procedure.
SEQUENCE Define the sequence specified by
[Owner.] SequenceName [Owner.] SequenceName as element. See "Defining

replication elements" in Oracle TimesTen In-Memory
Database TimesTen to TimesTen Replication Guide for details.

5-92 Oracle TimesTen In-Memory Database SQL Reference

CREATE REPLICATION

Parameter

Description

STORE FullStoreName

Defines the attributes for a given database. Attributes
include PORT, TIMEOUT and FAILTHRESHOLD. The
FullStoreName must be the database specified in the
DataStore attribute of the DSN description.

SUBSCRIBER FullStoreName

A database that receives updates from the MASTER
databases. The FullStoreName must be the database
specified in the DataStore attribute of the DSN
description.

TABLE [Owner.] TableName

Define the table specified by [Owner.] TableName as
element. See "Defining replication elements" in Oracle
TimesTen In-Memory Database TimesTen to TimesTen
Replication Guide for details.

TIMEOUT Seconds

The amount of time a database waits for a response from
another database before resending the message. Default:
120 seconds.

TRANSMIT {DURABLE
NONDURABLE}

Specifies whether to flush the master log to disk before
sending a batch of committed transactions to the
subscribers.

TRANSMIT NONDURABLE specifies that records in the
master log are not to be flushed to disk before they are sent
to subscribers. This setting can only be used if the specified
element is a DATASTORE. This is the default for RETURN
TWOSAFE transactions.

TRANSMIT DURABLE specifies that records are to be
flushed to disk before they are sent to subscribers. This is
the default for asynchronous and RETURN RECEIPT
transactions.

Note: TRANSMIT DURABLE has no effect on RETURN
TWOSAFE transactions.

Note: TRANSMIT DURABLE cannot be set for active
standby pairs.

See "Setting transmit durability on database elements" and
"Replicating the entire master database with TRANSMIT
NONDURABLE" in Oracle TimesTen In-Memory Database
TimesTen to TimesTen Replication Guide for more
information.

TABLE DEFINITION CHECKING
{EXACT | RELAXED}

Specifies type of table definition checking that occurs on
the subscriber:

s EXACT - The tables must be identical on master and
subscriber.

= RELAXED - The tables must have the same key
definition, number of columns and column data types.

The default is EXACT.

ROUTE MASTER FullStoreName
SUBSCRIBER FullStoreName

Denotes the NetworkOperation clause. If specified,
allows you to control the network interface that a master
store uses for every outbound connection to each of its
subscriber stores.

Can be specified more than once.

For FullStoreName, ON "host" must be specified.

SQL Statements 5-93

CREATE REPLICATION

Parameter

Description

MASTERIP MasterHost |
SUBSCRIBERIP
SubscriberHost

MasterHost and SubscriberHost are the IP addresses
for the network interface on the master and subscriber
stores. Specify in dot notation or canonical format or in
colon notation for IPV6.

Clause can be specified more than once.

PRIORITY Priority

Variable expressed as an integer from 1 to 99. Denotes the
priority of the IP address. Lower integral values have
higher priority. An error is returned if multiple addresses
with the same priority are specified. Controls the order in
which multiple IP addresses are used to establish peer
connections.

Required syntax of NetworkOperation clause. Follows
MASTERIP MasterHost | SUBSCRIBERIP
SubscriberHost clause.

5-94 Oracle TimesTen In-Memory Database SQL Reference

CREATE REPLICATION

CHECK CONFLICTS

Syntax

Parameters

The syntax for CHECK CONFLICTS is:

{NO CHECK |

CHECK CONFLICTS BY ROW TIMESTAMP

COLUMN ColumnName

[UPDATE BY { SYSTEM | USER 1}]
[ON EXCEPTION { ROLLBACK [WORK] | NO ACTION }]

[{REPORT TO 'FileName'

[FORMAT { XML | STANDARD }] | NO REPORT

Note: A CHECK CONFLICT clause can only be used for elements of

type TABLE.

The CHECK CONFLICTS clause of the CREATE REPLICATION or ALTER
REPLICATION statement has the following parameters:

Parameter

Description

CHECK CONFLICTS BY ROW
TIMESTAMP

Indicates that all update and uniqueness conflicts are
to be detected. Conflicts are resolved in the manner
specified by the ON EXCEPTION parameter.

It also detects delete conflicts with UPDATE
operations.

COLUMN ColumnName

Indicates the column in the replicated table to be used
for timestamp comparison. The table is specified in
the ELEMENT description by TableName.

ColumnName is a nullable column of type

BINARY (8) used to store a timestamp that indicates
when the row was last updated. TimesTen rejects
attempts to update a row with a lower timestamp
value than the stored value. The specified
ColumnName must exist in the replicated table on
both the master and subscriber databases.

NO CHECK

Specify to suppress conflict resolution for a given
element.

UPDATE BY {SYSTEM | USER}

Specifies whether the timestamp values are
maintained by TimesTen (SYSTEM) or the application
(USER). The replicated table in the master and
subscriber databases must use the same UPDATE BY
specification. See "Enabling system timestamp column
maintenance" and "Enabling user timestamp column
maintenance" in Oracle TimesTen In-Memory Database
TimesTen to TimesTen Replication Guide for more
information. The default is UPDATE BY SYSTEM.

SQL Statements 5-95

CHECK CONFLICTS

Parameter Description

ON EXCEPTION {ROLLBACK[WORK Specifies how to resolve a detected conflict. ROW

|[NO ACTION} TIMESTAMP conflict detection has the resolution
options:

s ROLLBACK [WORK]: Abort the transaction that
contains the conflicting action.

= NO ACTION: Complete the transaction without
performing the conflicting action (UPDATE,
INSERT or DELETE).

Default is ON EXCEPTION ROLLBACK [WORK].

REPORT TO 'FileName' Specifies the file to log updates that fail the timestamp
comparison. FileName is a SQL character string that
cannot exceed 1,000 characters. (SQL character string
literals are single-quoted strings that may contain any
sequence of characters, including spaces.) The same
file can be used to log failed updates for multiple

tables.

[FORMAT {XML |STANDARD}] Optionally specifies the conflict report format for an
element. The default format is STANDARD.

NO REPORT Specify to suppress logging of failed timestamp
comparisons.

Description

= The names of all databases on the same host must be unique for each replication
scheme for each TimesTen instance.

= Replication elements can only be updated (by normal application transactions)
through the MASTER database. PROPAGATOR and SUBSCRIBER databases are
read-only.

» If you define a replication scheme that permits multiple databases to update the
same table, see "Resolving Replication Conflicts" in Oracle TimesTen In-Memory
Database TimesTen to TimesTen Replication Guide for recommendations on how to
avoid conflicts when updating rows.

= SELF is intended for replication schemes where all participating databases are
local. Do not use SELF for a distributed replication scheme in a production
environment, where spelling out the hostname for each database in a script allows
it to be used at each participating database.

= Each attribute for a given STORE may be specified only once, or not at all.

= Specifying the PORT of a database for one replication scheme specifies it for all
replication schemes. All other connection attributes are specific to the replication
scheme specified in the command.

= For replication schemes, DataStoreName is always the prefix of the TimesTen
database checkpoint file names. These are the files with the.ds0 and . ds1 suffixes
that are saved on disk by checkpoint operations.

» Ifarow with a default NOT INLINE VARCHAR value is replicated, the receiver
creates a copy of this value for each row instead of pointing to the default value if
and only if the default value of the receiving node is different from the sending
node.

= To use timestamp comparison on replicated tables, you must specify a nullable
column of type BINARY (8) to hold the timestamp value. Define the timestamp
column when you create the table. You cannot add the timestamp column with the

5-96 Oracle TimesTen In-Memory Database SQL Reference

CREATE REPLICATION

Examples

ALTER TABLE statement. In addition, the timestamp column cannot be part of a
primary key or index.

If you specify the XML report format, two XML documents are generated:

— FileName.xml: This file contains the DTD for the report and the root node
for the report. It includes the document definition and the include directive.

— FileName.include: This file is included in FileName.xml and contains all
the actual conflicts.

— The FileName.include file can be truncated. Do not truncate the
FileName.xml file.

- For a complete description of the XML format, including examples of each
conflict, see "Reporting conflicts to an XML file" in Oracle TimesTen In-Memory
Database TimesTen to TimesTen Replication Guide.

If you specify a report format for an element and then drop the element, the
corresponding report files are not deleted.

Use the CONFLICT REPORTING SUSPEND AT clause to specify a high water
mark threshold at which the reporting of conflict resolution is suspended. When
the number of conflicts per second exceeds the specified high water mark
threshold, conflict resolution reporting (if configured and reported by the report
file) and SNMP are suspended and an SNMP trap is emitted to indicate that it has
been suspended.

Use the CONFLICT REPORTING RESUME AT clause to specify a low water mark
threshold where the reporting of conflict resolution is resumed. When the rate of
conflict falls below the low water mark threshold, conflict resolution reporting is
resumed. A SNMP trap is emitted to indicate the resumption of conflict resolution.
This trap provides the number of unreported conflicts during the time when
conflict resolution was suspended.

The state of whether conflict reporting is suspended or not by a replication agent
does not persist across the local replication agent and the peer agent stop and
restart.

Do not use the CREATE REPLICATION statement to replicate dynamic read-only
cache groups asynchronously. Use the CREATE ACTIVE STANDBY PAIR
statement.

Replicate the contents of repl . tab from masterds to two subscribers,
subscriberlds and subscriber2ds.

CREATE REPLICATION repl.twosubscribers

ELEMENT e TABLE repl.tab
MASTER masterds ON "serverl"
SUBSCRIBER subscriberlds ON "server2",
subscriber2ds ON "server3";

Replicate the entire masterds database to the subscriber, subscriberlds. The
FAILTHRESHOLD specifies that a maximum of 10 log files can accumulate on
masterds before it decides that subscriberlds has failed.

CREATE REPLICATION repl.wholestore

ELEMENT e DATASTORE
MASTER masterds ON "serverl"
SUBSCRIBER subscriberlds ON "server2"
STORE masterds FAILTHRESHOLD 10;

SQL Statements 5-97

CHECK CONFLICTS

Bidirectionally replicate the entire westds and eastds databases and enable the
RETURN TWOSAFE service.

CREATE REPLICATION repl.biwholestore
ELEMENT el DATASTORE
MASTER westds ON "westcoast"
SUBSCRIBER eastds ON "eastcoast"
RETURN TWOSAFE
ELEMENT e2 DATASTORE
MASTER eastds ON "eastcoast"
SUBSCRIBER westds ON "westcoast"
RETURN TWOSAFE;

Enable the return receipt service for select transaction updates to the subscriberlds
subscriber.

CREATE REPLICATION repl.twosubscribers
ELEMENT e TABLE repl.tab
MASTER masterds ON "serverl"
SUBSCRIBER subscriberlds ON "server2"
RETURN RECEIPT BY REQUEST
SUBSCRIBER subscriber2ds ON "server3";

Replicate the contents of the customerswest table from the west database to the
ROUNDUP database and the customerseast table from the east database. Enable the
return receipt service for all transactions.

CREATE REPLICATION r
ELEMENT west TABLE customerswest
MASTER west ON "serverwest"
SUBSCRIBER roundup ON "serverroundup"
RETURN RECEIPT
ELEMENT east TABLE customerseast
MASTER east ON "servereast"
SUBSCRIBER roundup ON "serverroundup"
RETURN RECEIPT;

Replicate the contents of the repl. tab table from the centralds database to the
propds database, which propagates the changes to the backuplds and backup2ds
databases.

CREATE REPLICATION repl.propagator

ELEMENT a TABLE repl.tab
MASTER centralds ON "finance"
SUBSCRIBER proprds ON "nethandler"

ELEMENT b TABLE repl.tab
PROPAGATOR proprds ON "nethandler"
SUBSCRIBER backuplds ON "backupsysteml"

bakcup2ds ON "backupsystem2";

Bidirectionally replicate the contents of the repl.accounts table between the
eastds and westds databases. Each database is both a master and a subscriber for
the repl.accounts table.

Because the repl.accounts table can be updated on either the eastds or westds
database, it includes a timestamp column (tstamp). The CHECK CONFLICTS clause
establishes automatic timestamp comparison to detect any update conflicts between
the two databases. In the event of a comparison failure, the entire transaction that
includes an update with the older timestamp is rolled back (discarded).

5-98 Oracle TimesTen In-Memory Database SQL Reference

CREATE REPLICATION

CREATE REPLICATION repl.rl
ELEMENT elem_accounts_1 TABLE repl.accounts
CHECK CONFLICTS BY ROW TIMESTAMP
COLUMN tstamp
UPDATE BY SYSTEM
ON EXCEPTION ROLLBACK
MASTER westds ON "westcoast"
SUBSCRIBER eastds ON "eastcoast"
ELEMENT elem_accounts_2 TABLE repl.accounts
CHECK CONFLICTS BY ROW TIMESTAMP
COLUMN tstamp
UPDATE BY SYSTEM
ON EXCEPTION ROLLBACK
MASTER eastds ON "eastcoast"
SUBSCRIBER westds ON "westcoast";

Replicate the contents of the repl . accounts table from the activeds database to
the backupds database, using the return twosafe service, and using TCP/IP port
40000 on activeds and TCP/IP port 40001 on backupds. The transactions on
activeds need to be committed whenever possible, so configure replication so that
the transaction is committed even after a replication timeout using LOCAL COMMIT
ACTION, and so that the return twosafe service is disabled when replication is
stopped. To avoid significant delays in the application if the connection to the
backupds database is interrupted, configure the return service to be disabled after
five transactions have timed out, but also configure the return service to be re-enabled
when the backupds database's replication agent responds in under 100 milliseconds.
Finally, the bandwidth between databases is limited, so configure replication to
compress the data when it is replicated from the activeds database.

CREATE REPLICATION repl.r
ELEMENT elem accounts_1 TABLE repl.accounts
MASTER activeds ON "active"
SUBSCRIBER backupds ON "backup"
RETURN TWOSAFE
ELEMENT elem_accounts_2 TABLE repl.accounts
MASTER activeds ON "active"
SUBSCRIBER backupds ON "backup"
RETURN TWOSAFE
STORE activeds ON "active"
PORT 40000
LOCAL COMMIT ACTION COMMIT
RETURN SERVICES OFF WHEN REPLICATION STOPPED
DISABLE RETURN SUBSCRIBER 5
RESUME RETURN 100
COMPRESS TRAFFIC ON
STORE backupds ON "backup"
PORT 40001;

Iustrate conflict reporting suspend and conflict reporting resume clauses for table
level replication. Use these clauses for table level replication not database replication.
Issue repschemes command to show that replication scheme is created.

Command> CREATE TABLE repl.accounts (tstamp BINARY (8) NOT NULL
PRIMARY KEY, tstampl BINARY (8));

Command> CREATE REPLICATION repl.r2

> ELEMENT elem_accounts_1 TABLE repl.accounts

CHECK CONFLICTS BY ROW TIMESTAMP

COLUMN tstampl

UPDATE BY SYSTEM

ON EXCEPTION ROLLBACK WORK

vV V. V V

SQL Statements 5-99

CHECK CONFLICTS

MASTER westds ON "westl"
SUBSCRIBER eastds ON "eastl"
ELEMENT elem_accounts_2 TABLE repl.accounts
CHECK CONFLICTS BY ROW TIMESTAMP
COLUMN tstampl

UPDATE BY SYSTEM

ON EXCEPTION ROLLBACK WORK
MASTER eastds ON "eastl"
SUBSCRIBER westds ON "westl"
STORE westds

CONFLICT REPORTING SUSPEND AT 20
CONFLICT REPORTING RESUME AT 10;
Command> REPSCHEMES;

V V.V V V V V V V V V V

Replication Scheme REPL.R2:

Element: ELEM_ACCOUNTS_1

Type: Table REPL.ACCOUNTS

Conflict Check Column: TSTAMP1

Conflict Exception Action: Rollback Work
Conflict Timestamp Update: System

Conflict Report File: (none)

Master Store: WESTDS on WEST1 Transmit Durable
Subscriber Store: EASTDS on EAST1

Element: ELEM_ACCOUNTS_2

Type: Table REPL.ACCOUNTS

Conflict Check Column: TSTAMP1

Conflict Exception Action: Rollback Work
Conflict Timestamp Update: System

Conflict Report File: (none)

Master Store: EASTDS on EAST1 Transmit Durable
Subscriber Store: WESTDS on WEST1

Store: EASTDS on EAST1
Port: (auto)
Log Fail Threshold: (none)
Retry Timeout: 120 seconds
Compress Traffic: Disabled

Store: WESTDS on WEST1
Port: (auto)
Log Fail Threshold: (none)
Retry Timeout: 120 seconds
Compress Traffic: Disabled
Conflict Reporting Suspend: 20
Conflict Reporting Resume: 10

1 replication scheme found.

Example of NetworkOperation clause with 2 MASTERIP and SUBSCRIBERIP
clauses:

CREATE REPLICATION r ELEMENT e DATASTORE

MASTER repl SUBSCRIBER rep2 RETURN RECEIPT

MASTERIP "1.1.1.1" PRIORITY 1 SUBSCRIBERIP "2.2.2.2"
PRIORITY 1

MASTERIP "3.3.3.3" PRIORITY 2 SUBSCRIBERIP "4.4.4.4"
PRIORITY 2;

5-100 Oracle TimesTen In-Memory Database SQL Reference

CREATE REPLICATION

See also

Example of NetworkOperation clause. Use the default sending interface but a
specific receiving network:

CREATE REPLICATION r

ELEMENT e DATASTORE

MASTER repl SUBSCRIBER rep2

ROUTE MASTER repl ON "machinel" SUBSCRIBER rep2 ON "machine2"
SUBSCRIBERIP "rep2nic2" PRIORITY 1;

Example of using the NetworkOperation clause with multiple subscribers:

CREATE REPLICATION r ELEMENT e DATASTORE
MASTER repl SUBSCRIBER rep2,rep3
ROUTE MASTER repl ON "machinel" SUBSCRIBER rep2 ON "machine2"
MASTERIP "1.1.1.1" PRIORITY 1 SUBSCRIBERIP "2.2.2.2"

PRIORITY 1
ROUTE MASTER Repl ON "machinel" SUBSCRIBER Rep3 ON "machine2"
MASTERIP "3.3.3.3" PRIORITY 2 SUBSCRIBERIP "4.4.4.4";

ALTER ACTIVE STANDBY PAIR
ALTER REPLICATION

CREATE ACTIVE STANDBY PAIR
DROP ACTIVE STANDBY PAIR
DROP REPLICATION

SQL Statements 5-101

CREATE SEQUENCE

CREATE SEQUENCE

The CREATE SEQUENCE statement creates a new sequence number generator that can
subsequently be used by multiple users to generate unique integers. Use the CREATE
SEQUENCE statement to define the initial value of the sequence, define the increment
value, the maximum or minimum value and determine if the sequence continues to
generate numbers after the minimum or maximum is reached.

Required privilege
CREATE SEQUENCE (if owner) or CREATE ANY SEQUENCE (if not owner).

SQL syntax
CREATE SEQUENCE [Owner.]SequenceName
[INCREMENT BY IncrementValue]
[MINVALUE MinimumValue]
[MAXVALUE MaximumValue]
[CYCLE]
[CACHE CacheValuel
[START WITH StartValue]
Parameters
Parameter Description
SEQUENCE Name of the sequence number generator.
[Owner.] SequenceName
INCREMENT BY The incremental value between consecutive numbers. This value
IncrementValue can be either a positive or negative integer. It cannot be 0. If the

value is positive, it is an ascending sequence. If the value is
negative, it is descending. The default value is 1. In a descending
sequence, the range starts from MAXVALUE to MINVALUE, and vice
versa for ascending sequence.

MINVALUE Specifies the minimum value for the sequence. The default
MinimumValue minimum value is 1.

MAXVALUE The largest possible value for an ascending sequence, or the
MaximumValue starting value for a descending sequence. The default maximum

value is (263) -1, which is the maximum of BIGINT.

CYCLE Indicates that the sequence number generator continues to
generate numbers after it reaches the maximum or minimum
value. By default, sequences do not cycle. Once the number
reaches the maximum value in the ascending sequence, the
sequence wraps around and generates numbers from its
minimum value. For a descending sequence, when the minimum
value is reached, the sequence number wraps around, beginning
from the maximum value. If CYCLE is not specified, the sequence
number generator stops generating numbers when the
maximum /minimum is reached and TimesTen returns an error.

CACHE CacheValue CACHE indicates the range of numbers that are cached each time.
When a restart occurs, unused cached numbers are lost. If you
specify a CacheValue of 1, then each use of the sequence results
in an update to the database. Larger cache values result in fewer
changes to the database and less overhead. The default is 20.

5-102 Oracle TimesTen In-Memory Database SQL Reference

CREATE SEQUENCE

Description

Parameter Description
START WITH Specifies the first sequence number to be generated. Use this
StartValue clause to start an ascending sequence at a value that is greater

than the minimum value or to start a descending sequence at a
value less than the maximum. The StartValue must be greater
or equal MinimumValue and StartValue must be less than or
equal to MaximumValue.

= All parameters in the CREATE SEQUENCE statement must be integer values.

= If you do not specify a value in the parameters, TimesTen defaults to an ascending
sequence that starts with 1, increments by 1, has the default maximum value and
does not cycle.

s Thereisno ALTER SEQUENCE statement in TimesTen. To alter a sequence, use the
DROP SEQUENCE statement and then create a new sequence with the same name.
For example, to change the MINVALUE, drop the sequence and re-create it with the
same name and with the desired MINVALUE.

= Do not create a sequence with the same name as a view or materialized view.

Incrementing SEQUENCE values with CURRVAL and NEXTVAL
To refer to the SEQUENCE values in a SQL statement, use CURRVAL and NEXTVAL.

m CURRVAL returns the value of the last call to NEXTVAL if there is one in the current
session, otherwise it returns an error.

= NEXTVAL increments the current sequence value by the specified increment and
returns the value for each row accessed.

s NEXTVAL and CURRVAL can be used in:

— The SelectList of a SELECT statement, but not the SelectList of a
subquery

— The SelectList of an INSERT. . .SELECT statement
— The SET clause of an UPDATE statement

= Inasingle SQL statement with multiple NEXTVAL references, TimesTen only
increments the sequence once, returning the same value for all occurrences of
NEXTVAL.

s If a SQL statement contains both NEXTVAL and CURRVAL, NEXTVAL is executed
first. CURRVAL and NEXTVAL have the same value in that SQL statement.

» The current value of a sequence is a connection-specific value. If there are two
concurrent connections to the same database, each connection has its own
CURRVAL of the same sequence set to its last NEXTVAL reference.

= In the case of recovery, sequences are not rolled back. It is possible that the range
of values of a sequence can have gaps. Each sequence value is still unique.

s When the maximum value is reached, SEQUENCE either wraps or issues an error
statement, depending on the value of the CYCLE option of the CREATE
SEQUENCE.

Note: Sequences with the CYCLE attribute cannot be replicated.

SQL Statements 5-103

CREATE SEQUENCE

Examples

See also

Create a sequence.
CREATE SEQUENCE mysequence INCREMENT BY 1 MINVALUE 2
MAXVALUE 1000;
This example assumes that tabl has 1 row in the table and that CYCLE is used:

CREATE SEQUENCE sl MINVALUE 2 MAXVALUE 4 CYCLE;
SELECT sl1.NEXTVAL FROM tabl;

/* Returns the value of 2; */

SELECT s1.NEXTVAL FROM tabl;

/* Returns the value of 3; */

SELECT s1.NEXTVAL FROM tabl;

/* Returns the value of 4; */

After the maximum value is reached, the cycle starts from the minimum value for an
ascending sequence.

SELECT s1.NEXTVAL FROM tabl;
/* Returns the value of 2; */

To create a sequence and generate a sequence number:

CREATE SEQUENCE seq INCREMENT BY 1;
INSERT INTO student VALUES (seq.NEXTVAL, 'Sally');

To use a sequence in an UPDATE SET clause:

UPDATE student SET studentno = seq.NEXTVAL WHERE name = 'Sally’;

To use a sequence in a query:

SELECT seq.CURRVAL FROM student;

DROP SEQUENCE

5-104 Oracle TimesTen In-Memory Database SQL Reference

CREATE SYNONYM

CREATE SYNONYM

The CREATE SYNONYM statement creates a public or private synonym for a database
object. A synonym is an alias for a database object. The object can be a table, view,
synonym, sequence, PL/SQL stored procedure, PL/SQL function, PL/SQL package,
materialized view or cache group.

A private synonym is owned by a specific user and exists in that user's schema. A
private synonym is accessible to users other than the owner only if those users have
appropriate privileges on the underlying object and specify the schema along with the
synonym name.

A public synonym is accessible to all users as long as the user has appropriate
privileges on the underlying object.

CREATE SYNONYM is a DDL statement.
Synonyms can be used in these SQL statements:
s DML statements: SELECT, DELETE, INSERT, UPDATE, MERGE

s Some DDL statements: GRANT, REVOKE, CREATE TABLE ... AS SELECT,
CREATE VIEW ... AS SELECT,CREATE INDEX, DROP INDEX

= Some cache group statements: LOAD CACHE GROUP, UNLOAD CACHE GROUP,
REFRESH CACHE GROUP, FLUSH CACHE GROUP

Required privilege

SQL syntax

Parameters

CREATE SYNONYM (if owner) or CREATE ANY SYNONYM (if not owner) to create a
private synonym.

CREATE PUBLIC SYNONYM to create a public synonym.

CREATE [OR REPLACE] [PUBLIC] SYNONYM [ownerl.]synonym FOR [owner2.]object

Parameter Description

[OR REPLACE] Specify OR REPLACE to re-create the synonym if it already exists.
Use this clause to change the definition of an existing synonym
without first dropping it.

[PUBLIC] Specify PUBLIC to create a public synonym. Public synonyms are
accessible to all users, but each user must have appropriate
privileges on the underlying object in order to use the synonym.

When resolving references to an object, TimesTen uses a public
synonym only if the object is not prefaced by a schema name.

[ownerl.]synonym Specify the owner of the synonym. You cannot specify an owner
for the synonym if you have specified PUBLIC. If you omit both
PUBLIC and ownerl, TimesTen creates the synonym in your own
schema.

Specify the name for the synonym, which is limited to 30 bytes.

SQL Statements 5-105

CREATE SYNONYM

Description

Examples

Parameter Description

[owner2.]object Specify the owner in which the object resides. Specify the object

name for which you are creating a synonym. If you do not qualify
object with owner2, the object is in your own schema. The
owner2 and object do not need to exist when the synonym is
created.

The schema object does not need to exist when its synonym is created.

In order to use the synonym, appropriate privileges must be granted to a user for
the object aliased by the synonym before using the synonym.

A private synonym cannot have the same name as tables, views, sequences,
PLSQL packages, functions, procedures, and cache groups that are in the same
schema as the private synonym.

A public synonym may have the same name as a private synonym or an object
name.

If the PassThrough attribute is set so that a query needs to executed in the Oracle
database, the query is sent to the Oracle database without any changes. If the
query uses a synonym for a table in a cache group, then a synonym with the same
name must be defined for the corresponding Oracle table for the query to be
successful.

When an object name is used in the DML and DDL statements in which a
synonym can be used, the object name is resolved as follows:

1. Search for a match within the current schema. If no match is found, then:

2. Search for a match with a public synonym name. If no match is found, then:
3. Search for a match in the SYS schema. If no match is found, then:

4. The object does not exist.

TimesTen creates a public synonym for some objects in the SYS schema. The name
of the public synonym is the same as the object name. Thus steps 2 and 3 in the
object name resolution can be switched without changing the results of the search.

In a replicated environment for an active standby pair, if
DDL_REPLICATION_LEVEL=2 when you execute the CREATE SYNONYM on the
active database, the synonym will be replicated to all databases in the replication
scheme. See "Making DDL changes in an active standby pair" in the Oracle
TimesTen In-Memory Database TimesTen to TimesTen Replication Guide for more
information.

As user ttuser, create a synonym for the jobs table. Verify that you can retrieve the
information using the synonym. Display the contents of the SYS.USER_SYNONYMS
system view.

Command> CREATE SYNONYM synjobs FOR jobs;
Synonym created.

Command> SELECT FIRST 2 * FROM jobs;

< AC_ACCOUNT, Public Accountant, 4200, 9000 >
< AC_MGR, Accounting Manager, 8200, 16000 >
2 rows found.

5-106 Oracle TimesTen In-Memory Database SQL Reference

CREATE SYNONYM

Command> SELECT FIRST 2 * FROM synjobs;

< AC_ACCOUNT, Public Accountant, 4200, 9000 >
< AC_MGR, Accounting Manager, 8200, 16000 >

2 rows found.

Command> SELECT * FROM sys.user_synonyms;
< SYNJOBS, TTUSER, JOBS, <NULL> >
1 row found.

Create a public synonym for the employees table.

Command> CREATE PUBLIC SYNONYM pubemp FOR employees;

Synonym created.

Verify that pubemp is listed as a public synonym in the SYS.ALL_SYNONYMS system
view.

Command> select * from sys.all_synonyms;
< PUBLIC, TABLES, SYS, TABLES, <NULL> >

< TTUSER, SYNJOBS, TTUSER, JOBS, <NULL> >
< PUBLIC, PUBEMP, TTUSER, EMPLOYEES, <NULL> >
57 rows found.

Create a synonym for the tab table in the terry schema. Describe the synonym.

Command> CREATE SYNONYM syntab FOR terry.tab;
Synonym created.
Command> DESCRIBE syntab;

Synonym TTUSER.SYNTAB:
For Table TERRY.TAB

Columns:
COL1 VARCHAR2 (10) INLINE
COL2 VARCHAR2 (10) INLINE

1 Synonyms found.

Redefine the synjobs synonym to be an alias for the employees table by using the
OR REPLACE clause. Describe synjobs.

Command> CREATE OR REPLACE synjobs FOR employees;
Synonym created.

Command> DESCRIBE synjobs;

Synonym TTUSER.SYNJOBS:
For Table TTUSER.EMPLOYEES

Columns:

*EMPLOYEE_ID NUMBER (6) NOT NULL
FIRST_NAME VARCHAR2 (20) INLINE
LAST_NAME VARCHAR2 (25) INLINE NOT NULL
EMAIL VARCHAR2 (25) INLINE UNIQUE NOT NULL
PHONE_NUMBER VARCHAR2 (20) INLINE
HIRE_DATE DATE NOT NULL
JOB_1ID VARCHAR2 (10) INLINE NOT NULL
SALARY NUMBER (8,2)

COMMISSION_PCT NUMBER (2,2)

MANAGER_ID NUMBER (6)
DEPARTMENT_ID NUMBER (4)

1 Synonyms found.

SQL Statements 5-107

CREATE SYNONYM

See also
DROP SYNONYM

5-108 Oracle TimesTen In-Memory Database SQL Reference

CREATE TABLE

CREATE TABLE

The CREATE TABLE statement defines a table.

Required privilege
CREATE TABLE (if owner) or CREATE ANY TABLE (if not owner).

The owner of the created table must have the REFERENCES privilege on tables
referenced by the REFERENCE clause.

ADMIN privilege if replicating a new table across an active standby pair when
DDL_REPLICATION_LEVEL=2 and DDL_REPLICATION_ACTION=INCLUDE. These
attributes cause the CREATE TABLE to implicitly execute an ALTER ACTIVE
STANDBY PAIR... INCLUDE TABLE statement. See "ALTER SESSION" on page 5-23
for more details.

SQL syntax
The syntax for a persistent table is:

CREATE TABLE [Owner.] TableName
(
{{ColumnDefinition} [,...]
[PRIMARY KEY (ColumnName [,...]) |
[[CONSTRAINT ForeignKeyName]
FOREIGN KEY ([ColumnName] [,...])
REFERENCES RefTableName
[(ColumnName [,...])] [ON DELETE CASCADE]] [...]
}
)
[UNIQUE HASH ON (HashColumnName [,...])
PAGES = PrimaryPages]
[AGING {LRU|
USE ColumnName
LIFETIME Numl {SECOND[S] | MINUTE[S] | HOUR[S] |DAY[S]}
[CYCLE Num2 {SECOND[S] | MINUTE[S] |HOUR[S] |DAY[S]}]
} [ON| OFF]
1
[AS SelectQuery]

The syntax for a temporary table is:

CREATE GLOBAL TEMPORARY TABLE [Owner.]TableName
(
{{ColumnDefinition} [,...]
[PRIMARY KEY (ColumnName [,...]) |
[[CONSTRAINT ForeignKeyName]
FOREIGN KEY ([ColumnName] [,...])
REFERENCES RefTableName
[(ColumnName [,...])] [ON DELETE CASCADE]] [...]
}
)
[UNIQUE HASH ON (HashColumnName [,...])
PAGES = PrimaryPages]
[ON COMMIT { DELETE | PRESERVE } ROWS]

SQL Statements 5-109

CREATE TABLE

Parameters

Parameter

Description

[Owner.] TableName

Name to be assigned to the new table. Two tables cannot have the
same owner name and table name.

If you do not specify the owner name, your login name becomes
the owner name for the new table. Owners of tables in TimesTen
are determined by the user ID settings or login names. Oracle
table owner names must always match TimesTen table owner
names.

For rules on creating names, see "Basic names" on page 2-1.

GLOBAL TEMPORARY

Specifies that the table being created is a global temporary table.
A temporary table is similar to a persistent table but it is
effectively materialized only when referenced in a connection.

A global temporary table definition is persistent and is visible to
all connections, but the table instance is local to each connection.
It is created when a command referencing the table is compiled
for a connection and dropped when the connection is
disconnected. All instances of the same temporary table have the
same name but they are identified by an additional connection ID
together with the table name. Global temporary tables are
allocated in temp space.

The contents of a global temporary table cannot be shared
between connections. Each connection sees only its own content
of the table and compiled commands that reference temporary
tables are not shared among connections.

When DDL_REPLICATION_LEVEL=2, the creation of a global
temporary table is replicated in an active standby pair, but the
global temporary table is not included in the replication scheme.

Temporary tables are automatically excluded from active standby
pairs or when the DATASTORE element has been specified.

A cache group table cannot be defined as a temporary table.
Changes to temporary tables cannot be tracked with XLA.

Operations on temporary tables do generate log records. The
amount of log they generate is less than for permanent tables.

Truncate table is not supported with global temporary tables.
Local temporary tables are not supported.
No object privileges are needed to access global temporary tables.

Do not specify the AS SelectQuery clause with global
temporary tables.

ColumnDefinition

An individual column in a table. Each table must have at least
one column. See "Column Definition" on page 5-114.

If you specify the AS SelectQuery clause, ColumnDefinition
is optional.

ColumnName

Names of the columns that form the primary key for the table to
be created. Up to 16 columns can be specified for the primary key.
For a foreign key, the ColumnName is optional. If not specified for
a foreign key, the reference is to the parent table's primary key.

If you specify the AS SelectQuery clause, then you do not have
to specify the ColumnName. Do not specify the data type with the
AS SelectQuery clause.

5-110 Oracle TimesTen In-Memory Database SQL Reference

CREATE TABLE

Parameter

Description

PRIMARY KEY

PRIMARY KEY may only be specified once in a table definition. It
provides a way of identifying one or more columns that, together,
form the primary key of the table. The contents of the primary
key have to be unique and NOT NULL. You cannot specify a
column as both UNIQUE and a single column PRIMARY KEY.

CONSTRAINT
ForeignKeyName

Specifies an optional user-defined name for a foreign key. If not
provided by the user, the system provides a default name.

FOREIGN KEY

This specifies a foreign key constraint between the new table and
the referenced table identified by RefTableName. There are two
lists of columns specified in the foreign key constraint.

Columns in the first list are columns of the new table and are
called the referencing columns. Columns in the second list are
columns of the referenced table and are called referenced
columns. These two lists must match in data type, including
length, precision and scale. The referenced table must already
have a primary key or unique index on the referenced column.

The column name list of referenced columns is optional. If
omitted, the primary index of RefTableName is used.

The declaration of a foreign key creates a range index on the
referencing columns. The user cannot drop the referenced table or
its referenced index until the referencing table is dropped.

The foreign key constraint asserts that each row in the new table
must match a row in the referenced table such that the contents of
the referencing columns are equal to the contents of the
referenced columns. Any INSERT, DELETE or UPDATE statements
that violate the constraint return TimesTen error 3001.

TimesTen supports SQL-92 "NO ACTION" update and delete
rules and ON DELETE CASCADE. Foreign key constraints are not
deferrable.

A foreign key can be defined on a global temporary table, but it
can only reference a global temporary table. If a parent table is
defined with COMMIT DELETE, the child table must also have the
COMMIT DELETE attribute.

A foreign key cannot reference an active parent table. An active
parent table is one that has some instance materialized for a
connection.

If you specify the AS SelectQuery clause, you cannot define a
foreign key on the table you are creating.

[ON DELETE CASCADE]

Enables the ON DELETE CASCADE referential action. If specified,
when rows containing referenced key values are deleted from a
parent table, rows in child tables with dependent foreign key
values are also deleted.

UNIQUE

UNIQUE provides a way of identifying a column where each row
must contain a unique value.

UNIQUE HASH ON

Hash index for the table. Only unique hash indexes are created.
This parameter is used for equality predicates. UNTIQUE HASH ON
requires that a primary key be defined.

HashColumnName

Column defined in the table that is to participate in the hash key
of this table. The columns specified in the hash index must be
identical to the columns in the primary key.

If you specify the AS SelectQuery clause, you must define
HashColumnName on the table you are creating.

SQL Statements 5-111

CREATE TABLE

Parameter Description

PrimaryPages Specifies the expected number of pages in the table. This number
affects the number of buckets that are allocated for the table's
hash index. The minimum is 1. If your estimate is too small,
performance is degraded.

[ON COMMIT The optional statement specifies whether to delete or preserve

{DELETE | PRESERVE} rows when a transaction that touches a global temporary table is

ROWS] committed. If not specified, the rows of the temporary table are
deleted.

[AGING LRU [ON|OFF]] If specified, defines the LRU aging policy for the table. The LRU
aging policy defines the type of aging (least recently used (LRU)),
the aging state (ON or OFF) and the LRU aging attributes.

Set the aging state to either ON or OFF. ON indicates that the aging
state is enabled and aging is done automatically. OFF indicates
that the aging state is disabled and aging is not done
automatically. In both cases, the aging policy is defined. The
default is ON.

LRU attributes are defined by calling the t tAgingLRUConfig
procedure. LRU attributes are not defined at the SQL level.

For more information about LRU aging, see "Implementing aging
in your tables" in Oracle TimesTen In-Memory Database Operations

Guide.
[AGING USE If specified, defines the time-based aging policy for the table. The
ColumnName. .. [ON|OFF time-based aging policy defines the type of aging (time-based),
11 the aging state (ON or OFF) and the time-based aging attributes.

Set the aging state to either ON or OFF. ON indicates that the aging
state is enabled and aging is done automatically. OFF indicates
that the aging state is disabled and aging is not done
automatically. In both cases, the aging policy is defined. The
default is ON.

Time-based aging attributes are defined at the SQL level and are
specified by the LIFETIME and CYCLE clauses.

Specify ColumnName as the name of the column used for
time-based aging. Define the column as NOT NULL and of data
type TIMESTAMP or DATE. The value of this column is subtracted
from SYSDATE, truncated using the specified unit (second,
minute, hour, day) and then compared to the LIFETIME value. If
the result is greater than the LIFETIME value, then the row is a
candidate for aging.

The values of the column that you use for aging are updated by
your applications. If the value of this column is unknown for

some rows, and you do not want the rows to be aged, define the
column with a large default value (the column cannot be NULL).

You can define your aging column with a data type of
TT_TIMESTAMP or TT_DATE. If you choose data type TT_DATE,
then you must specify the LIFETIME unit as days.

If you specify the AS SelectQuery clause, you must define the
ColumnName on the table you are creating.

For more information about time-based aging, see "Implementing
aging in your tables" in Oracle TimesTen In-Memory Database
Operations Guide.

5-112 Oracle TimesTen In-Memory Database SQL Reference

CREATE TABLE

Parameter

Description

LIFETIME Numl
{SECOND[S] |
MINUTE[S] |HOUR[S] |
DAY [S]

LIFETIME is a time-based aging attribute and is a required
clause.

Specify the LIFETIME clause after the AGING USE ColumnName
clause.

The LIFETIME clause specifies the minimum amount of time
data is kept in cache.

Specify Numl as a positive integer constant to indicate the unit of
time expressed in seconds, minutes, hours or days that rows
should be kept in cache. Rows that exceed the LIFETIME value
are aged out (deleted from the table). If you define your aging
column with data type TT_DATE, then you must specify DAYS as
the LIFETIME unit.

The concept of time resolution is supported. If DAYS is specified
as the time resolution, then all rows whose timestamp belongs to
the same day are aged out at the same time. If HOURS is specified
as the time resolution, then all rows with timestamp values
within that hour are aged at the same time. A LIFETIME of 3
days is different than a LIFETIME of 72 hours (3*24) or a
LIFETIME of 432 minutes (3*24*60).

[CYCLE Num2 { SECOND[S]
|MINUTE[S] |HOUR[S] |
DAY [S]}]

CYCLE is a time-based aging attribute and is optional. Specify the
CYCLE clause after the LIFETIME clause.

The CYCLE clause indicates how often the system should examine
rows to see if data exceeds the specified LIFETIME value and
should be aged out (deleted).

Specify Num2 as a positive integer constant.

If you do not specify the CYCLE clause, then the default value is 5
minutes. If you specify 0 for Num2, then the aging thread wakes
up every second.

If the aging state is OFF, then aging is not done automatically and
the CYCLE clause is ignored.

AS SelectQuery

If specified, creates a new table from the contents of the result set
of the SelectQuery. The rows returned by SelectQuery are
inserted into the table.

Data types and data type lengths are derived from
SelectQuery.

SelectQueryis a valid SELECT statement that may or may not
contain a subquery.

SQL Statements 5-113

Column Definition

Column Definition

SQL syntax

ColumnName ColumnDataType
[DEFAULT DefaultVall

[[NOT] INLINE]

[PRIMARY KEY | UNIQUE |

NULL [UNIQUE] |

NOT NULL [PRIMARY KEY | UNIQUE]]

Parameters

The column definition has the following parameters:

Parameter Description

ColumnName Name to be assigned to one of the columns in the new table. No two
columns in the table can be given the same name. A table can have a
maximum of 1000 columns.

If you specify the AS SelectQuery clause, ColumnName is optional.
The number of column names must match the number of columns in

SelectQuery.
DEFAULT Indicates that if a value is not specified for the column in an INSERT
DefaultVal statement, the default value DefaultVval is inserted into the column.

The default value specified must have a compatible type with the
column's data type. A default value can be as long as the data type of
the associated column allows. Currently, you cannot assign a default
value for the ROWID data type. In addition, you cannot assign a
default value for columns in read-only cache groups.

Legal data types for DefaultVal can be one of:

L] NULL

s ConstantValue. See "Constants" on page 3-11
L] SYSDATE and GETDATE

= INSERT

» Expression. See "Expressions" on page 3-1

= SYSTEM_USER

If the default value is one of the users, the column's data type must be
either CHAR or VARCHAR?2 and the column's width must be at least 30
characters.

If you specify the AS SelectQuery clause, optionally, you can
specify the DEFAULT clause on the table you are creating.

ColumnDataType Type of data the column can contain. Some data types require that
you indicate a length. See Chapter 1, "Data Types" for the data types
that can be specified.

If you specify the AS SelectQuery clause, do not specify
ColumnDataType.

INLINE |NOT INLINE By default, variable-length columns whose declared column length is
greater than 128 bytes are stored out of line. Variable-length columns
whose declared column length is less than or equal to 128 bytes are
stored inline. The default behavior can be overridden during table
creation through the use of the INLINE and NOT INLINE keywords.

If you specify the AS SelectQuery clause, optionally, you can
specify the INLINE | NOT INLINE clause on the table you are
creating.

5-114 Oracle TimesTen In-Memory Database SQL Reference

CREATE TABLE

Description

Parameter Description

NULL Indicates that the column can contain NULL values.

If you specify the AS SelectQuery clause, optionally, you can
specify NULL on the table you are creating.

NOT NULL Indicates that the column cannot contain NULL values. If NOT NULL is

specified, any statement that attempts to place a NULL value in the
column is rejected.

If you specify the AS SelectQuery clause, optionally, you can
specify NOT NULL on the table you are creating.

UNIQUE A unique constraint placed on the column. No two rows in the table

may have the same value for this column. TimesTen creates a unique
range index to enforce uniqueness. This means that a column with a
unique constraint can use more memory and time during execution
than a column without the constraint. Cannot be used with PRIMARY
KEY.

If you specify the AS SelectQuery clause, optionally, you can
specify UNIQUE on the table you are creating.

PRIMARY KEY A unique NOT NULL constraint placed on the column. No two rows in

the table may have the same value for this column. Cannot be used
with UNIQUE.

If you specify the AS SelectQuery clause, optionally, you can
specify PRIMARY KEY on the table you are creating.

TimesTen supports one hash index per table. A hash index is defined on the
primary key of a table.

By default, a range index is created to enforce the primary key. Use the UNIQUE
HASH clause to specify a hash index for the primary key.

- If your application performs range queries using a table's primary key, then
choose a range index for that table by omitting the UNIQUE HASH clause.

- If your application performs only exact match lookups on the primary key,
then a hash index may offer better response time and throughput. In such a
case, specify the UNIQUE HASH clause.

Use the ALTER TABLE statement to change the representation of the primary key
index for a table.

A hash index is created with a fixed number of buckets that remains constant for
the life of the table or until the hash index is resized using an ALTER TABLE
statement to change hash index size. Fewer buckets in the hash index result in
more hash collisions. More buckets reduce collisions but can waste memory. Hash
key comparison is a fast operation, so a small number of hash collisions does not
cause a performance problem for TimesTen.

The bucket count is derived as the ratio of the maximum table cardinality, derived
from the value of PAGES, to the value 20.To ensure that the hash index is sized
correctly, an application must indicate the expected size of the table. This is done
with the PAGES parameter. The PAGES parameter should be the expected number
of rows in the table, divided by 256. (Since 256 is the number of rows TimesTen
stores on each page, the value provided is the expected number of pages in the
table.) The application may specify a larger value for PAGES, and therefore fewer
rows per bucket on average, if memory use is not an overriding concern.

At most 16 columns are allowed in a hash key.

SQL Statements 5-115

Column Definition

s All columns participating in the primary key are NOT NULL.
= A unique hash index can be specified only for the primary key.

= A PRIMARY KEY thatis specified in the ColumnDefinition can only be
specified for one column.

= PRIMARY KEY cannot be specified in both the ColumnDefinition parameters
and CREATE TABLE parameters.

s For both primary key and foreign key constraints, duplicate column names are not
allowed in the constraint column list.

= You cannot create a table that has a foreign key referencing a cached table.

= UNIQUE column constraint and default column values are not supported with
materialized views.

» IfON DELETE CASCADE is specified on a foreign key constraint for a child table, a
user can delete rows from a parent table for which the user has the DELETE
privilege without requiring explicit DELETE privilege on the child table.

s Tochange the ON DELETE CASCADE triggered action, drop then redefine the
foreign key constraint.

= ON DELETE CASCADE is supported on detail tables of a materialized view. If you
have a materialized view defined over a child table, a deletion from the parent
table causes cascaded deletes in the child table. This, in turn, triggers changes in
the materialized view.

s The total number of rows reported by the DELETE statement does not include
rows deleted from child tables as a result of the ON DELETE CASCADE action.

= For ON DELETE CASCADE: Since different paths may lead from a parent table to a
child table, the following rule is enforced:

— Either all paths from a parent table to a child table are "delete" paths or all
paths from a parent table to a child table are "do not delete" paths. Specify ON
DELETE CASCADE on all child tables on the "delete" path.

— This rule does not apply to paths from one parent to different children or from
different parents to the same child.

s For ON DELETE CASCADE, a second rule is also enforced:

- Ifatable is reached by a "delete" path, then all its children are also reached by
a "delete" path.

= For ON DELETE CASCADE with replication, the following restrictions apply:

— The foreign keys specified with ON DELETE CASCADE must match between
the Master and subscriber for replicated tables. Checking is done at runtime. If
there is an error, the receiver thread stops working.

— All tables in the delete cascade tree have to be replicated if any table in the tree
is replicated. This restriction is checked when the replication scheme is created
or when a foreign key with ON DELETE CASCADE is added to one of the
replication tables. If an error is found, the operation is aborted. You may be
required to drop the replication scheme first before trying to change the
foreign key constraint.

- You must stop the replication agent before adding or dropping a foreign key
on a replicated table.

5-116 Oracle TimesTen In-Memory Database SQL Reference

CREATE TABLE

The data in a global temporary is private to the current connection and does not
need to be secured between users. Thus global temporary tables do not require
object privileges.

After you have defined an aging policy for the table, you cannot change the policy
from LRU to time-based or from time-based to LRU. You must first drop aging
and then alter the table to add a new aging policy.

The aging policy must be defined to change the aging state.

For the time-based aging policy, you cannot add or modify the aging column. This
is because you cannot add or modify a NOT NULL column.

LRU and time-based aging can be combined in one system. If you use only LRU
aging, the aging thread wakes up based on the cycle specified for the whole
database. If you use only time-based aging, the aging thread wakes up based on
an optimal frequency. This frequency is determined by the values specified in the
CYCLE clause for all tables. If you use both LRU and time-based aging, then the
thread wakes up based on a combined consideration of both types.

The following rules determine if a row is accessed or referenced for LRU aging:
- Any rows used to build the result set of a SELECT statement.

- Any rows used to build the result set of an INSERT SELECT statement.

— Any rows that are about to be updated or deleted.

Compiled commands are marked invalid and need recompilation when you either
drop LRU aging from or add LRU aging to tables that are referenced in the
commands.

Call the ttAgingScheduleNow procedure to schedule the aging process
immediately regardless of the aging state.

Aging restrictions:

- LRU aging and time-based aging are not supported on detail tables of
materialized views.

- LRU aging and time-based aging are not supported on global temporary
tables.

- You cannot drop the column that is used for time-based aging.
- The aging policy and aging state must be the same in all sites of replication.
— Tables that are related by foreign keys must have the same aging policy.

— For LRU aging, if a child row is not a candidate for aging, neither this child
row nor its parent row are deleted. ON DELETE CASCADE settings are
ignored.

- For time-based aging, if a parent row is a candidate for aging, then all child
rows are deleted. ON DELETE CASCADE (whether specified or not) is ignored.

If you specify the AS SelectQuery clause:

— Data types and data type lengths are derived from the SelectQuery. Do not
specify data types on the columns of the table you are creating.

— TimesTen defines on columns in the new table NOT NULL constraints that
were explicitly created on the corresponding columns of the selected table if
SelectQuery selects the column rather than an expression containing the
column.

SQL Statements 5-117

Column Definition

- NOT NULL constraints that were implicitly created by TimesTen on columns of
the selected table (for example, primary keys) are carried over to the new
table. You can override the NOT NULL constraint on the selected table by
defining the new column as NULL. For example: CREATE TABLE newtable

(newcol NULL) AS SELECT (col) FROM tab;

— NOT INLINE/INLINE attributes are carried over to the new table.

— Unique keys, foreign keys, indexes and column default values are not carried
over to the new table.

- If all expressions in SelectQuery are columns, rather than expressions, then
you can omit the columns from the table you are creating. In this case, the
name of the columns are the same as the columns in SelectQuery. If the
SelectQuery contains an expression rather than a simple column reference,
either specify a column alias or name the column in the CREATE TABLE
statement.

- Do not specify foreign keys on the table you are creating.
— Do not specify the SELECT FOR UPDATE clause in SelectQuery.
— SelectQuery cannot contain set operators UNION, MINUS, INTERSECT.

- Inareplicated environment for an active standby pair, if
DDL_REPLICATION_LEVEL=2 when you execute the CREATE TABLE on the
active database, the table, including global temporary tables, will be replicated
to all databases in the replication scheme. Tables are only replicated to
TimesTen instances when DDL._ REPLICATION_ LEVEL=2.

To include a new table into an active standby pair when the table is created,
set DDI,_REPLICATION_LEVEL=2 and DDL_REPLICATION_ACTION to
INCLUDE before executing the CREATE TABLE statement on the active
database. If DDI._ REPLICATION_ACTION is set to EXCLUDE, the new table is
not included in the active standby pair. You must execute the ALTER ACTIVE
STANDBY PAIR INCLUDE TABLE statement to include the table after
creation on all databases. In this case, the table must be empty and present on
all databases before executing the ALTER ACTIVE STANDBY PAIR
INCLUDE TABLE statement as the table contents will be truncated when this
statement is executed.

See "ALTER SESSION" on page 5-23 for more information.

Examples

A range index is created on partnumber because it is the primary key.

Command> CREATE TABLE price

(partnumber INTEGER NOT NULL PRIMARY KEY,

vendornumber INTEGER NOT NULL,

vendpartnum CHAR(20) NOT NULL,

unitprice DECIMAL(10,2),

deliverydays SMALLINT,

discountgty SMALLINT) ;

Command> INDEXES price;

Indexes on table SAMPLEUSER.PRICE:

PRICE: unique T-tree index on columns:
PARTNUMBER

1 index found.

1 table found.

V V.V V V V

A hash index is created on column clubname, the primary key.

5-118 Oracle TimesTen In-Memory Database SQL Reference

CREATE TABLE

CREATE TABLE recreation.clubs

(clubname CHAR(15) NOT NULL PRIMARY KEY,
clubphone SMALLINT,

activity CHAR(18))

UNIQUE HASH ON (clubname) PAGES = 30;

A range index is created on the two columns membername and club because together
they form the primary key.

Command> CREATE TABLE recreation.members
> (membername CHAR(20) NOT NULL,
> c¢lub CHAR(15) NOT NULL,
> memberphone SMALLINT,
> PRIMARY KEY (membername, club));
Command> INDEXES recreation.members;
Indexes on table RECREATION.MEMBERS:
MEMBERS: unique T-tree index on columns:
MEMBERNAME
CLUB
1 index found.
1 table found.

No hash index is created on the table recreation.events.

CREATE TABLE recreation.events
(sponsorclub CHAR(15),

event CHAR(30),

coordinator CHAR(20)

results VARBINARY (10000));

A hash index is created on the column vendornumber.

CREATE TABLE purchasing.vendors
(vendornumber INTEGER NOT NULL PRIMARY KEY,
vendorname CHAR(30) NOT NULL,

contactname CHAR(30)

phonenumber CHAR(15)

vendorstreet CHAR(30) NOT NULL,
vendorcity CHAR(20) NOT NULL,

vendorstate CHAR(2) NOT NULL,
vendorzipcode CHAR(10) NOT NULL,
vendorremarks VARCHAR (60))
UNIQUE HASH ON (vendornumber) PAGES = 101;

A hash index is created on the columns membername and club because together they
form the primary key.

CREATE TABLE recreation.members
(membername CHAR(20) NOT NULL,
club CHAR(15) NOT NULL,
memberphone SMALLINT,
PRIMARY KEY (membername, club))
UNIQUE HASH ON (membername, club) PAGES = 100;

A hash index is created on the columns firstname and lastname because together
they form the primary key in the table authors. A foreign key is created on the
columns authorfirstname and authorlastname in the table books that
references the primary key in the table authors.

CREATE TABLE authors
(firstname VARCHAR (255) NOT NULL,
lastname VARCHAR(255) NOT NULL,

SQL Statements 5-119

Column Definition

description VARCHAR(2000),
PRIMARY KEY (firstname, lastname))
UNIQUE HASH ON (firstname, lastname) PAGES=20;
CREATE TABLE books
(title VARCHAR(100),
authorfirstname VARCHAR(255),
authorlastname VARCHAR (255),
price DECIMAL(5,2),
FOREIGN KEY (authorfirstname, authorlastname)
REFERENCES authors (firstname, lastname));

The following statement overrides the default character of VARCHAR columns and
creates a table where one VARCHAR (10) column is NOT INLINE and one VARCHAR
(144) is INLINE:

CREATE TABLE tl
(cl VARCHAR(10) NOT INLINE NOT NULL,
c2 VARCHAR(144) INLINE NOT NULL) ;

The following statement creates a table with a UNIQUE column for book titles:

CREATE TABLE books
(title VARCHAR(100) UNIQUE,
authorfirstname VARCHAR (255),
authorlastname VARCHAR (255),
price DECIMAL(5,2),
FOREIGN KEY (authorfirstname, authorlastname)
REFERENCES authors (firstname, lastname));

The following statement creates a table with a default value of 1 on column x1 and a
default value of SYSDATE on column d:

CREATE TABLE tl
(x1 INT DEFAULT 1, d TIMESTAMP DEFAULT SYSDATE) ;

This example creates the rangex table and defines col1 as the primary key. A range
index is created by default.

Command> CREATE TABLE rangex (coll TT_ INTEGER PRIMARY KEY);
Command> INDEXES rangex;
Indexes on table SAMPLEUSER.RANGEX:
RANGEX: unique T-tree index on columns:
COL1
1 index found.
1 table found.

The following statement illustrates the use of the ON DELETE CASCADE clause for
parent/child tables of the HR schema. Tables with foreign keys have been altered to
enable ON DELETE CASCADE.

ALTER TABLE countries
ADD CONSTRAINT countr_reg_fk
FOREIGN KEY (region_id)
REFERENCES regions(region_id) ON DELETE CASCADE;
ALTER TABLE locations
ADD CONSTRAINT loc_c_id_fk
FOREIGN KEY (country_id)
REFERENCES countries(country_id) ON DELETE CASCADE;
ALTER TABLE departments
ADD CONSTRAINT dept_loc_fk
FOREIGN KEY (location_id)
REFERENCES locations (location_id) ON DELETE CASCADE;

5-120 Oracle TimesTen In-Memory Database SQL Reference

CREATE TABLE

ALTER TABLE employees
ADD CONSTRAINT emp_dept_fk
FOREIGN KEY (department_id)
REFERENCES departments ON DELETE CASCADE;
ALTER TABLE employees
ADD CONSTRAINT emp_job_fk
FOREIGN KEY (job_id)
REFERENCES jobs (job_id);
ALTER TABLE job_history
ADD CONSTRAINT jhist_job_fk
FOREIGN KEY (job_id)
REFERENCES jobs;
ALTER TABLE job_history
ADD CONSTRAINT jhist_emp_fk
FOREIGN KEY (employee_id)
REFERENCES employees ON DELETE CASCADE;
ALTER TABLE job_history
ADD CONSTRAINT jhist_dept_fk
FOREIGN KEY (department_id)
REFERENCES departments ON DELETE CASCADE;

This example shows how time resolution works with aging.

If lifetime is 3 days (resolution is in days):

s If (SYSDATE - ColumnValue) <= 3,donotage.

s If (SYSDATE - ColumnValue) > 3,then the row is a candidate for aging.

s If (SYSDATE - ColumnValue) = 3 days, 22 hours. The row is not aged out if
you specified a lifetime of 3 days. The row would be aged out if you had specified
a lifetime of 72 hours.

This example creates a table with LRU aging. Aging state is ON by default.

CREATE TABLE agingdemo
(agingid NUMBER NOT NULL PRIMARY KEY
,name VARCHAR2 (20)
)
AGING LRU;
Command> DESCRIBE agingdemo;
Table USER.AGINGDEMO:
Columns:
*AGINGID NUMBER NOT NULL
NAME VARCHAR2 (20) INLINE
AGING LRU ON
1 table found.
(primary key columns are indicated with *)

This example creates a table with time-based aging. Lifetime is 3 days. Cycle is not
specified, so the default is 5 minutes. Aging state is OFF.

CREATE TABLE agingdemo2
(agingid NUMBER NOT NULL PRIMARY KEY
,name VARCHAR2 (20)
,agingcolumn TIMESTAMP NOT NULL
)
AGING USE agingcolumn LIFETIME 3 DAYS OFF;
Command> DESCRIBE agingdemo?2;
Table USER.AGINGDEMO2:
Columns:
*AGINGID NUMBER NOT NULL

SQL Statements 5-121

Column Definition

NAME VARCHAR2 (20) INLINE
AGINGCOLUMN TIMESTAMP (6) NOT NULL
Aging use AGINGCOLUMN lifetime 3 days cycle 5 minutes off
1 table found.
(primary key columns are indicated with *)

This example generates an error message. It illustrates that after you create an aging
policy, you cannot change it. You must drop aging and redefine aging.

CREATE TABLE agingdemo2
(agingid NUMBER NOT NULL PRIMARY KEY
,name VARCHAR2 (20)
,agingcolumn TIMESTAMP NOT NULL
)
AGING USE agingcolumn LIFETIME 3 DAYS OFF;
ALTER TABLE agingdemo?2
ADD AGING LRU;
2980: Cannot add aging policy to a table with an existing aging policy. Have to
drop the old aging first
The command failed.
DROP aging on the table and redefine with LRU aging.
ALTER TABLE agingdemo?2
DROP AGING;
ALTER TABLE agingdemo2
ADD AGING LRU;
Command> DESCRIBE agingdemo?2;
Table USER.AGINGDEMO?2 :

Columns:
*AGINGID NUMBER NOT NULL
NAME VARCHAR2 (20) INLINE
AGINGCOLUMN TIMESTAMP (6) NOT NULL

Aging lru on
1 table found.
(primary key columns are indicated with *)

Attempt to create a table with time-based aging. Define aging column with data type
TT_DATE and LIFETIME 3 hours. An error is generated because the LIFETIME unit
must be expressed as DAYS.

Command> CREATE TABLE agingl (coll TT_INTEGER PRIMARY KEY,
col2 TT_DATE NOT NULL) AGING USE col2 LIFETIME 3 HOURS;
2977: Only DAY lifetime unit is allowed with a TT DATE column
The command failed.

Use AS SelectQuery clause to create the table emp. Select 1ast_name from the
employees table where employee_id between 100 and 105. You see 6 rows inserted
into emp. First issue the SELECT statement to see rows that should be returned.

Command> SELECT last_name FROM employees WHERE employee_id BETWEEN 100 AND 105;
King >

Kochhar >

De Haan >

Hunold >

Ernst >

Austin >

rows found.

Command> CREATE TABLE emp AS SELECT employee_id FROM employees
>WHERE employee_id BETWEEN 100 AND 105;

6 rows inserted.

Command> SELECT * FROM emp;

< King >

A A AN AN A A

5-122 Oracle TimesTen In-Memory Database SQL Reference

CREATE TABLE

See also

Kochhar >
De Haan >
Hunold >
Ernst >
Austin >
rows found.

o A A A AN A

Use AS SelectQuery to create table totalsal. Sum salary and insert result into
totalsalary. Define alias s for SelectQuery expression.

Command> CREATE TABLE totalsal AS SELECT SUM (salary) s FROM employees;
1 row inserted.

Command> SELECT * FROM totalsal;

< 691400 >

1 row found.

Use AS SelectQuery to create table defined with column commission_pct. Set
default to .3. First describe table employees to show that column commission_pct
is of type NUMBER (2, 2). For table c_pct, column commission_pct inherits type
NUMBER (2, 2) from column commission_pct of employees table.

Command> DESCRIBE employees;
Table SAMPLEUSER.EMPLOYEES:

Columns:

*EMPLOYEE_ID NUMBER (6) NOT NULL
FIRST_NAME VARCHAR2 (20) INLINE
LAST_NAME VARCHAR2 (25) INLINE NOT NULL
EMATL VARCHAR2 (25) INLINE UNIQUE NOT NULL
PHONE_NUMBER VARCHAR2 (20) INLINE
HIRE_DATE DATE NOT NULL
JOB_1ID VARCHAR2 (10) INLINE NOT NULL
SALARY NUMBER (8,2)

COMMISSION_PCT NUMBER (2,2)

MANAGER_ID NUMBER (6)
DEPARTMENT_ID NUMBER (4)

1 table found.

(primary key columns are indicated with *)

Command> CREATE TABLE c_pct (commission_pct DEFAULT .3) AS SELECT
commission_pct FROM employees;

107 rows inserted.

Command> DESCRIBE c_pct;

Table SAMPLEUSER.C_PCT:
Columns:
COMMISSION_PCT NUMBER (2,2) DEFAULT .3

1 table found.
(primary key columns are indicated with *)

ALTER TABLE
DROP TABLE
TRUNCATE TABLE
UPDATE

SQL Statements 5-123

CREATE USER

CREATE USER

The CREATE USER statement creates a user of a TimesTen database.

Required privilege

ADMIN
SQL syntax
CREATE USER user IDENTIFIED BY {password | "password"}
CREATE USER user IDENTIFIED EXTERNALLY
Parameters
Parameter Description
user Name of the user that is being added to the database.
IDENTIFIED Identification clause.
BY {password Internal users must be given a TimesTen password. To perform
| "password"} database operations using an internal user name, the user must
supply this password.
EXTERNALLY Identifies the operating system user to the TimesTen database.
To perform database operations as an external user, the process
needs a TimesTen external user name that matches the user
name authenticated by the operating system or network. A
password is not required by TimesTen because the user has
been authenticated by the operating system at login time.
Description
= Database users can be internal or external.
— Internal users are defined for a TimesTen database.
— External users are defined by an external authority such as the operating
system. External users cannot be assigned a TimesTen password.
» Passwords are case-sensitive.
= When a user is created, the user has the privileges granted to PUBLIC and no
additional privileges.
= You cannot create a user across a client/server connection. You must use a direct
connection when creating a user.
s In TimesTen, user brad is the same as user "brad". In both cases, the name of the
user is created as BRAD.
s User names are TT_CHAR data type.
Examples

To create the internal user terry with the password "secret", use:

CREATE USER terry IDENTIFIED BY "secret";
User created.

Verify that user terry has been created:

5-124 Oracle TimesTen In-Memory Database SQL Reference

CREATE USER

Command> SELECT * FROM sys.all_users WHERE username='TERRY';
< TERRY, 11, 2009-05-12 10:28:04.610353 >
1 row found.

To identify the external user pat to the TimesTen database, use:

CREATE USER pat IDENTIFIED EXTERNALLY;
User created.

See also

ALTER USER
DROP USER
GRANT
REVOKE

SQL Statements 5-125

CREATE VIEW

CREATE VIEW

The CREATE VIEW statement creates a view of the tables specified in the
SelectQuery clause. A view is a logical table that is based on one or more detail
tables. The view itself contains no data. It is sometimes called a nonmaterialized view to
distinguish it from a materialized view, which does contain data that has already been
calculated from detail tables.

Required privilege

The user executing the statement must have the CREATE VIEW privilege (if owner) or
CREATE ANY VIEW (if not the owner) for another user's view.

The owner of the view must have the SELECT privilege on the detail tables.

SQL syntax
CREATE VIEW ViewName AS SelectQuery
Parameters
Parameter Description
ViewName Name assigned to the new view.
SelectQuery Selects column from the detail tables to be used in the view. Can also

create indexes on the view.

Restrictions on the SELECT query

There are several restrictions on the query that is used to define the view.

A SELECT * query in a view definition is expanded when the view is created.
Any columns added after a view is created do not affect the view.

The following cannot be used in a SELECT statement that is used to create a view:
— DISTINCT
- FIRST

- ORDER BY, if used, is ignored by the CREATE VIEW statement. The result will
not be sorted.

- Arguments
— Temporary tables

Each expression in the select list must have a unique name. A name of a simple
column expression would be that column's name unless a column alias is defined.
ROWID is considered an expression and needs an alias.

No SELECT FOR UPDATE or SELECT FOR INSERT statements can be used to
create a view.

Certain TimesTen query restrictions are not checked when a nonmaterialized view
is created. Views that violate those restrictions may be allowed to be created, but
an error is returned when the view is referenced later in an executed statement.

When a view is referenced in the FROM clause of a SELECT statement, its name is
replaced by its definition as a derived table at parsing time. If it is not possible to

5-126 Oracle TimesTen In-Memory Database SQL Reference

CREATE VIEW

merge all clauses of a view to the same clause in the original select query to form a
legal query without the derived table, the content of this derived table is
materialized. For example, if both the view and the referencing select specify
aggregates, the view is materialized before its result can be joined with other
tables of the select.

s Usethe DROP [MATERIALIZED] VIEW statement to drop a view.
s A view cannot be altered with an ALTER TABLE statement.

= Referencing a view can fail because of dropped or altered detail tables.

Examples

Create a nonmaterialized view from the employees table.

Command> CREATE VIEW vl AS SELECT employee_id, email FROM employees;
Command> SELECT FIRST 5 * FROM vl;

100, SKING >

101, NKOCHHAR >

102, LDEHAAN >

103, AHUNOLD >

104, BERNST >

rows found.

Ul A A A A A

Create a nonmaterialized view tview with column max1 from an aggregate query on
the table t1.

CREATE VIEW tview (maxl) AS SELECT MAX(x1l) FROM tl1;

See also

CREATE MATERIALIZED VIEW
CREATE TABLE
DROP [MATERIALIZED] VIEW

SQL Statements 5-127

DELETE

DELETE

The DELETE statement deletes rows from a table.

Required privilege

No privilege is required for the table owner.

SQL syntax

Parameters

Description

DELETE on the table for another user's table.

DELETE [FIRST NumRows] FROM [Owner.]TableName [CorrelationName]
[WHERE SearchCondition]
[RETURNING|RETURN Expression[,...]INTO Dataltem[,...]]

Parameter

Description

FIRST NumRows

Specifies the number of rows to delete. FIRST NumRows is not
supported in subquery statements. NumRows must be either a positive
INTEGER or a dynamic parameter placeholder. The syntax for a
dynamic parameter placeholder is either ? or :DynamicParameter.
The value of the dynamic parameter is supplied when the statement is
executed.

[Owner.] TableName
[CorrelationName]

Designates a table from which any rows satisfying the search
condition are to be deleted.

[Owner.] TableName identifies a table to be deleted.

CorrelationName specifies an alias for the immediately preceding
table. Use the correlation name to reference the table elsewhere in the
DELETE statement. The scope of the CorrelationName is the SQL
statement in which it is used. It must conform to the syntax rules for a
basic name. See "Basic names" on page 2-1.

SearchCondition

Specifies which rows are to be deleted. If no rows satisfy the search
condition, the table is not changed. If the WHERE clause is omitted, all
rows are deleted. The search condition can contain a subquery.

Expression

Valid expression syntax. See Chapter 3, "Expressions".

DatalItem

Host variable or PL/SQL variable that stores the retrieved
Expression value.

» If all the rows of a table are deleted, the table is empty but continues to exist until
you issue a DROP TABLE statement.

= The DELETE operation fails if it violates any foreign key constraint. See "CREATE
TABLE" on page 5-109 for a description of the foreign key constraint.

= The total number of rows reported by the DELETE statement does not include
rows deleted from child tables as a result of the ON DELETE CASCADE action.

» IfON DELETE CASCADE is specified on a foreign key constraint for a child table, a
user can delete rows from a parent table for which the user has the DELETE
privilege without requiring explicit DELETE privilege on the child table.

s Restrictions on the RETURNING clause:

5-128 Oracle TimesTen In-Memory Database SQL Reference

DELETE

Examples

- Each Expression must be a simple expression. Aggregate functions are not
supported.

- You cannot return a sequence number into an OUT parameter.
- ROWNUM and subqueries cannot be used in the RETURNING clause.

— Parameters in the RETURNING clause cannot be duplicated anywhere in the
DELETE statement.

— Using the RETURNING clause to return multiple rows requires PL/SQL BULK
COLLECT functionality. See Oracle TimesTen In-Memory Database PL/SQL
Developer’s Guide.

- InPL/SQL, you cannot use a RETURNING clause with a WHERE CURRENT
operation.

Rows for orders whose quantity is less than 50 are deleted.

DELETE FROM purchasing.orderitems
WHERE quantity < 50;

The following query deletes all the duplicate orders assuming that id is not a primary
key:

DELETE FROM orders a
WHERE EXISTS (SELECT 1 FROM orders b
WHERE a.id = b.id and a.rowid < b.rowid);

The following sequence of statements causes a foreign key violation.

CREATE TABLE master (name CHAR(30), id CHAR(4) NOT NULL PRIMARY KEY);
CREATE TABLE details
(masterid CHAR(4),description VARCHAR(200),
FOREIGN KEY (masterid) REFERENCES master (id));
INSERT INTO master ('Elephant', '0001');
INSERT INTO details('0001', 'A VERY BIG ANIMAL');
DELETE FROM master WHERE id = '0001°';

If you attempt to delete a "busy" table, an error results. In this example, t1 is a "busy"
table that is a parent table with foreign key constraints based on it.

CREATE TABLE tl (a INT NOT NULL, b INT NOT NULL,
PRIMARY KEY (a));

CREATE TABLE t2 (c INT NOT NULL,
FOREIGN KEY (c) REFERENCES tl(a));

INSERT INTO tl VALUES (1,1);

INSERT INTO t2 VALUES (1);

DELETE FROM t1;

An error is returned:
SQL ERROR (3001): Foreign key violation [TTFOREIGN_0] a row in child table T2 has

a parent in the delete range.

Delete an employee from employees. Declare empid and name as variables with the
same data types as employee_id and last_name. Delete the row, returning
employee_idand last_name into the variables. Verify that the correct row was
deleted.

Command> VARIABLE empid NUMBER(6) NOT NULL;

SQL Statements 5-129

DELETE

Command> VARIABLE name VARCHAR2 (25) INLINE NOT NULL;
Command> DELETE FROM employees WHERE last_name='Ernst'

> RETURNING employee_id, last_name INTO :empid, :name;
1 row deleted.
Command> PRINT empid name;
EMPID : 104
NAME : Ernst

5-130 Oracle TimesTen In-Memory Database SQL Reference

DROP ACTIVE STANDBY PAIR

DROP ACTIVE STANDBY PAIR

This statement drops an active standby pair replication scheme.

Required privilege

ADMIN

SQL syntax
DROP ACTIVE STANDBY PAIR

Parameters
DROP ACTIVE STANDBY PAIR hasno parameters.

Description
The active standby pair is dropped, but all objects such as tables, cache groups, and
materialized views still exist on the database on which the statement was issued.
You cannot execute the DROP ACTIVE STANDBY PAIR statement when Oracle
Clusterware is used with TimesTen.

See also

ALTER ACTIVE STANDBY PAIR
CREATE ACTIVE STANDBY PAIR

SQL Statements 5-131

DROP CACHE GROUP

DROP CACHE GROUP

The DROP CACHE GROUP statement drops the table associated with the cache group,
and removes the cache group definition from the CACHE_GROUP system table.

Required privilege

No privilege is required for the cache group owner or DROP ANY CACHE GROUP if
not the cache group owner and

DROP ANY TABLE if at least one table in the cache group is not owned by the current
user.

SQL syntax

DROP CACHE GROUP [Owner.]GroupName

Parameters

Parameter Description

[Owner.]GroupName Name of the cache group to be deleted.

Description

= If you attempt to delete a cache group table that is in use, TimesTen returns an
error.

= Asynchronous writethrough cache groups cannot be dropped while the
replication agent is running.

= Automatically installed Oracle objects for read-only cache groups and cache
groups with the AUTOREFRESH attribute are uninstalled by the cache agent. If the
cache agent is not running during the DROP CACHE GROUP operation, the Oracle
objects are uninstalled on the next startup of the cache agent.

= If youissue a DROP CACHE GROUP statement, and there is an autorefresh
operation currently running, then:

- If LockWait interval is 0, the DROP CACHE GROUP statement fails with a lock
timeout error.

— If LockWait interval is non-zero, then the current autorefresh transaction is
preempted (rolled back), and the DROP statement continues. This affects all
cache groups with the same autorefresh interval.

Examples
DROP CACHE GROUP westerncustomers;

See also

ALTER CACHE GROUP
CREATE CACHE GROUP

5-132 Oracle TimesTen In-Memory Database SQL Reference

DROP FUNCTION

DROP FUNCTION

The DROP FUNCTION statement removes a standalone stored function from the
database. Do not use this statement to remove a function that is part of a package.

Required privilege

SQL syntax

Parameters

Description

Examples

See also

No privilege is required for the function owner.

DROP ANY PROCEDURE for another user's function.

DROP FUNCTION [Owner.]FunctionName

Parameter Description

[Owner.]FunctionName Name of the function to be dropped.

= When you drop a function, TimesTen invalidates objects that depend on the
dropped function. If you subsequently reference one of these objects, TimesTen
attempts to recompile the object and returns an error message if you have not
re-created the dropped function.

= Do not use this statement to remove a function that is part of a package. Either
drop the package or redefine the package without the function using the CREATE
PACKAGE statement with the OR REPLACE clause

s To use the DROP FUNCTION statement, you must have PL/SQL enabled in your
database. If you do not have PL/SQL enabled in your database, an error is
thrown.

The following statement drops the function myfunc and invalidates all objects that
depend on myfunc:

Command> DROP FUNCTION myfunc;
Function dropped.

If PL/SQL is not enabled in your database, TimesTen returns an error:

Command> DROP FUNCTION myfunc;
8501: PL/SQL feature not installed in this TimesTen database
The command failed.

CREATE FUNCTION

SQL Statements 5-133

DROP INDEX

DROP INDEX

The DROP INDEX statement removes the specified index.

Required privilege
No privilege is required for the index owner.

DROP ANY INDEX for another user's index.

SQL syntax

DROP INDEX [Owner.]IndexName [FROM [Owner.]TableName]
Parameters

Parameter Description

[Owner.] IndexName Name of the index to be dropped. It may include the name of the

owner of the table that has the index.

[Owner.]TableName Name of the table upon which the index was created.

Description

= If you attempt to drop a "busy” index—an index that is in use or that enforces a
foreign key—an error results. To drop a foreign key and the index associated with
it, use the ALTER TABLE statement.

» Ifanindexis created through a UNIQUE column constraint, it can only be dropped
by dropping the constraint with an ALTER TABLE DROP UNIQUE statement. See
"CREATE TABLE" on page 5-109 for more information about the UNIQUE column
constraint.

» IfaDROP INDEX operation is or was active in an uncommitted transaction, other
transactions doing DML operations that do not access that index are blocked.

» Ifanindexis dropped, any prepared statement that uses the index is prepared
again automatically the next time the statement is executed.

= If no table name is specified, the index name must be unique for the specified or
implicit owner. The implicit owner, in the absence of a specified table or owner, is
the current user running the program.

» If no index owner is specified and a table is specified, the default owner is the
table owner.

» If a table is specified and no owner is specified for it, the default table owner is the
current user running the program.

m The table and index owners must be the same.

= Anindex on a temporary table cannot be dropped by a connection if some other
connection has an instance of the table that is not empty.

» If the index is replicated across an active standby pair and if
DDL_REPLICATION_LEVEL is 2, use the DROP INDEX statement to drop the
index from the standby pair in the replication scheme. See "Making DDL changes
in an active standby pair" in the Oracle TimesTen In-Memory Database TimesTen to
TimesTen Replication Guide for more information.

5-134 Oracle TimesTen In-Memory Database SQL Reference

DROP INDEX

Examples
Drop index partsorderedindex which is defined on table orderitems using one
of the following:
DROP INDEX partsorderedindex
FROM purchasing.orderitems;
or
DROP INDEX purchasing.partsorderedindex;
See also

CREATE INDEX

SQL Statements 5-135

DROP [MATERIALIZED] VIEW

DROP [MATERIALIZED] VIEW

The DROP [MATERIALIZED] VIEW statementremoves the specified view, including
any hash indexes and any range indexes associated with it.

Required privilege

SQL syntax

Parameters

Description

Examples

See also

s View owner or DROP ANY [MATERIALIZED] VIEW (if not owner) and
= Table owner or DROP ANY TABLE (if not owner) and

= Index owner or DROP ANY INDEX (if not owner) if there is an index on the view.

DROP [MATERIALIZED] VIEW ViewName

Parameter Description
MATERIALIZED Specifies that the view is materialized.
ViewName Identifies the view to be dropped.

When you perform a DROP VIEW operation on a materialized view, the detail tables
are updated and locked. An error may result if the detail table was already locked by
another transaction.

The following statement drops the custorder view.

DROP VIEW custorder;

CREATE MATERIALIZED VIEW
CREATE VIEW

5-136 Oracle TimesTen In-Memory Database SQL Reference

DROP MATERIALIZED VIEW LOG

DROP MATERIALIZED VIEW LOG

The DROP MATERIALIZED VIEW LOG statement removes the materialized view log
for a detail table. It also drops the global temporary table that was created by the
CREATE MATERIALIZED VIEW LOG statement.

Required privilege
No privilege is required for the table owner.

DROP ANY TABLE for another user's table.

SQL syntax
DROP MATERIALIZED VIEW LOG ON TableName
Parameters
Parameter Description
TableName Name of the detail table for which the materialized view log was
created.
Description
This statement drops the materialized view log for the specified detail table. The
materialized view log cannot be dropped if there is an asynchronous materialized
view that depends on the log for refreshing.
Examples
DROP MATERIALIZED VIEW LOG ON employees;
See also

CREATE MATERIALIZED VIEW LOG
CREATE MATERIALIZED VIEW
DROP [MATERIALIZED] VIEW

SQL Statements 5-137

DROP PACKAGE [BODY]

DROP PACKAGE [BODY]

The DROP PACKAGE statement removes a stored package from the database. Both the
specification and the body are dropped. DROP PACKAGE BODY removes only the
body of the package.

Required privilege
No privilege is required for the package owner.

DROP ANY PROCEDURE for another user's package.

SQL syntax
DROP PACKAGE [BODY] [Owner.]PackageName
Parameters

Parameter Description

PACKAGE [BODY] Specify BODY to drop only the body of the package. Omit BODY

to drop both the specification and body of the package.

[Owner.] PackageName Name of the package to be dropped.

Description

= When you drop only the body of the package, TimesTen does not invalidate
dependent objects. However, you cannot execute one of the procedures or stored
functions declared in the package specification until you re-create the package
body.

» TimesTen invalidates any objects that depend on the package specification. If you
subsequently reference one of these objects, then TimesTen tries to recompile the
object and returns an error if you have not re-created the dropped package.

= Do not use this statement to remove a single object from the package. Instead,
re-create the package without the object using the CREATE PACKAGE and CREATE
PACKAGE BODY statements with the OR REPLACE clause.

s To use the DROP PACKAGE [BODY] statement, you must have PL/SQL enabled
in your database. If you do not have PL/SQL enabled in your database, TimesTen
returns an error.

Example

The following statement drops the body of package samplePackage:

Command> DROP PACKAGE BODY SamplePackage;

Package body dropped.

To drop both the specification and body of package samplepackage:

Command> DROP PACKAGE samplepackage;

Package dropped.

See also

CREATE PACKAGE

5-138 Oracle TimesTen In-Memory Database SQL Reference

DROP PROCEDURE

DROP PROCEDURE

The DROP PROCEDURE statement removes a standalone stored procedure from the
database. Do not use this statement to remove a procedure that is part of a package.

Required privilege

SQL syntax

Parameters

Description

Examples

See also

No privilege is required for the procedure owner.

DROP ANY PROCEDURE for another user's procedure.

DROP PROCEDURE [Owner.]ProcedureName

Parameter Description

[Owner.] ProcedureName Name of the procedure to be dropped.

= When you drop a procedure, TimesTen invalidates objects that depend on the
dropped procedure. If you subsequently reference one of these objects, TimesTen
attempts to recompile the object and returns an error message if you have not
re-created the dropped procedure.

= Do not use this statement to remove a procedure that is part of a package. Either
drop the package or redefine the package without the procedure using the
CREATE PACKAGE statement with the OR REPLACE clause.

= To use the DROP PROCEDURE statement, you must have PL/SQL enabled in your
database. If you do not have PL/SQL enabled in your database, an error is
thrown.

The following statement drops the procedure myproc and invalidates all objects that
depend on myproc:

Command> DROP PROCEDURE myproc;
Procedure dropped.

If PL/SQL is not enabled in your database, TimesTen returns an error:

Command> DROP PROCEDURE myproc;

8501: PL/SQL feature not installed in this TimesTen database
The command failed.

CREATE PROCEDURE

SQL Statements 5-139

DROP REPLICATION

DROP REPLICATION

The DROP REPLICATION statement destroys a replication scheme and removes it
from the executing database.

Required privilege

ADMIN
SQL syntax
DROP REPLICATION [Owner.]ReplicationSchemeName
Parameters
Parameter Description
[Owner.]ReplicationSchemeName Name assigned to the replication scheme.
Description
Dropping the last replication scheme at a database does not delete the replicated
tables. These tables exist and persist at a database whether or not any replication
schemes are defined.
Examples
The following statement erases the executing database's knowledge of replication
scheme, r:
DROP REPLICATION r;
See also

ALTER REPLICATION
CREATE REPLICATION

5-140 Oracle TimesTen In-Memory Database SQL Reference

DROP SEQUENCE

DROP SEQUENCE

The DROP SEQUENCE statement removes an existing sequence number generator.

Required privilege
No privilege is required for the sequence owner.

DROP ANY SEQUENCE for another user's sequence.

SQL syntax
DROP SEQUENCE [Owner.]SequenceName
Parameters
Parameter Description
[Owner.]SequenceName Name of the sequence number generator
Description
= Sequences can be dropped while they are in use.
s Thereisno ALTER SEQUENCE statement in TimesTen. To alter a sequence, use the
DROP SEQUENCE statement and then create a new sequence with the same name.
For example, to change the MINVALUE, drop the sequence and re-create it with the
same name and with the desired MINVALUE.
» If the sequence is part of a replication scheme, use the ALTER REPLICATION
statement to drop the sequence from the replication scheme. Then use the DROP
SEQUENCE statement to drop the sequence.
Examples
The following statement drops mysequence:
DROP SEQUENCE mysequence;
See also

CREATE SEQUENCE

SQL Statements 5-141

DROP SYNONYM

DROP SYNONYM

The DROP SYNONYM statement removes a synonym from the database.

If the synonym is replicated across an active standby pair and if
DDL_REPLICATION_LEVEL is 2, use the DROP SYNONYM statement to drop the
synonym from the active standby pair in the replication scheme. See "Making DDL
changes in an active standby pair" in the Oracle TimesTen In-Memory Database TimesTen
to TimesTen Replication Guide for more information.

Required privilege

No privilege is required to drop the private synonym by its owner. The DROP ANY
SYNONYM privilege is required to drop another user's private synonym.

The DROP PUBLIC SYNONYM privilege is required to drop a PUBLIC synonym.

SQL syntax

To drop a private synonym, use the following syntax:

DROP SYNONYM [Owner.]Synonym Name

To drop a public synonym, provide the PUBLIC keyword, as follows:

DROP PUBLIC SYNONYM Synonym Name

Parameters

Parameter Description

PUBLIC Specify PUBLIC to drop a public synonym.

[Owner.] Optionally, specify the owner for a private synonym. If you
omit the owner, the private synonym must exist in the current
user’s schema.

Synonym_Name Specify the name of the synonym to be dropped.

Examples
Drop the public synonym pubemp:
DROP PUBLIC SYNONYM pubemp;
Synonym dropped.
Drop the private synjobs synonym:
DROP SYNONYM synjobs;
Synonym dropped.
As user terry with DROP ANY SYNONYM privilege, drop the private syntab
synonym owned by ttuser.

DROP SYNONYM ttuser.syntab;
Synonym dropped.

See also
CREATE SYNONYM

5-142 Oracle TimesTen In-Memory Database SQL Reference

DROP TABLE

DROP TABLE

The DROP TABLE statement removes the specified table, including any hash indexes
and any range indexes associated with it.

Required privilege

No privilege is required for the table owner.

DROP ANY TABLE for another user's table.

SQL syntax

DROP TABLE [Owner.]TableName

Parameters

Parameter Description

[Owner.] TableName Identifies the table to be dropped.

Description

Examples

If you attempt to drop a table that is in use, an error results.

If a DROP TABLE operation is or was active in an uncommitted transaction, other
transactions doing DML operations that do not access that table are allowed to
proceed.

If the table is a replicated table, you can do one of the following:

Use the DROP REPLICATION statement to drop the replication scheme before
issuing the DROP TABLE statement.

If DDL_REPLICATION_LEVEL is 2, use the DROP TABLE statement to drop
the table from the active standby pair in the replication scheme.

If DDL_REPLICATION_LEVEL is 1, stop the replication agent and use the
ALTER ACTIVE STANDBY PAIR EXCLUDE TABLE statement to exclude the
table from the replication scheme. Then use the DROP TABLE statement to
drop the table.

See "Making DDL changes in an active standby pair" in the Oracle TimesTen
In-Memory Database TimesTen to TimesTen Replication Guide for more
information.

A temporary table cannot be dropped by a connection if some other connection
has some non-empty instance of the table.

CREATE TABLE vendorperf

(ordernumber INTEGER,

delivday TT_SMALLINT,

delivmonth TT_SMALLINT,

delivyear TT_SMALLINT,

delivgty TT_SMALLINT,

remarks VARCHAR2 (60))

CREATE UNIQUE INDEX vendorperfindex ON vendorperf (ordernumber);

SQL Statements 5-143

DROP TABLE

The following statement drops the table and index.

DROP TABLE vendorperf ;

5-144 Oracle TimesTen In-Memory Database SQL Reference

DROP USER

DROP USER

The DROP USER statement removes a user from the database.

Required privilege
ADMIN

SQL syntax

DROP USER user

Parameters

Parameter Description

user Name of the user that is being dropped from the database.

Description
Before you can drop a user:
s The user must exist either internally or externally in the database.

= You must drop objects that the user owns.

Examples
Drop user terry from the database:

DROP USER terry;
User dropped.

See also

CREATE USER
ALTER USER
GRANT
REVOKE

SQL Statements 5-145

FLUSH CACHE GROUP

FLUSH CACHE GROUP

The FLUSH CACHE GROUP statement flushes data from TimesTen cache tables to
Oracle tables. This statement is available only for user managed cache groups. For a
description of cache group types, see "User managed and system managed cache
groups" on page 5-54.

There are two variants to this operation: one that accepts a WHERE clause, and one that
accepts a WITH ID clause.

FLUSH CACHE GROUP is meant to be used when commit propagation (from TimesTen
to Oracle) is turned off. Instead of propagating every transaction upon commit, many
transactions can be committed before changes are propagated to Oracle. For each
cache instance ID, if the cache instance exists in the Oracle database, the operation in
the Oracle database consists of an update. If the cache instance does not exist in the
Oracle database, TimesTen inserts it.

This is useful, for example, in a shopping cart application in which many changes may
be made to the cart, which uses TimesTen as a high-speed cache, before the order is
committed to the master Oracle table.

Note: UsingaWITH ID clause usually results in better system
performance than using a WHERE clause.

Only inserts and updates are flushed. Inserts are propagated as inserts if the record
does not exist in the Oracle table or as updates (if the record already exists). It is not
possible to flush a delete. That is, if a record is deleted on TimesTen, there is no way to
"flush" that delete to the Oracle table. Deletes must be propagated either manually or
by turning commit propagation on. Attempts to flush deleted records are silently
ignored. No error or warning is issued. Records from tables that are specified as READ
ONLY or PROPAGATE cannot be flushed to Oracle tables.

Required privileges
No privilege is required for the cache group owner.

FLUSH or FLUSH ANY CACHE GROUP for another user's cache group.

SQL syntax
FLUSH CACHE GROUP [Owner.]GroupName
[WHERE ConditionalExpression];
or
FLUSH CACHE GROUP [Owner.]GroupName
WITH ID (ColumnValueList)
Parameters
Parameter Description
[Owner.] GroupName Name of the cache group to be flushed.

5-146 Oracle TimesTen In-Memory Database SQL Reference

FLUSH CACHE GROUP

Description

Restrictions

Examples

See also

Parameter Description

ConditionalExpression A search condition to qualify the target rows of the operation.
When using more than one table with columns with the same
name, the table names in subqueries in the WHERE clause of the
FLUSH CACHE GROUP statement must be fully qualified.

WITH ID The WITH ID clauses allows you to use primary key values to

ColumnValueList flush the cache instance. Specify ColumnValueList as either a
list of literals or binding parameters to represent the primary
key values.

= WHERE clauses are generally used to apply the operation to a set of instances,
rather than to a single instance or to all instances. The flush operation uses the
WHERE clause to determine which instances to send to the Oracle database.

= Generally, you do not have to fully qualify the column names in the WHERE clause
of the FLUSH CACHE GROUP statement. However, since TimesTen automatically
generates queries that join multiple tables in the same cache group, a column
needs to be fully qualified if there is more than one table in the cache group that
contains columns with the same name. Without an owner name, all tables
referenced by cache group WHERE clauses are owned by the current login name
executing the cache group operation.

= When the WHERE clause is omitted, the entire contents of the cache group is
flushed to Oracle tables. When the WHERE clause is included, it is allowed to
include only the root table.

= Following the execution of a FLUSH CACHE GROUP statement, the ODBC function
SQLRowCount (), the JDBC method getUpdateCount (), and the OCI function
OCIAttrGet () with the OCI_ATTR_ROW_COUNT argument return the number of
cache instances that were flushed.

s Usethe WITH ID clause to specify binding parameters

= Donotuse the WITH ID clause on AWT or SWT cache groups, user managed
cache groups with the propagate attribute, or autorefreshed and propagated user
managed cache groups unless the cache group is a dynamic cache group.

s Do notuse the WITH ID clause with the COMMIT EVERY n ROWS clause.

FLUSH CACHE GROUP marketbasket;

FLUSH CACHE GROUP marketbasket
WITH ID(10);

CREATE CACHE GROUP

SQL Statements 5-147

GRANT

GRANT

The GRANT statement assigns one or more privileges to a user.

Required privilege
ADMIN to grant system privileges.

ADMIN or the object owner to grant object privileges.

SQL syntax
GRANT {SystemPrivilege [,...] | ALL [PRIVILEGES]} [...] TO {user \PUBLIC} [,...]
GRANT {{ObjectPrivilege [,...] | ALL [PRIVILEGES]} ON {[owner.]object}[,...]} TO
{user | PUBLIC} [,...]

Parameters
The following parameters are for granting system privileges:
Parameter Description
SystemPrivilege See "System privileges" on page 6-1 for a list of acceptable values.
ALL [PRIVILEGES] Assigns all system privileges to the user.

user Name of the user to whom privileges are being granted. The user
name must first have been introduced to the TimesTen database by
a CREATE USER statement.

PUBLIC Specifies that the privilege is granted to all users.

The following parameters are for granting object privileges:

Parameter Description

ObjectPrivilege See "Object privileges" on page 6-3 for a list of acceptable values.
ALL [PRIVILEGES] Assigns all object privileges to the user.

[owner.]object object is the name of the object on which privileges are being
granted. owner is the owner of the object. If owner is not specified,
the user who is granting the privilege is the owner.

user Name of the user to whom privileges are being granted. The user
must exist in the database.

PUBLIC Specifies that the privilege is granted to all users.

Description

= One or more system privileges can be granted to a user by a user with ADMIN
privilege.

= One or more object privileges can be granted to a user by the owner of the object.

= One or more object privileges can be granted to a user on any object by a user with
ADMIN privilege.

= Toremove a privilege from a user, use the REVOKE statement.

= You cannot grant system privileges and object privileges in the same statement.

5-148 Oracle TimesTen In-Memory Database SQL Reference

GRANT

= Only one object can be specified in an object privilege statement.

Examples
Grant the ADMIN privilege to the user terry:
GRANT admin TO terry;
Assuming the grantor has ADMIN privilege, grant the SELECT privilege to user terry
on the customers table owned by user pat:

GRANT select ON pat.customers TO terry;

Grant an object privilege to user terry:

GRANT select ON emp_details_view TO terry;

See also

CREATE USER

ALTER USER

DROP USER

REVOKE

"The PUBLIC role" on page 6-5

SQL Statements 5-149

INSERT

INSERT

The INSERT statement adds rows to a table.

The following expressions can be used in the VALUES clause of an INSERT statement:

s TO_CHAR

m TO_DATE

m Sequence NEXTVAL and Sequence CURRVAL

n CAST
= DEFAULT

L] SYSDATE and GETDATE

s USER functions
= Expressions

m SYSTEM_USER

Required privilege

No privilege is required for the table owner.

INSERT for another user's table.

SQL syntax
INSERT INTO [Owner.]TableName [(Column [,...])]
VALUES (SingleRowValues)
[RETURNING|RETURN Expression[,...] INTO Dataltem[,...]]
The SingleRowValues parameter has the syntax:
{NULL| {? | : DynamicParameter} | {Constant}| DEFAULT}[,...]
Parameters
Parameter Description
Owner The owner of the table into which data is inserted.
TableName Name of the table into which data is inserted.
Column Each column in this list is assigned a value from

SingleRowValues.

If you omit one or more of the table's columns from this list, then
the value of the omitted column in the inserted row is the column
default value as specified when the table was created or last altered.
If any omitted column has a NOT NULL constraint and has no
default value, then the database returns an error.

If you omit a list of columns completely, then you must specify
values for all columns in the table

?

:DynamicParameter

Place holder for a dynamic parameter in a prepared SQL statement.
The value of the dynamic parameter is supplied when the statement
is executed.

Constant

A specific value. See "Constants" on page 3-11.

5-150 Oracle TimesTen In-Memory Database SQL Reference

INSERT

Parameter Description

DEFAULT Specifies that the column should be updated with the default value.
Expression Valid expression syntax. See Chapter 3, "Expressions".

Dataltem Host variable or PL/SQL variable that stores the retrieved

Expression value.

Description

= If you omit any of the table's columns from the column name list, the INSERT
statement places the default value in the omitted columns. If the table definition
specifies NOT NULL for any of the omitted columns and there is no default value,
the INSERT statement fails.

= BINARY and VARBINARY data can be inserted in character or hexadecimal format:
— Character format requires single quotes.
- Hexadecimal format requires the prefix '0x before the value.

s The INSERT operation fails if it violates a foreign key constraint. See "CREATE
TABLE" on page 5-109 for a description of the foreign key constraint.

» Restrictions on the RETURNING clause:

- Each Expression must be a simple expression. Aggregate functions are not
supported.

- You cannot return a sequence number into an OUT parameter.
- ROWNUM and subqueries cannot be used in the RETURNING clause.

— Parameters in the RETURNING clause cannot be duplicated anywhere in the
INSERT statement.

- InPL/SQL, you cannot use a RETURNING clause with a WHERE CURRENT
operation.

Examples
A new single row is added to the purchasing.vendors table.

INSERT INTO purchasing.vendors
VALUES (9016,
'Secure Systems, Inc.',
'Jane Secret',
'454-255-2087",
'1111 Encryption Way',
'Hush',
'MD',
'00007",
'discount rates are secret');

:pno and :pname are dynamic parameters whose values are supplied at runtime.
INSERT INTO purchasing.parts (partnumber, partname)
VALUES (:pno, :pname);

Return the annual salary and job_id of a new employee. Declare the variables sal
and jobid with the same data types as salary and job_id. Insert the row into
employees. Print the variables for verification.

Command> VARIABLE sall2 NUMBER(S8,2);

SQL Statements 5-151

INSERT

Command> VARIABLE jobid VARCHAR2 (10) INLINE NOT NULL;

Command> INSERT INTO employees (employee_id, last_name, email, hire_date,
> job_id, salary)
> VALUES (211, 'Doe', 'JDOE', sysdate, 'ST _CLERK',2400)
> RETURNING salary*12, job_id INTO :sall2, :jobid;

1 row inserted.

PRINT sall2 jobid;
SAL12 : 28800
JOBID : ST_CLERK

See also

CREATE TABLE
INSERT...SELECT
Chapter 3, "Expressions"

5-152 Oracle TimesTen In-Memory Database SQL Reference

INSERT...SELECT

INSERT...SELECT

The INSERT. . . SELECT statement inserts the results of a query into a table.

Required privilege
No privilege is required for the object owner.

INSERT and SELECT for another user's object.

SQL syntax
INSERT INTO [Owner.]TableName [(ColumnName [,...])] InsertQuery
Parameters

Parameter Description

[Owner.] TableName Table to which data is to be added.

ColumnName Column for which values are supplied. If you omit any of the table's
columns from the column name list, the INSERT. . . SELECT
statement places the default value in the omitted columns. If the table
definition specifies NOT NULL, without a default value, for any of
the omitted columns, the INSERT...SELECT statement fails. You can
omit the column name list if you provide values for all columns of the
table in the same order the columns were specified in the CREATE
TABLE statement. If too few values are provided, the remaining
columns are assigned default values.

InsertQuery Any supported SELECT query. See "SELECT" on page 5-169.

Description

s The column types of the result set must be compatible with the column types of
the target table.

= You can specify a sequence CURRVAL or NEXTVAL when inserting values.

» The target table cannot be referenced in the FROM clause of the InsertQuery.

s Inthe InsertQuery, the ORDER BY clause is allowed. The sort order may be
modified using the ORDER BY clause when the result set is inserted into the target
table, but the order is not guaranteed.

s The INSERT operation fails if there is an error in the InsertQuery.

» A RETURNING clause cannot be used in an INSERT. . . SELECT statement.

Examples

New rows are added to the purchasing.parts table that describe which parts are
delivered in 20 days or less.

INSERT INTO purchasing.parts
SELECT partnumber, deliverydays
FROM purchasing.supplyprice
WHERE deliverydays < 20;

SQL Statements 5-153

LOAD CACHE GROUP

LOAD CACHE GROUP

The LOAD CACHE GROUP statement loads data from an Oracle table into a TimesTen
cache group. The load operation is local. It is not propagated across cache grid

members.

Required privilege

No privilege is required for the cache group owner.

SQL syntax

Parameters

Description

LOAD CACHE GROUP or LOAD ANY CACHE GROUP for another user's cache group.

LOAD CACHE GROUP [Owner.]GroupName
[WHERE ConditionalExpression]

COMMIT EVERY n ROWS
[PARALLEL NumThreads]

or

LOAD CACHE GROUP [Owner.]GroupName

WITH ID (ColumnValueList)

Parameter

Description

[Owner.] GroupName

Name assigned to the cache group.

ConditionalExpression

A search condition to qualify the target rows of the operation.
When using more than one table with columns with the same
name, the table names in subqueries in the WHERE clause of the
LOAD CACHE GROUP statement must be fully qualified.

The number of rows to insert into the cache group before
committing the work. It must be a nonnegative integer. If it is
0, the entire statement is executed as one transaction.

[PARALLEL NumThreads]

Provides parallel loading for cache group tables. Specifies the
number of loading threads to run concurrently. One thread
performs the bulk fetch from Oracle and the other threads
(NumThreads - 1 threads) perform the inserts into TimesTen.
Each thread uses its own connection or transaction.

The minimum value for NumThreads is 2. The maximum
value is 10. If you specify a value greater than 10, TimesTen
assigns the value 10.

WITH ID ColumnValueList

The WITH ID clauses allows you to use primary key values to
load the cache instance. Specify ColumnValueList as either a
list of literals or binding parameters to represent the primary
key values.

= LOAD CACHE GROUP loads all new instances from Oracle that satisfy the cache
group definition and are not yet present in the cache group.

= Before issuing the LOAD CACHE GROUP statement, ensure that the replication
agent is running if the cache group is replicated or is an AWT cache group.

5-154 Oracle TimesTen In-Memory Database SQL Reference

LOAD CACHE GROUP

LOAD CACHE GROUP is executed in its own transaction, and must be the first
operation in a transaction.

For an explicitly loaded cache group, LOAD CACHE GROUP does not update cache
instances that are already present in the TimesTen cache tables. Therefore, LOAD
CACHE GROUP loads only inserts on Oracle tables into the corresponding
TimesTen cache tables.

For a dynamic cache group, LOAD CACHE GROUP loads rows that have been
inserted, updated and deleted on Oracle tables into the cache tables. For more
information about explicitly loaded and dynamic cache groups, see Oracle
In-Memory Database Cache User's Guide.

The transaction size is the number of rows inserted before committing the work.
The value of nin COMMIT EVERY n ROWS must be nonnegative and is rounded
up to the nearest multiple of 256 for performance reasons.

Errors cause a rollback. When rows are committed periodically, errors abort the
remainder of the load. The load is rolled back to the last commit.

If the LOAD CACHE GROUP statement fails when you specify COMMIT EVERY n
ROWS (where n is greater than 0), the content of the target cache group could be in
an inconsistent state since some of the loaded rows are already committed. Some
cache instances may be partially loaded. Use the UNLOAD statement to bring it
back to a consistent state, then load again.

Generally, you do not have to fully qualify the column names in the WHERE clause
of the LOAD CACHE GROUP statement. However, since TimesTen automatically
generates queries that join multiple tables in the same cache group, a column
needs to be fully qualified if there is more than one table in the cache group that
contains columns with the same name.

When loading a read-only cache group:
— The AUTOREFRESH state must be paused.

— The LOAD CACHE GROUP statement cannot have a WHERE clause (except on a
dynamic cache group).

— The cache group must be empty.

If the automatic refresh state of a cache group (explicitly loaded or dynamic) is
PAUSED, the state is changed to ON after a LOAD CACHE GROUP statement that
was issued on the cache group completes.

If the automatic refresh state of a dynamic cache group is PAUSED and the cache
tables are populated, the state remains PAUSED after a LOAD CACHE GROUP
statement that was issued on the cache group completes.

Following the execution of a LOAD CACHE GROUP statement, the ODBC function
SQLRowCount (), the JDBC method getUpdateCount (), and the OCI function
OCIAttrGet () with the OCI_ATTR_ROW_COUNT argument return the number of
cache instances that were loaded.

Use the WITH ID clause as follows:
- Inplace of the WHERE clause for faster loading of the cache instance
- To specify binding parameters

- If you want to roll back the load transaction upon failure

SQL Statements 5-155

LOAD CACHE GROUP

Restrictions

= Do not reference child tables in the WHERE clause.

= Do not specify the PARALLEL clause in the following circumstances:
— With the WITH ID clause
- With the COMMIT EVERY 0 ROWS clause

— When database level locking is enabled (connection attribute LockLevel is
setto 1)

s Donotusethe WITH ID clause when loading these types of cache groups:
- Explicitly loaded read-only cache group
- Explicitly loaded user managed cache group with the autorefresh attribute

- User managed cache group with the AUTOREFRESH and PROPAGATE
attributes

s Do notusethe WITH ID clause with the COMMIT EVERY n ROWS clause.

s TheWITH ID clause cannot be used to acquire a cache instance from another
cache grid member.

Examples

CREATE CACHE GROUP recreation.cache
FROM recreation.clubs (
clubname CHAR(15) NOT NULL,
clubphone SMALLINT,
activity CHAR(18),
PRIMARY KEY (clubname))
WHERE (recreation.clubs.activity IS NOT NULL) ;

LOAD CACHE GROUP recreation.cache
COMMIT EVERY 30 ROWS;

Use the HR schema to illustrate the use of the PARALLEL clause with the LOAD CACHE
GROUP statement. The COMMIT EVERY n ROWS clause (where n is greater than 0) is
required. Issue the CACHEGROUPS command. You see cache group cg2 is defined and
the autorefresh state is paused. Unload cache group cg2, then specify the LOAD
CACHE GROUP statement with the PARALLEL clause to provide parallel loading. You
see 25 cache instances loaded.

Command> CACHEGROUPS;

Cache Group SAMPLEUSER.CG2:
Cache Group Type: Read Only
Autorefresh: Yes
Autorefresh Mode: Incremental
Autorefresh State: Paused

Autorefresh Interval: 1.5 Minutes

Root Table: SAMPLEUSER.COUNTRIES
Table Type: Read Only

Child Table: SAMPLEUSER.LOCATIONS
Table Type: Read Only

Child Table: SAMPLEUSER.DEPARTMENTS

5-156 Oracle TimesTen In-Memory Database SQL Reference

LOAD CACHE GROUP

See also

Table Type: Read Only
1 cache group found.

Command> UNLOAD CACHE GROUP cg2;

25 cache instances affected.

Command> COMMIT;

Command> LOAD CACHE GROUP cg2 COMMIT EVERY 10 ROWS PARALLEL 2;
25 cache instances affected.

Command> COMMIT;

The following example loads only the cache instances for customers whose customer
number is greater than or equal to 5000 into the TimesTen cache tables in the
new_customers cache group from the corresponding Oracle tables:

LOAD CACHE GROUP new_customers WHERE (oratt.customer.cust_num >= 5000) COMMIT
EVERY 256 ROWS;

REFRESH CACHE GROUP
UNLOAD CACHE GROUP

SQL Statements 5-157

MERGE

MERGE

The MERGE statement allows you to select rows from one or more sources for update
or insertion into a target table. You can specify conditions that are used to evaluate
which rows are updated or inserted into the target table.

Use this statement to combine multiple INSERT and UPDATE statements.

MERGE is a deterministic statement: You cannot update the same row of the target
table multiple times in the same MERGE statement.

Required privilege
No privilege is required for the owner of the target table and the source table.

INSERT or UPDATE on a target table owned by another user and SELECT on a source
table owned by another user.

SQL syntax
MERGE INTO [Owner.]TargetTableName [Alias] USING
{[Owner.] SourceTableName| (Subquery) }[Alias] ON (Condtion)
{MergeUpdateClause MergeInsertClause |
MergeInsertClause MergeUpdateClause |
MergeUpdateClause | MergelnsertClause
}
The syntax for MergeUpdateClause is as follows:
WHEN MATCHED THEN UPDATE SET SetClause [WHERE Conditionl]
The syntax for MergeInsertClauseis as follows:
WHEN NOT MATCHED THEN INSERT [Columns [,...]] VALUES
({{Expression | DEFAULT|NULL} [,...] }) [WHERE Condition2]
Parameters
Parameter Description
[Owner.] TargetTableName Name of the target table. This is the table in
which rows are either updated or inserted.
[Alias] You can optionally specify an alias name
for the target or source table.
USING {[Owner.]SourceTableName | The USING clause indicates the table name
(Subguery)} [Alias] or the subquery that is used for the source

of the data. Use a subquery if you want to
use joins or aggregates. Optionally, you can
specify an alias for the table name or the
subquery.

5-158 Oracle TimesTen In-Memory Database SQL Reference

MERGE

Description

Parameter

Description

ON (Condition)

You specify the condition that is used to
evaluate each row of the target table to
determine if the row should be considered
for either a merge insert or a merge update.
If the condition is true when evaluated,
then the MergeUpdateClauseis
considered for the target row using the
matching row from the
SourceTableName. An error is generated
if more than one row in the source table
matches the same row in the target table. If
the condition is not true when evaluated,
then the MergeInsertClauseis
considered for that row.

SET SetClause

Clause used with the UPDATE statement.
For information on the UPDATE statement,
see "UPDATE" on page 5-191.

[WHERE Conditionl]

For each row that matches the ON
(Condition), Conditionl is evaluated.
If the condition is true when evaluated, the
row is updated. You can refer to either the
target table or the source table in this
clause. You cannot use a subquery. The
clause is optional.

INSERT [Columns|[,...]]VALUES

({{Expression |DEFAULT|NULL} [, ...

)

Columns to insert into the target table. For
more information on the INSERT
statement, see "INSERT" on page 5-150.

[WHERE ConditionZ2]

If specified, Condition2 is evaluated. If
the condition is true when evaluated, the
row is inserted into the target table. The
condition can refer to the source table only.
You cannot use a subquery.

= You can specify the MergeUpdateClause and MergeInsertClause together or
separately. If you specify both, they can be in either order.

» If DUAL is the only table specified in the USING clause and it is not referenced
elsewhere in the MERGE statement, specify DUAL as a simple table rather than
using it in a subquery. In this simple case, to help performance, specify a key
condition on a unique index of the target table in the ON clause.

s Restrictions on the MergeUpdateClause:

- You cannot update a column that is referenced in the ON condition clause.

- You cannot update source table columns.

s Restrictions on the MergeInsertClause:

- You cannot insert values of target table columns.

m Other restrictions:

- Do not use the set operators in the subquery of the source table.

— Do not use a subquery in the WHERE condition of either the
MergeUpdateClause or the MergeInsertClause.

— The target table cannot be a detail table of a materialized view.

SQL Statements 5-159

MERGE

Examples

— The RETURNING clause cannot be used in a MERGE statement.

In this example, dual is specified as a simple table. There is a key condition on the
UNIQUE index of the target table specified in the ON clause. The DuplicateBindMode
attribute is set to 1 in this example. (The default is 0.)

Command> CREATE TABLE mergedualex (coll TT_INTEGER NOT NULL,
> col2 TT_INTEGER, PRIMARY KEY (coll));

Command> MERGE INTO mergedualex USING dual ON (coll = :vl)
> WHEN MATCHED THEN UPDATE SET col2 = col2 + 1
> WHEN NOT MATCHED THEN INSERT VALUES (:v1, 1);

Type '?' for help on entering parameter values.

Type '*' to end prompting and abort the command.

Type '-' to leave the parameter unbound.

Type '/;' to leave the remaining parameters unbound and execute the command.

Enter Parameter 1 'V1' (TT_INTEGER) > 10
1 row merged.

Command> SELECT * FROM mergedualex;

< 10, 1 >

1 row found.

In this example, a table called contacts is created with columns employee_id and
manager_id. One row is inserted into the contacts table with values 101 and NULL
for employee_id and manager_id, respectively. The MERGE statement is used to
insert rows into the contacts table using the data in the employees table. A SELECT
FIRST 3 rows is used to illustrate that in the case where employee_idis equal to
101, manager_idis updated to 100. The remaining 106 rows from the employees
table are inserted into the contacts table:

Command> CREATE TABLE contacts (employee_id NUMBER (6) NOT NULL PRIMARY KEY,
> manager_id NUMBER (6));
Command> SELECT employee_id, manager_id FROM employees WHERE employee_id =101;
< 101, 100 >
1 row found.
Command> INSERT INTO contacts VALUES (101,null);
1 row inserted.
Command> SELECT COUNT (*) FROM employees;
< 107 >
1 row found.
Command> MERGE INTO contacts c
USING employees e
ON (c.employee_id = e.employee_id)
WHEN MATCHED THEN
UPDATE SET c.manager_id = e.manager_id
WHEN NOT MATCHED THEN
INSERT (employee_id, manager_id)
VALUES (e.employee_id, e.manager_id);
107 rows merged.
Command> SELECT COUNT (*) FROM contacts;
< 107 >
1 row found.
Command> SELECT FIRST 3 employee_id,manager_id FROM employees;
< 100, <NULL> >
< 101, 100 >
< 102, 100 >
3 rows found.

vV V. V V V V V

5-160 Oracle TimesTen In-Memory Database SQL Reference

MERGE

Command> SELECT FIRST 3 employee_id, manager_id FROM contacts;
< 100, <NULL> >

< 101, 100 >

< 102, 100 >

3 rows found.

SQL Statements 5-161

REFRESH CACHE GROUP

REFRESH CACHE GROUP

The REFRESH CACHE GROUP statement is equivalent to an UNLOAD CACHE GROUP
statement followed by a LOAD CACHE GROUP statement.

Required privilege

s CREATE SESSION on the Oracle schema and SELECT on the Oracle tables.

= No privilege for the cache group is required for the cache group owner.

s REFRESH CACHE GROUP or REFRESH ANY CACHE GROUP for another user's

cache group.

SQL syntax

REFRESH CACHE GROUP [Owner.]GroupName

[WHERE ConditionalExpression]

COMMIT EVERY n ROWS

[PARALLEL NumThreads]

or

REFRESH CACHE GROUP [Owner.]GroupName

WITH ID (ColumnValueList)

Parameters

Parameter Description

[Owner.] GroupName Name assigned to the cache group.

Conditional Expression A search condition to qualify the target rows of the operation.
When using more than one table with columns with the same
name, the table names in subqueries in the WHERE clause of
the REFRESH CACHE GROUP statement must be fully
qualified.

n The number of rows to insert into the cache group before
committing the work. The value must be a nonnegative
integer. If the value is 0, the entire statement is executed as one
transaction.

[PARALLEL NumThreads] Provides parallel loading for cache group tables. Specifies the
number of loading threads to run concurrently. One thread
performs the bulk fetch from Oracle and the other threads
(NumThreads - 1 threads) perform the inserts into TimesTen.
Each thread uses its own connection or transaction.

The minimum value for NumThreads is 2. The maximum
value is 10. If you specify a value greater than 10, TimesTen
assigns the value 10.

WITH ID ColumnValueList TheWITH ID clauses allows you to use primary key values to
refresh the cache instance. Specify ColumnvalueList as
either a list of literals or binding parameters to represent the
primary key values.

Description

s A REFRESH CACHE GROUP statement must be executed in its own transaction.

5-162 Oracle TimesTen In-Memory Database SQL Reference

REFRESH CACHE GROUP

Restrictions

Before issuing the REFRESH CACHE GROUP statement, ensure that the replication
agent is running if the cache group is replicated or is an AWT cache group.

REFRESH CACHE GROUP replaces all or specified cache instances in the TimesTen
cache tables with the most current data from the corresponding Oracle tables even
if an instance is already present in the cache tables. For explicitly loaded cache
groups, a refresh operation is equivalent to an UNLOAD CACHE GROUP statement
followed by a LOAD CACHE GROUP statement. Operations on all rows in the
Oracle tables including inserts, updates, and deletes are applied to the cache
tables. For dynamic cache groups, a refresh operation refreshes only rows that are
updated or deleted on Oracle tables into the cache tables. For more information on
explicitly loaded and dynamic cache groups, see Oracle In-Memory Database Cache
User’s Guide.

When refreshing a read-only cache group:
- The AUTOREFRESH statement must be paused, and

- The REFRESH statement cannot have a WHERE clause unless the cache group is
a dynamic cache group.

If the automatic refresh state of a cache group (dynamic or explicitly loaded) is
PAUSED, the state is changed to ON after an unconditional REFRESH CACHE
GROUP statement issued on the cache group completes.

If the automatic refresh state of a dynamic cache group is PAUSED, the state
remains PAUSED after a REFRESH CACHE GROUP...WITH ID statement
completes.

Generally, you do not have to fully qualify the column names in the WHERE clause
of the REFRESH CACHE GROUP statement. However, since TimesTen
automatically generates queries that join multiple tables in the same cache group,
a column needs to be fully qualified if there is more than one table in the cache
group that contains columns with the same name.

If the REFRESH CACHE GROUP statement fails when you specify COMMIT EVERY
n ROWS (where n is greater than 0), the content of the target cache group could be
in an inconsistent state since some of the loaded rows are already committed.
Some cache instances may be partially loaded. Use the UNLOAD CACHE GROUP
statement to unload the cache group, then use the LOAD CACHE GROUP statement
to reload the cache group.

Following the execution of a REFRESH CACHE GROUP statement, the ODBC
function SQLRowCount (), the JDBC method getUpdateCount (), and the OCI
function OCIAttrGet () with the OCI_ATTR_ROW_COUNT argument return the
number of cache instances that were refreshed.

Use the WITH ID clause:
- Inplace of the WHERE clause for faster refreshing of the cache instance
- To specify binding parameters

- If you want to roll back the refresh transaction upon failure

Do not specify the PARALLEL clause:
- With the WITH ID clause

— With the COMMIT EVERY 0 ROWS clause

SQL Statements 5-163

REFRESH CACHE GROUP

- When database level locking is enabled (connection attribute LockLevel is
setto 1)

= Do not use the WITH ID clause when refreshing these types of cache groups:
- Explicitly loaded read-only cache groups
- Explicitly loaded user managed cache groups with the autorefresh attribute
- User managed cache groups with the autorefresh and propagate attributes

s Do notusethe WITH ID clause with the COMMIT EVERY n ROWS clause.

Examples
REFRESH CACHE GROUP recreation.cache COMMIT EVERY 30 ROWS;

Is equivalent to:

UNLOAD CACHE GROUP recreation.cache;
LOAD CACHE GROUP recreation.cache COMMIT EVERY 30 ROWS;

Use the HR schema to illustrate the use of the PARALLEL clause with the REFRESH
CACHE GROUP statement. The COMMIT EVERY n ROWS (where n is greater than 0) is
required. Issue the CACHEGROUPS command. You see cache group cg2 is defined and
the autorefresh state is paused. Specify the REFRESH CACHE GROUP statement with
the PARALLEL clause to provide parallel loading. You see 25 cache instances refreshed.

Command> CACHEGROUPS;
Cache Group SAMPLEUSER.CG2:

Cache Group Type: Read Only
Autorefresh: Yes

Autorefresh Mode: Incremental
Autorefresh State: Paused
Autorefresh Interval: 1.5 Minutes

Root Table: SAMPLEUSER.COUNTRIES
Table Type: Read Only

Child Table: SAMPLEUSER.LOCATIONS
Table Type: Read Only

Child Table: SAMPLEUSER.DEPARTMENTS
Table Type: Read Only

1 cache group found.
Command> REFRESH CACHE GROUP cg2 COMMIT EVERY 20 ROWS PARALLEL 2;
25 cache instances affected.

See also

ALTER CACHE GROUP
CREATE CACHE GROUP
DROP CACHE GROUP
FLUSH CACHE GROUP
LOAD CACHE GROUP
UNLOAD CACHE GROUP

5-164 Oracle TimesTen In-Memory Database SQL Reference

REFRESH MATERIALIZED VIEW

REFRESH MATERIALIZED VIEW

The REFRESH MATERIALIZED VIEW statement refreshes an asynchronous
materialized view manually.

Required privilege

SQL syntax

Parameters

Description

Examples

See also

Required privilege on the materialized view log tables:

= No privilege is required for the owner of the materialized view log tables.
= SELECT ANY TABLE if not the owner of materialized view log tables.
Required privilege on the materialized view:

= No privilege is required for the owner of the materialized view.

s SELECT ANY TABLE if not the owner of materialized view.

REFRESH MATERIALIZED VIEW ViewName

Parameter Description

ViewName Name of the asynchronous materialized view

This statement refreshes the specified asynchronous materialized view. It is executed
in a separate thread as a separate transaction and committed. The user transaction is
not affected, but the user thread waits for the refresh operation to be completed before
returning to the user. If you have not specified a refresh interval for an asynchronous
materialized view, using this statement is the only way to refresh the view. If you have
specified a refresh interval, you can still use this statement to refresh the view
manually.

Since the refresh operation is always performed in a separate transaction, the refresh
operation does not wait for any uncommitted user transactions to commit. Only the
committed rows are considered for the refresh operation. This is true for the manual
refresh statement as well as the automatic refresh that takes place at regular intervals.

If the CREATE MATERIALIZED VIEW statement for the view specified a FAST refresh,
then the REFRESH MATERIALIZED VIEW statement uses the incremental refresh
method. Otherwise this statement uses the full refresh method.

REFRESH MATERALIZED VIEW bookorders;

CREATE MATERIALIZED VIEW
DROP [MATERIALIZED] VIEW

SQL Statements 5-165

REVOKE

REVOKE

The REVOKE statement removes one or more privileges from a user.

Required privilege
ADMIN to revoke system privileges.

ADMIN or object owner to revoke object privileges.

SQL syntax
REVOKE {SystemPrivilege [, ...] | ALL [PRIVILEGES]} FROM {user \ PUBLIC} [,...]
REVOKE {{ObjectPrivilege [,...] | ALL [PRIVILEGES]} ON {[owner.object}} [,...]
FROM {user | PUBLIC}[,...]

Parameters
The following parameters are for revoking system privileges:
Parameter Description
SystemPrivilege See "System privileges" on page 6-1 for a list of acceptable values.
ALL [PRIVILEGES] Revokes all system privileges from the user.

user Name of the user from whom privileges are being revoked. The
user name must first have been introduced to the TimesTen
database by a CREATE USER statement.

PUBLIC Specifies that the privilege is revoked for all users.

The following parameters are for revoking object privileges:

Parameter Description

ObjectPrivilege See "Object privileges" on page 6-3 for a list of acceptable values.
ALL [PRIVILEGES] Revokes all object privileges from the user.

user Name of the user from whom privileges are to be revoked. The user
name must first have been introduced to the TimesTen database
through a CREATE USER statement.

[owner.]object object is the name of the object on which privileges are being
revoked. owner is the owner of the object. If owner is not specified,
then the user who is revoking the privilege is known as the owner.

PUBLIC Specifies that the privilege is revoked for all users.

Description

= Privileges on objects cannot be revoked from the owner of the objects.

= Any user who can grant a privilege can revoke the privilege even if they were not
the user who originally granted the privilege.

» Privileges must be revoked at the same level they were granted. You cannot
revoke an object privilege from a user who has the associated system privilege.
For example, if you grant SELECT ANY TABLE to a user and then try to revoke

5-166 Oracle TimesTen In-Memory Database SQL Reference

REVOKE

Examples

See also

SELECT ON bob.tablel, the revoke fails unless you have specifically granted
SELECT ON bob.tablel in addition to SELECT ANY TABLE.

s Ifa user has been granted all system privileges, you can revoke a specific
privilege. For example, you can revoke ALTER ANY TABLE from a user who has
been granted all system privileges.

= Ifa user has been granted all object privileges, you can revoke a specific privilege
on a specific object from the user. For example, you can revoke the DELETE
privilege on table customers from user terry even if terry has previously
been granted all object privileges.

= You can revoke all privileges from a user even if the user has not previously been
granted all privileges.

= You cannot revoke a specific privilege from a user who has not been granted the
privilege.

= You cannot revoke privileges on objects owned by a user.
= You cannot revoke system privileges and object privileges in the same statement.
= You can specify only one object in an object privilege statement.

= Revoking the SELECT privilege on a detail table or a system privilege that
includes the SELECT privilege from user2 on a detail table owned by user1l
causes associated materialized views owned by user2 to be marked invalid. See
"Invalid materialized views" on page 5-77.

Revoke the ADMIN and DDL privileges from the user terry:

REVOKE admin, ddl FROM terry;

Assuming the revoker has ADMIN privilege, revoke the UPDATE privilege from terry
on the customers table owned by pat:

REVOKE update ON pat.customers FROM terry;

ALTER USER

CREATE USER

DROP USER

GRANT

"The PUBLIC role" on page 6-5

SQL Statements 5-167

ROLLBACK

ROLLBACK

Use the ROLLBACK statement to undo work done in the current transaction.

Required privilege

SQL syntax

Parameters

Description

Examples

See also

None

ROLLBACK [WORK]

The ROLLBACK statement allows the following optional keyword:

Parameter Description

[WORK] Optional clause supported for compliance with the SQL standard.
ROLLBACK and ROLLBACK WORK are equivalent.

When the PassThrough connection attribute is specified with a value greater than
zero, the Oracle transaction will also be rolled back.

A rollback closes all open cursors.

Insert a row into the regions table of the HR schema and then roll back the
transaction. First set AUTOCOMMIT to O:

Command> SET AUTOCOMMIT 0;
Command> INSERT INTO regions VALUES (5, 'Australia');
1 row inserted.

Command> SELECT * FROM regions;
1, Europe >

2, Americas >

3, Asia >

4, Middle East and Africa >
5, Australia >

rows found.

Command> ROLLBACK;

Command> SELECT * FROM regions;
< 1, Europe >

< 2, Americas >

< 3, Asia >

< 4, Middle East and Africa >
4 rows found.

U A A A A A

COMMIT

5-168 Oracle TimesTen In-Memory Database SQL Reference

SELECT

SELECT

The SELECT statement retrieves data from one or more tables. The retrieved data is
presented in the form of a table that is called the result table, result set, or query result.

Required privilege
No privilege is required for the object owner.

SELECT for another user's object.

SELECT. . .FOR UPDATE also requires UPDATE privilege for another user's object.

SQL syntax
The general syntax for a SELECT statement is the following:

SELECT [FIRST NumRows ‘ ROWS m TO n] [ALL ‘ DISTINCT] SelectList
FROM TableSpec [,...]
[WHERE SearchCondition]
[GROUP BY Expression [,...]]
[HAVING SearchCondition]
[ORDER BY {ColumnID|ColumnAlias|Expression} [ASC | DESC]]
[,...]

[FOR UPDATE [OF [[Owner.]TableName.]ColumnName [,...]]
[NOWAIT | WAIT Seconds]]

The syntax for a SELECT statement that contains the set operators UNION, UNION
ALL, MINUS, or INTERSECT is as follows:

SELECT [ROWS m TO n] [ALL] SelectList
FROM TableSpec [,...]
[WHERE SearchCondition]
[GROUP BY Expression [,...]]
[HAVING SearchCondition] [,...]
{UNION [ALL] | MINUS | INTERSECT}
SELECT [ROWS m TO n] [ALL] SelectList
FROM TableSpec [,...]
[WHERE SearchCondition]
[GROUP BY Expression [,...]]
[HAVING SearchCondition] [,...]
[ORDER BY {ColumnID|ColumnAlias|Expression} [ASC | DESC]]

Parameters

Parameter Description

FIRST NumRows Specifies the number of rows to retrieve. NumRows must be either a
positive INTEGER value or a dynamic parameter placeholder. The
syntax for a dynamic parameter placeholder is either ? or
:DynamicParameter. The value of the dynamic parameter is
supplied when the statement is executed.

SQL Statements 5-169

SELECT

Parameter

Description

ROWS mTO n

Specifies the range of rows to retrieve where mis the first row to be

selected and n is the last row to be selected. Row counting starts at

row 1. The query SELECT ROWS 1 TO nreturns the same rows as
SELECT FIRST NumRows assuming the queries are ordered and n

and NumRows have the same value.

Use either a positive INTEGER value or a dynamic parameter
placeholder for m and n values. The syntax for a dynamic parameter
placeholder is either ? or :DynamicParameter. The value of the
dynamic parameter is supplied when the statement is executed.

ALL

Prevents elimination of duplicate rows from the query result. If
neither ALL nor DISTINCT is specified, ALL is the default.

DISTINCT

Ensures that each row in the query result is unique. All NULL values
are considered equal for this comparison. Duplicate rows are not
evaluated.

SelectList

Specifies how the columns of the query result are to be derived. The
syntax of select list is presented under "SelectList" on page 5-179.

FROM TableSpec

Identifies the tables referenced in the SELECT statement. The
maximum number of tables per query is 24.

TableSpec identifies a table from which rows are selected. The table
can be a derived table, which is the result of a SELECT statement in
the FROM clause. The syntax of TableSpec is presented under
"TableSpec" on page 5-182.

WHERE
SearchCondition

The WHERE clause determines the set of rows to be retrieved.
Normally, rows for which SearchConditionis FALSE or NULL are
excluded from processing, but SearchCondi tion can be used to
specify an outer join in which rows from an outer table that do not
have SearchCondition evaluated to TRUE with respect to any rows
from the associated inner table are also returned, with projected
expressions referencing the inner table set to NULL.

The unary (+) operator may follow some column and ROWID
expressions to indicate an outer join. The (+) operator must follow all
column and ROWID expressions in the join conditions that refer to the
inner table. There are several conditions on the placement of the (+)
operator. These generally restrict the type of outer join queries that
can be expressed. The (+) operator may appear in WHERE clauses but
not in HAVING clauses. Two tables cannot be outer joined together. An
outer join condition cannot be connected by OR.

See Chapter 4, "Search Conditions" for more information on search
conditions.

GROUP BY

Expression [,...

The GROUP BY clause identifies one or more expressions to be used
for grouping when aggregate functions are specified in the select list
and when you want to apply the function to groups of rows.

The expression can be of various complexities. For example, it can
designate single or multiple columns. It can include aggregate
functions, arithmetic operations, the ROWID pseudocolumn, or NULL.
It can also be a date or user function, a constant, or a dynamic
parameter.

When you use the GROUP BY clause, the select list can contain only
aggregate functions and columns referenced in the GROUP BY clause.
If the select list contains the construct *, TableName. *, or

Owner . TableName. *, then the GROUP BY clause must contain all
columns that the * includes. NULL values are considered equivalent in
grouping rows. If all other columns are equal, all NULL values in a
column are placed in a single group.

If the GROUP BY clause is omitted, the entire query result is treated as
one group.

5-170 Oracle TimesTen In-Memory Database SQL Reference

SELECT

Parameter

Description

HAVING

The HAVING clause can be used in a SELECT statement to filter groups
of an aggregate result. The existence of a HAVING clause in a SELECT
statement turns the query into an aggregate query. All columns
referenced outside the sources of aggregate functions in any clause
except the WHERE clause must be included in the GROUP BY clause.

Subqueries can be specified in the HAVING clause.

A simple join (also called an inner join) returns a row for each pair of
rows from the joined tables that satisfy the join condition specified in
SearchCondi tion. Outer joins are an extension of this operator in
which all rows of the outer table are returned, whether or not
matching rows from the joined inner table are found. In the case no
matching rows are found, any projected expressions referencing the
inner table are given the value NULL.

ORDER BY

Sorts the query result rows in order by specified columns or
expressions. Specify the sort key columns in order from major sort key
to minor sort key. For each column, you can specify whether the sort
order is to be ascending or descending. If neither ASC (ascending) nor
DESC (descending) is specified, ascending order is used. All character
data types are sorted according to the current value of the NLS_SORT
session parameter.

The ORDER BY clause supports column aliases, which can be
referenced only in an ORDER BY clause. A single query may declare
several column aliases with the same name, but any reference to that
alias results in an error.

ColumnID

Must correspond to a column in the select list. You can identify a
column to be sorted by specifying its name or its ordinal number. The
first column in the select list is column number 1. It is better to use a
column number when referring to columns in the select list if they are
not simple columns. Some examples are aggregate functions,
arithmetic expressions, and constants.

A ColumnIDin the ORDER BY clause has this syntax:

{ColumnNumber | [[Owner.] TableName.] ColumnName}

ColumnAlias

Used in an ORDER BY clause, the column alias must correspond to a
column in the select list. The same alias can identify multiple columns.

{* | [Owner.]TableName.* |
{Expression | [[Owner.]TableName.]ColumnName |
[[Owner.] TableName.]ROWID

}
[[AS] ColumnAlias]} [,...]

SQL Statements 5-171

SELECT

Parameter

Description

FOR UPDATE
[OF [[Owner.]
TableName.]

ColumnName

[,...11

[NOWAIT | WAIT
Seconds]

FOR UPDATE

FOR UPDATE maintains a lock on an element (usually a row)
until the end of the current transaction, regardless of isolation. All
other transactions are excluded from performing any operation
on that element until the transaction is committed or rolled back.

FOR UPDATE may be used with joins and the ORDER BY, GROUP
BY, and DISTINCT clauses. Update locks are obtained on either
tables or rows, depending on the table/row locking method
chosen by the optimizer.

Rows from all tables that satisfy the WHERE clause are locked in
UPDATE mode unless the FOR UPDATE OF clause is specified.
This clause specifies which tables to lock.

If using row locks, all qualifying rows in all tables from the table
list in the FROM clause are locked in update mode. Qualifying
rows are those rows that satisfy the WHERE clause. When table
locks are used, the table is locked in update mode whether or not
there are any qualifying rows.

If the serializable isolation level and row locking are enabled,
nonqualifying rows are downgraded to Shared mode. If a
read-committed isolation level and row locking are turned on,
nonqualifying rows are unlocked.

SELECT. . .FOR UPDATE locks are not blocked by SELECT locks.

FOR UPDATE [OF [[Owner.]TableName.]ColumnName [,...] |

This mode optionally includes the name of the column or
columns in the table to be locked for update.

[NOWAIT | WAIT Seconds]

This specifies how to proceed if the selected rows are locked. It
does not apply to table-level locks or database-level locks.

NOWAIT specifies that there is no waiting period for locks. An
error is returned if the lock is not available.

WAIT Seconds specifies the lock timeout setting.

An error is returned if the lock is not obtained in the specified
amount of time.

The lock timeout setting is expressed in seconds or fractions of
second. The data type for Seconds is NUMBER. Values between
0.0 and 1000000.0 are valid.

If neither NOWAIT nor WAIT is specified, the lock timeout interval
for the transaction is used.

5-172 Oracle TimesTen In-Memory Database SQL Reference

SELECT

Description

Parameter Description

{UNION [ALL]

SelectQueryl Specifies that the results of SelectQueryl and SelectQuery2 are

| to be combined, where SelectQueryl and SelectQuery?2 are
general SELECT statements with some restrictions.

MINUS |
INTERSECT} The UNION operator combines the results of two queries where the
Selectouery2 SelectList is compatible. If UNION ALL is specified, duplicate

rows from both SELECT statements are retained. Otherwise,
duplicates are removed.

The MINUS operator combines rows returned by the first query but
not by the second into a single result.

The INTERSECT operator combines only those rows returned by both
queries into a single result.

The data type of corresponding selected entries in both SELECT
statements must be compatible. One type can be converted to the
other type using the CAST operator. Nullability does not need to
match.

The length of a column in the result is the longer length of
correspondent selected values for the column. The column names of
the final result are the column names of the leftmost select.

You can combine multiple queries using the set operators UNION,
UNION ALL,MINUS, and INTERSECT.

One or both operands of a set operator can be a set operator. Multiple
or nested set operators are evaluated from left to right.

The set operators can be mixed in the same query.

Restrictions on the SELECT statement that specify the set operators are
as follows:

= Neither SELECT statement can specify FIRST NumRows.

= ORDER BY can be specified to sort the final result but cannot be
used with any individual operand of a set operator. Only column
names of tables or column alias from the leftmost SELECT
statement can be specified in the ORDER BY clause.

= GROUP BY can be used to group an individual SELECT operand
of a set operator but cannot be used to group a set operator result.

» The set operators cannot be used in materialized view or a joined
table.

When you use a correlation name, the correlation name must conform to the
syntax rules for a basic name. (See "Basic names" on page 2-1.) All correlation
names within one SELECT statement must be unique. Correlation names are
useful when you join a table to itself. Define multiple correlation names for the
table in the FROM clause and use the correlation names in the select list and the
WHERE clause to qualify columns from that table. See "TableSpec" on page 5-182
for more information about correlation names.

SELECT. ..FOR UPDATE is supported in a SELECT statement that specifies a
subquery, but it can be specified only in the outermost query.

If your query specifies either FIRST NumRows or ROWS m TO n, ROWNUM may
not be used to restrict the number of rows returned.

FIRST NumRows and ROWS m TO ncannot be used together in the same SELECT
statement.

SQL Statements 5-173

SELECT

Examples

This example shows the use of a column alias (max_salary) in the SELECT
statement:

SELECT MAX (salary) AS max_salary

FROM employees

WHERE employees.hiredate > '2000-01-01 00:00:00"';

< 10500 >

1 row found.

This example uses two tables, orders and lineitems.

The orders table and 1ineitems table are created as follows:

CREATE TABLE orders (orderno INTEGER, orderdate DATE, customer CHAR(20));

CREATE TABLE lineitems (orderno INTEGER, lineno INTEGER,
gty INTEGER, unitprice DECIMAL(10,2));

Thus for each order, there is one record in the orders table and a record for each line
of the order in 1ineitems.

To find the total value of all orders entered since the beginning of the year, use the
HAVING clause to select only those orders that were entered on or after January 1,
2000:

SELECT o.orderno, customer, orderdate, SUM(gty * unitprice)
FROM orders o, lineitems 1

WHERE o.orderno=1.orderno

GROUP BY o.orderno, customer, orderdate

HAVING orderdate >= DATE '2000-01-01"';

Consider this query:

SELECT * FROM tablea, tableb
WHERE tablea.columnl = tableb.columnl AND tableb.column2 > 5
FOR UPDATE;

The query locks all rows in tablea where:

= tablea.columnl equals at least one tableb.columnl value where
tableb.column2 is greater than 5.

The query also locks all rows in tableb where:

= tableb.column?2 is greater than 5.

= tableb.columnl equals at least one tablea.columnl value.
If no WHERE clause is specified, all rows in both tables are locked.
This example demonstrates the (+) join operator:

SELECT * FROM tl, t2

WHERE tl.x = t2.x(+);

The following query returns an error because an outer join condition cannot be
connected by OR:

SELECT * FROM tl, t2, t3

WHERE tl.x = t2.x(+) OR t3.y = 5;

The following query is valid:

SELECT * FROM tl, t2, t3

5-174 Oracle TimesTen In-Memory Database SQL Reference

SELECT

WHERE tl.x = t2.x(+) AND (t3.y = 4 OR t3.y = 5);

A condition cannot use the IN operator to compare a column marked with (+). For
example, the following query returns an error:

SELECT * FROM tl, t2, t3
WHERE tl.x = t2.x(+) AND t2.y(+) IN (4,5);

The following query is valid:

SELECT * FROM tl, t2, t3
WHERE tl.x = t2.x(+) AND tl.y IN (4,5);

The following query results in an inner join. The condition without the (+) operator is
treated as an inner join condition:

SELECT * FROM tl, t2
WHERE tl.x = t2.x(+) AND tl.y = t2.vy;

In the following query, the WHERE clause contains a condition that compares an inner
table column of an outer join with a constant. The (+) operator is not specified and
hence the condition is treated as an inner join condition.

SELECT * FROM tl, t2
WHERE tl.x = t2.x(+) AND t2.y = 3;

For more join examples, see "JoinedTable" on page 5-184.
This example returns the current sequence value in the student table:

SELECT SEQ.CURRVAL FROM student;

The following query produces a derived table because it contains a SELECT statement
in the FROM clause:

SELECT * FROM tl, (SELECT MAX(x2) maxx2 FROM t2) tab2
WHERE tl.x1 = tab2.maxx2;

The following query joins the results of two SELECT statements:

SELECT * FROM tl

WHERE x1 IN (SELECT x2 FROM t2)
UNION

SELECT * FROM tl

WHERE x1 IN (SELECT x3 FROM t3);

Select all orders that have the same price as the highest price in their category:

SELECT * FROM orders WHERE price = (SELECT MAX (price)
FROM stock WHERE stock.cat=orders.cat);

The next example illustrates the use of the INTERSECT set operator. There is a
department_id value in the employees table that is NULL. In the departments
table, the department_idis defined as a NOT NULL primary key. The rows returned
from using the INTERSECT set operator do not include the row in the departments
table whose department_id value is NULL.

Command> SELECT department_id FROM employees INTERSECT SELECT department_id
> FROM departments;

10

20

30

40

AN N N A
vV V. VvV VvV

SQL Statements 5-175

SELECT

50
60
70
80
90
100 >

110 >

11 rows found.

Command> SELECT DISTINCT department_id FROM employees;
10 >

20
30
40
50
60
70
80
90
100 >

110 >
<NULL> >

12 rows found.

AN N AN AN AN AN A
V V. V V V

AN NN AN AN AN AN AN AN AN ANA
V V.V V V V V V

The next example illustrates the use of the MINUS set operator by combining rows
returned by the first query but not the second. The row containing the NULL
department_id value in the employees table is the only row returned.

Command> SELECT department_id FROM employees

> MINUS SELECT department_id FROM departments;
< <NULL> >
1 row found.

The following example sums the salaries for employees in the employees table and
uses the SUBSTR expression to group the data by job function.

Command> SELECT SUBSTR (job_id, 4,10), SUM (salary) FROM employees
> GROUP BY SUBSTR (job_id,4,10);

PRES, 24000 >

VP, 34000 >

PROG, 28800 >

MGR, 24000 >

ACCOUNT, 47900 >

MAN, 121400 >

CLERK, 133900 >

REP, 273000 >

ASST, 4400 >

rows found.

O A A AN AN AN AN AN ANA

The following example illustrates the use of the SUBSTR expression in a GROUP BY
clause and the use of a subquery in a HAVING clause. The first 10 rows are returned.

Command> SELECT ROWS 1 TO 10 SUBSTR (job_id, 4,10), department_id, manager_id,
SUM (salary) FROM employees

GROUP BY SUBSTR (job_id,4,10),department_id, manager_id

HAVING (department_id, manager_id) IN

(SELECT department_id, manager_id FROM employees X

WHERE x.department_id = employees.department_id)

ORDER BY SUBSTR (job_id, 4,10),department_id,manager_id;

< ACCOUNT, 100, 108, 39600 >

< ACCOUNT, 110, 205, 8300 >

< ASST, 10, 101, 4400 >

V V.V V V V

5-176 Oracle TimesTen In-Memory Database SQL Reference

SELECT

CLERK, 30, 114, 13900
CLERK, 50, 120, 22100
CLERK, 50, 121, 25400
CLERK, 50, 122, 23600
CLERK, 50, 123, 25900
CLERK, 50, 124, 23000
MAN, 20, 100, 13000 >
0 rows found.

V V. V V VvV V

= A A AN AN AN AN A

The following example locks the employees table for update and waits 10 seconds for
the lock to be available. An error is returned if the lock is not acquired in 10 seconds.
The first five rows are selected.

Command> SELECT FIRST 5 last_name FROM employees FOR UPDATE WAIT 10;
King >

Kochhar >

De Haan >

Hunold >

Ernst >

rows found.

U A A A A A

The next example locks the departments table for update. If the selected rows are
locked by another process, an error is returned if the lock is not available. This is
because NOWAIT is specified.

Command> SELECT FIRST 5 last_name e FROM employees e, departments d
> WHERE e.department_id = d.department_id
> FOR UPDATE OF d.department_id NOWAIT;

Whalen >

Hartstein >

Fay >

Raphaely >

Khoo >

rows found.

u A A A A A

Use the HR schema to illustrate the use of a subquery with the FOR UPDATE clause:

Command> SELECT employee_id, job_id FROM job_history
> WHERE (employee_id, job_id) NOT IN (SELECT employee_id, job_id
> FROM employees)
> FOR UPDATE;

101, AC_ACCOUNT >

101, AC_MGR >

102, IT_PROG >

114, ST CLERK >

122, ST _CLERK >

176, SA_MAN >

200, AC_ACCOUNT >

201, MK_REP >

rows found.

o A A AN AN AN AN AN A

Use a dynamic parameter placeholder for SELECT ROWS m TO nand SELECT
FIRST:

Command> SELECT ROWS ? TO ? employee_id FROM employees;
Type '?' for help on entering parameter values.
Type '*' to end prompting and abort the command.

Type '-' to leave the parameter unbound.
Type '/;' to leave the remaining parameters unbound and execute the command.

SQL Statements 5-177

SELECT

Enter Parameter 1 (TT_INTEGER) > 1
Enter Parameter 2 (TT_INTEGER) > 3
< 100 >
< 101 >
< 102 >

3 rows found.
Command> SELECT ROWS :a TO :b employee_id FROM employees;

Type '?' for help on entering parameter values.

Type '*' to end prompting and abort the command.

Type '-' to leave the parameter unbound.

Type '/;' to leave the remaining parameters unbound and execute the command.

Enter Parameter 1 (TT_INTEGER) > 1

Enter Parameter 2 (TT_INTEGER) > 3

< 100 >

< 101 >

< 102 >

3 rows found.

Command> SELECT FIRST ? employee_id FROM employees;

Type '?' for help on entering parameter values.

Type '*' to end prompting and abort the command.

Type '-' to leave the parameter unbound.

Type '/;' to leave the remaining parameters unbound and execute the command.

Enter Parameter 1 (TT_INTEGER) > 3
< 100 >

< 101 >

< 102 >

3 rows found.

5-178 Oracle TimesTen In-Memory Database SQL Reference

SELECT

SelectList

SQL syntax

Parameters

Description

The SelectList parameter of the SELECT statement has the following syntax:

{* | [Owner.]TableName.* |
{ Expression | [[Owner.]TableName.]ColumnName |
[[Owner.] TableName.]ROWID | NULL

}
[[AS] ColumnAlias] } [,...]

The SelectList parameter of the SELECT statement has the following parameters:

Parameter Description

* Includes, as columns of the query result, all columns of all tables
specified in the FROM clause.

[Owner.] TableName.* Includes all columns of the specified table in the result.

Expression An aggregate query includes a GROUP BY clause or an aggregate
function.

When the select list is not an aggregate query, the column reference
must reference a table in the FROM clause.

A column reference in the select list of an aggregate query must
reference a column list in the GROUP BY clause. If there is no
GROUP BY clause, then the column reference must reference a table
in the FROM clause.

[[Owner.] Table.] Includes a particular column from the named owner's indicated

ColumnName table. You can also specify the CURRVAL or NEXTVAL column of a
sequence.

[[Owner.] Table.] Includes the ROWID pseudocolumn from the named owner's

ROWID indicated table.

NULL When NULL is specified, the default for the resulting data type is

VARCHAR (0) . You can use the CAST function to convert the result
to a different data type. NULL can be specified in the ORDER BY
clause.

ColumnAlias Used in an ORDER BY clause, the column alias must correspond to
a column in the select list. The same alias can identify multiple
columns.

{*| [Owner.] TableName. * |
{Expression | [[Owner.] TableName.] ColumnName |
[[Owner.] TableName.]ROWID
}
[[AS] ColumnAlias]l} [,...]

= The clauses must be specified in the order given in the syntax diagram.
= TimesTen does not support subqueries in the select list

= Aresult column in the select list can be derived in any of the following ways:

SQL Statements 5-179

SelectList

Examples

— Aresult column can be taken directly from one of the tables listed in the FROM
clause.

— Values in a result column can be computed, using an arithmetic expression,
from values in a specified column of a table listed in the FROM clause.

- Values in several columns of a single table can be combined in an arithmetic
expression to produce the result column values.

- Aggregate functions (AVG, MAX, MIN, SUM, and COUNT) can be used to compute
result column values over groups of rows. Aggregate functions can be used
alone or in an expression. You can specify aggregate functions containing the
DISTINCT option that operate on different columns in the same table. If the
GROUP BY clause is not specified, the function is applied over all rows that
satisfy the query. If the GROUP BY clause is specified, the function is applied
once for each group defined by the GROUP BY clause. When you use
aggregate functions with the GROUP BY clause, the select list can contain
aggregate functions, arithmetic expressions, and columns in the GROUP BY
clause.

- Aresult column containing a fixed value can be created by specifying a
constant or an expression involving only constants.

» In addition to specifying how the result columns are derived, the select list also
controls their relative position from left to right in the query result. The first result
column specified by the select list becomes the leftmost column in the query result,
and so on.

= Result columns in the select list are numbered from left to right. The leftmost
column is number 1. Result columns can be referred to by column number in the
ORDER BY clause. This is especially useful if you want to refer to a column
defined by an arithmetic expression or an aggregate.

= Tojoin a table with itself, define multiple correlation names for the table in the
FROM clause and use the correlation names in the select list and the WHERE clause
to qualify columns from that table.

= When you use the GROUP BY clause, one answer is returned per group in
accordance with the select list, as follows:

— The WHERE clause eliminates rows before groups are formed.
- The GROUP BY clause groups the resulting rows.

— The select list aggregate functions are computed for each group.

In this example, one value, the average number of days you wait for a part, is returned
by the statement:

SELECT AVG(deliverydays)
FROM purchasing.supplyprice;
The part number and delivery time for all parts that take fewer than 20 days to deliver

are returned by the following statement:

SELECT partnumber, deliverydays
FROM purchasing.supplyprice
WHERE deliverydays < 20;

Multiple rows may be returned for a single part.

5-180 Oracle TimesTen In-Memory Database SQL Reference

SELECT

The part number and average price of each part are returned by the following
statement:

SELECT partnumber, AVG(unitprice)
FROM purchasing.supplyprice
GROUP BY partnumber;

In the following example, the join returns names and locations of California suppliers.
Rows are returned in ascending order by partnumber values. Rows containing
duplicate part numbers are returned in ascending order by vendorname values. The
FROM clause defines two correlation names (v and s), which are used in both the select
list and the WHERE clause. The vendornumber column is the only common column
between vendors and supplyprice.

SELECT partnumber, vendorname, s.vendornumber,vendorcity

FROM purchasing.supplyprice s, purchasing.vendors v

WHERE s.vendornumber = v.vendornumber AND vendorstate = 'CA'
ORDER BY partnumber, vendorname;

The following query joins table purchasing.parts to itself to determine which
parts have the same sales price as the part whose serial number is '1133-P-01".

SELECT g.partnumber, g.salesprice
FROM purchasing.parts p, purchasing.parts g
WHERE p.salesprice = g.salesprice AND p.serialnumber = '1133-P-01';

The next example shows how to retrieve the rowid of a specific row. The retrieved
rowid value can be used later for another SELECT, DELETE, or UPDATE statement.

SELECT rowid
FROM purchasing.vendors
WHERE vendornumber = 123;

The following example shows how to use a column alias to retrieve data from the table
employees.

SELECT max(salary) AS max_salary FROM employees;

SQL Statements 5-181

TableSpec

TableSpec

SQL syntax
The TableSpec parameter of the SELECT statement has the following syntax:
{[Owner.] TableName [CorrelationName] | JoinedTable \ DerivedTable}
A simple table specification has the following syntax:
[Owner.] TableName
Parameters

The TableSpec parameter of the SELECT statement has the following parameters:

Parameter Description

[Owner.] TableName Identifies a table to be referenced.

CorrelationName CorrelationName specifies an alias for the immediately
preceding table. When accessing columns of that table elsewhere in
the SELECT statement, use the correlation name instead of the
actual table name within the statement. The scope of the correlation
name is the SQL statement in which it is used. The correlation
name must conform to the syntax rules for a basic name. See "Basic
names" on page 2-1.

All correlation names within one statement must be unique.

DerivedTable Specifies a table derived from the evaluation of a SELECT
statement. No FIRST NumRows or ROWS m TO n clauses are
allowed in this SELECT statement.

JoinedTable Specifies the query that defines the table join. The syntax of
JoinedTable is presented under "JoinedTable" on page 5-184.

5-182 Oracle TimesTen In-Memory Database SQL Reference

SELECT

DerivedTable

A derived table is the result of a SELECT statement in the FROM clause, with an alias.

SQL syntax

The syntax for DerivedTable is as follows:

(Subquery) [CorrelationName]

Parameters

The DerivedTable parameter of the TableSpec clause of a SELECT statement has
the following parameters:

Parameter Description

Subquery For information on subqueries, see "Subqueries" on page 3-6.

CorrelationName Optionally use CorrelationName to specify an alias for the
derived table. It must be different from any table name referenced
in the query.

Description

When using a derived table, these restrictions apply:

s The DUAL table can be used in a SELECT statement that references no other tables,
but needs to return at least one row. Selecting from DUAL is useful for computing a
constant expression with the SELECT statement. Because DUAL has only one row,
the constant is returned only once.

» Subguery cannot refer to a column from another derived table.
= A derived table cannot be used as a source of a joined table.

= A derived table cannot be used as a target of a DELETE or UPDATE statement.

SQL Statements 5-183

JoinedTable

JoinedTable

The JoinedTable parameter specifies a table derived from CROSS JOIN, INNER
JOIN, LEFT OUTER JOIN or RIGHT OUTER JOIN.

SQL syntax

The syntax for JoinedTableis as follows:

{CrossJoin | QualifiedJoin}

Where CrossJoinis:

TableSpecl CROSS JOIN TableSpec2

And QualifiedJoinis:

TableSpecl [JoinType] JOIN TableSpec2 ON SearchCondition

In the QualifiedJoin parameter, JoinType syntax is as follows:

{INNER | LEFT [OUTER] | RIGHT [OUTER]}

Parameters

The JoinedTable parameter of the TabIleSpec clause of a SELECT statement has
the following parameters:

Parameter Description

CrossJoin Performs a cross join on two tables. A cross join returns a result
table that is the cartesian product of the input tables. The result is
the same as that of a query with the following syntax:

SELECT Selectlist FROM Tablel, Table2

QualifiedJoin Specifies that the join is of type JoinType.

TableSpecl Specifies the first table of the JOIN clause.

TableSpec2 Specifies the second table of the JOIN clause.

JoinType JOIN Specifies the type of join to perform. These are the supported join
types:
[] INNER

] LEFT [OUTER]
] RIGHT [OUTER]

INNER JOIN returns a result table that combines the rows from
two tables that meet SearchCondition.

LEFT OUTER JOIN returns join rows that match
SearchCondition and rows from the first table that do not have
SearchCondition evaluated as true with any row from the
second table.

RIGHT OUTER JOIN returns join rows that match
SearchCondition and rows from the second table that do not
have SearchCondition evaluated as true with any row from the
first table.

ON SearchCondition Specifies the search criteria to be used in a JOIN parameter.
SearchCondi tion can refer only to tables referenced in the
current qualified join.

5-184 Oracle TimesTen In-Memory Database SQL Reference

SELECT

Description
s FULL OUTER JOIN is not supported.

= A joined table can be used to replace a table in a FROM clause anywhere except in a
statement that defines a materialized view. Thus, a joined table can be used in
UNION, MINUS, INTERSECT, a subquery, a nonmaterialized view, or a derived
table.

= A subquery cannot be specified in the operand of a joined table. For example, the
following statement is not supported:

SELECT * FROM
regions INNER JOIN (SELECT * FROM countries) table2
ON regions.region_id=table2.region_id;

= A view can be specified as an operand of a joined table.
= A temporary table cannot be specified as an operand of a joined table.

= OUTER JOIN can be specified in two ways, either using the (+) operator in
SearchCondition of the WHERE clause or using a JOIN table operation. The two
specification methods cannot coexist in the same statement.

= Join order and grouping can be specified with a JoinedTable operation, but they
cannot be specified with the (+) operator. For example, the following operation
cannot be specified with the (+) operator:

t LEFT JOIN (t2 INNER JOIN t3 ON x2=x3) ON (x1 = x2 - x3)

Examples

These examples use the regions and countries tables from the HR schema.
Perform a left outer join:

SELECT * FROM regions LEFT JOIN countries
ON regions.region_id=countries.region_id
WHERE regions.region_id=3;

3, Asia, JP, Japan, 3 >

3, Asia, CN, China, 3 >

3, Asia, IN, India, 3 >

3, Asia, AU, Australia, 3 >
3, Asia, SG, Singapore, 3 >
3, Asia, HK, HongKong, 3 >
rows found.

A A AN AN A A

You can also perform a left outer join with the (+) operator, as follows.

SELECT * FROM regions, countries
WHERE regions.region_id=countries.region_id (+)
AND regions.region_id=3;

For more examples of joins specified with the (+) operator, see "Examples" on
page 5-174.
The following performs a right outer join:

SELECT * FROM regions RIGHT JOIN countries
ON regions.region_id=wountries.region_id
WHERE regions.region_id=3;

< AU, Australia, 3, 3, Asia >

SQL Statements 5-185

JoinedTable

CN, China, 3, 3, Asia >

HK, HongKong, 3, 3, Asia >
IN, India, 3, 3, Asia >

JP, Japan, 3, 3, Asia >

SG, Singapore, 3, 3, Asia >
rows found.

o A A A AN A

The next example performs a right outer join with the (+) operator:

SELECT * FROM countries, regions
WHERE regions.region_id (+)=countries.region_id
AND countries.region_id=3;

JP, Japan, 3, 3, Asia >

CN, China, 3, 3, Asia >

IN, India, 3, 3, Asia >

AU, Australia, 3, 3, Asia >

SG, Singapore, 3, 3, Asia >

HK, HongKong, 3, 3, Asia >

rows found.

oA A AN AN A A

Note that the right join methods produce the same rows but in a different display
order. There should be no expectation of row order for join results.

The following performs an inner join:

SELECT * FROM regions INNER JOIN countries
ON regions.region_id=countries.region_id
WHERE regions.region_id=2;

2, Americas, US, United States of America, 2 >
2, Americas, CA, Canada, 2 >

2, Americas, BR, Brazil, 2 >

2, Americas, MX, Mexico, 2 >

2, Americas, AR, Argentina, 2 >

rows found.

U A A A A A

The next example performs a cross join:

SELECT * FROM regions CROSS JOIN countries
WHERE regions.region_id=1;

< 1, Europe, AR, Argentina, 2 >

< 1, Europe, AU, Australia, 3 >

< 1, Europe, BE, Belgium, 1 >

< 1, Europe, BR, Brazil, 2 >

< 1, Europe, SG, Singapore, 3 >

< 1, Europe, UK, United Kingdom, 1 >

< 1, Europe, US, United States of America, 2 >
< 1, Europe, ZM, Zambia, 4 >

< 1, Europe, ZW, Zimbabwe, 4 >

25 rows found.

See also
CREATE TABLE
INSERT
INSERT...SELECT
UPDATE

5-186 Oracle TimesTen In-Memory Database SQL Reference

TRUNCATE TABLE

TRUNCATE TABLE

Required privilege

No privilege is required for the table owner.

SQL syntax

Parameters

Description

The TRUNCATE TABLE statement is similar to a DELETE statement that deletes all
rows. However, it is faster than DELETE in most circumstances, as DELETE removes
each row individually.

DELETE for another user's table.

TRUNCATE TABLE [Owner.]TableName

Parameter Description

[Owner.] TableName Identifies the table to be truncated.

TRUNCATE is a DDL statement and thus is controlled by the
DDLCommitBehavior attribute. If DDLCommitBehavior=0 (the default), then a
commit is performed before and after execution of the TRUNCATE statement. If
DDLCommitBehavior=1, then TRUNCATE is part of a transaction and these
transactional rules apply:

- TRUNCATE operations can be rolled back.

- Subsequent INSERT statements are not allowed in the same transaction as a
TRUNCATE statement.

Concurrent read committed read operations are allowed, and semantics of the
reads are the same as for read committed reads in presence of DELETE statements

TRUNCATE is allowed even when there are child tables. However, child tables
need to be empty for TRUNCATE to proceed. If any of the child tables have any
rows in them, TimesTen returns an error indicating that a child table is not empty.

TRUNCATE is not supported with any detail table of a materialized view, table that
is a part of a cache group, or temporary table.

When a table contains out-of-line varying-length data, the performance of
TRUNCATE TABLE is similar to that of DELETE statement that deletes all rows in a
table. For more details on out-of line data, see "Numeric data types" on page 1-15.

Where tables are being replicated, the TRUNCATE statement replicates to the
subscriber, even when no rows are operated upon.

When tables are being replicated with timestamp conflict checking enabled,
conflicts are not reported.

DROP TABLE and ALTER TABLE operations cannot be used to change hash pages
on uncommitted truncated tables.

SQL Statements 5-187

TRUNCATE TABLE

Examples
To delete all the rows from the recreation.clubs table, use:

TRUNCATE TABLE recreation.clubs;

See also

ALTER TABLE
DROP TABLE

5-188 Oracle TimesTen In-Memory Database SQL Reference

UNLOAD CACHE GROUP

UNLOAD CACHE GROUP

The UNLOAD CACHE GROUP statement deletes all rows from the cache group. The
unload operation is local. It is not propagated across cache grid members.

Required privilege
No privilege is required for the cache group owner.

UNLOAD CACHE GROUP or UNLOAD ANY CACHE GROUP for another user's cache

group.
SQL syntax
UNLOAD CACHE GROUP [Owner.]GroupName
[WHERE ConditionalExpression]
or
UNLOAD CACHE GROUP [Owner.]GroupName
WITH ID (ColumnValueList);
Parameters
Parameter Description
[Owner.] GroupName Name assigned to the cache group.
ConditionalExpression A search condition to qualify the target rows of the operation.
WITH ID ColumnValueList TheWITH ID clauses allows you to use primary key values to
unload the cache instance. Specify ColumnValueList as
either a list of literals or binding parameters to represent the
primary key values.
Description

» This statement causes the entire content of the cache group to be deleted from the
database.

» If the cache group is replicated, an UNLOAD CACHE GROUP statement deletes the
entire content of any replica cache group as well.

s The UNLOAD CACHE GROUP statement can be used for any type of cache group.
For a description of cache group types, see "User managed and system managed
cache groups" on page 5-54.

s Use the UNLOAD CACHE GROUP statement carefully with cache groups that have
the AUTOREFRESH attribute. A row that is unloaded can reappear in the cache
group as the result of an autorefresh operation if the row or its child rows are
updated in Oracle Database.

= Following the execution of an UNLOAD CACHE GROUP statement, the ODBC
function SQLRowCount (), the JDBC method getUpdateCount (), and the OCI
function OCIAttrGet () with the OCI_ATTR_ROW_COUNT argument return the
number of cache instances that were unloaded.

s Usethe WITH ID clause to specify binding parameters.

SQL Statements 5-189

UNLOAD CACHE GROUP

Restrictions

s Do not reference child tables in the WHERE clause.

= Do not use the WITH ID clause on read-only cache groups or user managed cache
groups with the autorefresh attribute unless the cache group is a dynamic cache

group.

Examples

CREATE CACHE GROUP recreation.cache
FROM recreation.clubs (
clubname CHAR(15) NOT NULL,
clubphone SMALLINT,
activity CHAR(18),
PRIMARY KEY (clubname))
WHERE (recreation.clubs.activity IS NOT NULL) ;
UNLOAD CACHE GROUP recreation.cache;

See also

ALTER CACHE GROUP
CREATE CACHE GROUP
DROP CACHE GROUP
FLUSH CACHE GROUP
LOAD CACHE GROUP

5-190 Oracle TimesTen In-Memory Database SQL Reference

UPDATE

UPDATE

The UPDATE statement updates the values of one or more columns in all rows of a
table or in rows that satisfy a search condition.

Required privilege

No privilege is required for the table owner.

UPDATE for another user's table.

SQL syntax

UPDATE [FIRST NumRows]

{[Owner.] TableName [CorrelationName]}

SET {ColumnName =

{Expressionl | NULL | DEFAULT}} [,...]

[WHERE SearchCondition]

RETURNING \ RETURN Expression2[,...] INTO Datalteml,...]
Parameters

Parameter Description

FIRST NumRows

Specifies the number of rows to update. FIRST NumRows is not
supported in subquery statements. NumRows must be either a
positive INTEGER value or a dynamic parameter placeholder. The
syntax for a dynamic parameter placeholder is either ? or
:DynamicParameter. The value of the dynamic parameter is
supplied when the statement is executed.

[Owner.] TableName
[CorrelationName]

[Owner.] TableName identifies the table to be updated.

CorrelationName specifies an alias for the table and must
conform to the syntax rules for a basic name according to "Basic
names" on page 2-1. When accessing columns of that table
elsewhere in the UPDATE statement, use the correlation name
instead of the actual table name. The scope of the correlation name
is the SQL statement in which it is used.

All correlation names within one statement must be unique.

SET ColumnName

ColumnName specifies a column to be updated. You can update
several columns of the same table with a single UPDATE statement.
Primary key columns can be included in the list of columns to be
updated as long as the values of the primary key columns are not
changed.

Expressionl

Any expression that does not contain an aggregate function. The
expression is evaluated for each row qualifying for the update
operation. The data type of the expression must be compatible
with the data type of the updated column. Expressionl can
specify a column or sequence CURRVAL or NEXTVAL reference
when updating values.

NULL

Puts a NULL value in the specified column of each row satisfying
the WHERE clause. The column must allow NULL values.

DEFAULT

Specifies that the column should be updated with the default
value.

SQL Statements 5-191

UPDATE

Description

Examples

Parameter Description

WHERE SearchCondition The search condition can contain a subquery. All rows for which
the search condition is true are updated as specified in the SET
clause. Rows that do not satisfy the search condition are not
affected. If no rows satisfy the search condition, the table is not

changed.
Expression2 Valid expression syntax. See Chapter 3, "Expressions".
DataItem Host variable or PL/SQL variable that stores the retrieved

Expression2 value.

» If the WHERE clause is omitted, all rows of the table are updated as specified by the
SET clause.

s TimesTen generates a warning when a character or binary string is truncated
during an UPDATE operation.

= A table on which a unique constraint is defined cannot be updated to contain
duplicate rows.

= The UPDATE operation fails if it violates any foreign key constraint. See "CREATE
TABLE" on page 5-109 for a description of foreign key constraints.

s Restrictions on the RETURNING clause:

- Each Expression2 must be a simple expression. Aggregate functions are not
supported.

- You cannot return a sequence number into an OUT parameter.
- ROWNUM and subqueries cannot be used in the RETURNING clause.

— Parameters in the RETURNING clause cannot be duplicated anywhere in the
UPDATE statement.

- Using the RETURNING clause to return multiple rows requires PL/SQL BULK
COLLECT functionality. See Oracle TimesTen In-Memory Database PL/SQL
Developer’s Guide.

- InPL/SQL, you cannot use a RETURNING clause with a WHERE CURRENT
operation.

The following example increases the price of parts costing more than $500 by 25
percent:

UPDATE purchasing.parts
SET salesprice = salesprice * 1.25
WHERE salesprice > 500.00;

This next example updates the column with the NEXTVAL value from sequence seq:
UPDATE student SET studentno = seq.NEXTVAL WHERE name = 'Sally’;

The following query updates the status of all the customers who have at least one
unshipped order:

UPDATE customers SET customers.status = 'unshipped'
WHERE customers.id = ANY
(SELECT orders.custid FROM orders

5-192 Oracle TimesTen In-Memory Database SQL Reference

UPDATE

WHERE orders.status = 'unshipped');

The following statement updates all the duplicate orders, assuming id is not a
primary key:

UPDATE orders a
WHERE EXISTS (SELECT 1 FROM orders b
WHERE a.id = b.id AND a.rowid < b.rowid);

This next example updates job_1id, salary and department_id for an employee
whose last name is' Jones ' in the employees table. The values of salary,
last_name and department_id are returned into variables.

Command> VARIABLE bndl NUMBER(8,2);

Command> VARIABLE bnd2 VARCHAR2 (25) INLINE NOT NULL;

Command> VARIABLE bnd3 NUMBER(4) ;

Command> UPDATE employees SET job_id='SA MAN', salary=salary+1000,
> department_id=140 WHERE last_name='Jones'
> RETURNING salary*0.25, last_name, department_id
> INTO :bndl, :bnd2, :bnd3;

1 row updated.

Command> PRINT bndl bnd2 bnd3;

BND1 : 950
BND2 : Jones
BND3 ;140

SQL Statements 5-193

Join update

Join update

Syntax

Parameters

Description

Examples

TimesTen supports join update statements. A join update can be used to update one or
more columns of a table using the result of a subquery.

UPDATE [Owner.]TableName
SET ColumnName=Subquery
[WHERE SearchCondition]

or

UPDATE [Owner.] TableName
SET (ColumnNamel, ...])=Subquery
[WHERE SearchCondition]

A join update statement has the following parameters:

Parameter Description

[Owner.] TableName Identifies the table to be updated.

SET Specifies the column to be updated. You can update several
(ColumnNamel[, ...])= columns of the same table with a single UPDATE statement. The
Subquery SET clause can contain only one subquery, although this

subquery can be nested.

The number of values in the select list of the subquery must be

the same as the number of columns specified in the SET clause.
An error is returned if the subquery returns more than one row
for any updated row.

WHERE SearchCondition The search condition can contain a subquery. All rows for which
the search condition is true are updated as specified in the SET
clause. Rows that do not satisfy the search condition are not
affected. If no rows satisfy the search condition, the table is not
changed.

The subquery in the SET clause of a join update does not reduce the number of rows
from the target table that are to be updated. The reduction must be specified using the
WHERE clause. Thus if a row from the target table qualifies the WHERE clause but the
subquery returns no rows for this row, this row is updated with a NULL value in the
updated column.

In this example, if a row from t1 has no match in t2, then its x1 value in the first
select and its x1 and y1 values in the second select are set to NULL.

UPDATE tl SET x1=(SELECT x2 FROM t2 WHERE idl=id2);

UPDATE tl1 SET (x1,yl)=(SELECT x2,y2 FROM t2 WHERE id1=id2);

In order to restrict the UPDATE statement to update only rows from t1 that have a
match in t2, a WHERE clause with a subquery has to be provided as follows:

UPDATE tl SET x1=(SELECT x2 FROM t2 WHERE id1=1id2)
WHERE idl IN (SELECT id2 FROM t2);

5-194 Oracle TimesTen In-Memory Database SQL Reference

UPDATE

UPDATE tl SET (x1,yl)=(SELECT x2,y2 FROM t2 WHERE idl1=id2)
WHERE idl IN (SELECT id2 FROM t2);

See also
SELECT

SQL Statements 5-195

Join update

5-196 Oracle TimesTen In-Memory Database SQL Reference

Privileges

The following sections describe privileges that are required to perform TimesTen
operations:

= System privileges
» Object privileges
» Privilege hierarchy

s The PUBLIC role

System privileges

A system privilege is the right to perform a particular action or to perform an action
on any object of a particular type. Objects include tables, views, materialized views,
indexes, sequences, cache groups, replication schemes and PL/SQL functions,
procedures and packages. Only the instance administrator or a user with ADMIN
privilege can grant or revoke system privileges.

Table 6—1 System privileges

Privilege Description

ADMIN Allows a user to perform administrative tasks including
checkpointing, backups, migration, and user creation and
deletion.

ALTER ANY CACHE GROUP Allows a user to alter any cache group in the database.

ALTER ANY INDEX Allows a user to alter any index in the database.
Note: There is no ALTER INDEX statement.

ALTER ANY Allows a user to alter any materialized view in the database.

MATERIALIZED VIEW Note: There is no ALTER MATERIALIZED VIEW statement.

ALTER ANY PROCEDURE Allows a user to alter any PL/SQL procedure, function or
package in the database.

ALTER ANY SEQUENCE Allows a user to alter any sequence in the database.
Note: There is no ALTER SEQUENCE statement.

ALTER ANY TABLE Allows a user to alter any table in the database.

ALTER ANY VIEW Allows a user to alter any view in the database.
Note: There is no ALTER VIEW statement.

CACHE_MANAGER Allows a user to perform operations related to cache groups.

Privileges 6-1

System privileges

Table 6-1 (Cont.) System privileges

Privilege

Description

CREATE ANY CACHE
GROUP

Allows a user to create a cache group owned by any user in the
database.

CREATE ANY INDEX

Allows a user to create an index on any table or materialized
view in the database.

CREATE ANY
MATERIALIZED VIEW

Allows a user to create a materialized view owned by any user
in the database.

CREATE ANY PROCEDURE

Allows a user to create a PL/SQL procedure, function or
package owned by any user in the database.

CREATE ANY SEQUENCE

Allows a user to create a sequence owned by any user in the
database.

CREATE ANY SYNONYM

Allows a user to create a private synonym owned by any user in
the database.

CREATE ANY TABLE

Allows a user to create a table owned by any user in the
database.

CREATE ANY VIEW

Allows a user to create a view owned by any user in the
database.

CREATE CACHE GROUP

Allows a user to create a cache group owned by that user.

CREATE MATERIALIZED
VIEW

Allows a user to create a materialized view owned by that user.

CREATE PROCEDURE

Allows a user to create a PL/SQL procedure, function or
package owned by that user.

CREATE PUBLIC SYNONYM

Allows a user to create a public synonym.

CREATE SEQUENCE

Allows a user to create a sequence owned by that user.

CREATE SESSION

Allows a user to create a connection to the database.

CREATE SYNONYM

Allows a user to create a private synonym.

CREATE TABLE

Allows a user to create a table owned by that user.

CREATE VIEW

Allows a user to create a view owned by that user.

DELETE ANY TABLE

Allows a user to delete from any table in the database.

DROP ANY CACHE GROUP

Allows a user to drop any cache group in the database.

DROP ANY INDEX

Allows a user to drop any index in the database.

DROP ANY MATERIALIZED
VIEW

Allows a user to drop any materialized view in the database.

DROP ANY PROCEDURE

Allows a user to drop any PL/SQL procedure, function or
package in the database.

DROP ANY SEQUENCE

Allows a user to drop any sequence in the database.

DROP ANY SYNONYM

Allows a user to drop a synonym owned by any user in the
database.

DROP ANY TABLE

Allows a user to drop any table in the database.

DROP ANY VIEW

Allows a user to drop any view in the database.

DROP PUBLIC SYNONYM

Allows a user to drop a public synonym.

EXECUTE ANY PROCEDURE

Allows a user to execute any PL/SQL procedure, function or
package in the database.

FLUSH ANY CACHE GROUP

Allows a user to flush any cache group in the database.

6-2 Oracle TimesTen In-Memory Database SQL Reference

Object privileges

Table 6—1 (Cont.) System privileges

Privilege

Description

INSERT ANY TABLE

Allows a user to insert into any table in the database.

LOAD ANY CACHE GROUP

Allows a user to load any cache group in the database.

REFRESH ANY CACHE
GROUP

Allows a user to flush any cache group in the database.

SELECT ANY SEQUENCE

Allows a user to select from any sequence in the database.

SELECT ANY TABLE

Allows a user to select from any table, view or materialized view

in the database.

UNLOAD ANY CACHE
GROUP

Allows a user to unload any cache group in the database.

UPDATE ANY TABLE

Allows a user to update any table in the database.

XLA

Allows a user to connect to a database as an XLA reader.

Object privileges

An object privilege is the right to perform a particular action on an object or to access
another user's object. Objects include tables, views, materialized views, indexes,
sequences, cache groups, replication schemes and PL/SQL functions, procedures and

packages.

An object's owner has all object privileges for that object, and those privileges cannot
be revoked. The object's owner can grant object privileges for that object to other
database users. A user with ADMIN privilege can grant and revoke object privileges
from users who do not own the objects on which the privileges are granted.

Table 6-2 Object privileges

Privilege Object type Description
DELETE Table Allows a user to delete from a table.
EXECUTE PL/SQL package, Allows a user to execute a PL/SQL
procedure or function package, procedure or function directly.
FLUSH Cache group Allows a user to flush a cache group.
INDEX Table or materialized Allows a user to create an index on a table
view or materialized view.
INSERT Table Allows a user to insert into a table.
LOAD Cache group Allows a user to load a cache group
REFERENCES Table or materialized Allows a user to create a foreign key
view dependency on a table or materialized
view.
The REFERENCES privilege on a parent
table implicitly grants SELECT privilege
on the parent table.
REFRESH Cache group Allows a user to refresh a cache group

Privileges 6-3

Privilege hierarchy

Table 6-2 (Cont.) Object privileges

Privilege Object type Description
SELECT Table, sequence, view or Allows a user to select from a table,
materialized view sequence, view or materialized view.

The SELECT privilege allows a user to
perform all operations on a sequence.

A user can be granted the SELECT
privilege on a view without having the
SELECT privilege on its detail table.

UNLOAD Cache group Allows a user to unload a cache group

UPDATE Table Allows a user to update a table

Privilege hierarchy

Some privileges confer other privileges. For example, ADMIN privilege confers all other
privileges. The CREATE ANY TABLE system privilege confers the CREATE TABLE
object privilege. Table 6-3 shows the privilege hierarchy.

Table 6-3 Privilege hierarchy

Privilege Confers these privileges

ADMIN All other privileges including CACHE_ MANAGER
CREATE ANY INDEX INDEX ON (any table or materialized view)
CREATE ANY CREATE MATERIALIZED VIEW

MATERIALIZED VIEW

CREATE ANY PROCEDURE CREATE PROCEDURE

CREATE ANY SEQUENCE CREATE SEQUENCE

CREATE ANY SYNONYM CREATE SYNONYM
CREATE ANY TABLE CREATE TABLE
CREATE ANY VIEW CREATE VIEW
DELETE ANY TABLE DELETE (any table)

EXECUTE ANY PROCEDURE EXECUTE(anypnmedunﬂ

INSERT ANY TABLE INSERT (any table)

SELECT ANY SEQUENCE SELECT (any sequence)

SELECT ANY TABLE SELECT (any table, view or materialized view)

UPDATE ANY TABLE UPDATE (any table)

Cache group privileges have a separate hierarchy except that ADMIN confers the
CACHE_MANAGER privilege.

The CACHE_MANAGER privilege confers these privileges:
s CREATE ANY CACHE GROUP

s ALTER ANY CACHE GROUP

s DROP ANY CACHE GROUP

s FLUSH ANY CACHE GROUP

= LOAD ANY CACHE GROUP

6-4 Oracle TimesTen In-Memory Database SQL Reference

The PUBLIC role

n UNLOAD ANY CACHE GROUP
[REFRESH ANY CACHE GROUP
s FLUSH (object)

s LOAD (object)

s UNLOAD (object)

n REFRESH (object)

The CACHE_MANAGER privilege also includes the ability to start and stop the cache
agent and the replication agent and to perform cache grid operations. The built-in
procedures and utilities for these operations are documented in Oracle TimesTen
In-Memory Database Reference.

CREATE ANY CACHE GROUP confers the CREATE CACHE GROUP privilege for any
cache group.

The PUBLIC role

All users of the database have the PUBLIC role. In a newly created TimesTen database,
by default PUBLIC has SELECT and EXECUTE privileges on various system tables and
views and PL/SQL functions, procedures and packages. You can see the list of objects
by using this query:

SELECT table_name, privilege FROM sys.dba_tab_privs WHERE grantee='PUBLIC';

Privileges that are granted to PUBLIC as part of database creation cannot be revoked.
To see a list of these privileges, use this query:

SELECT table_name, privilege FROM sys.dba_tab_privs WHERE grantor='SYS';

Privileges 6-5

The PUBLIC role

6-6 Oracle TimesTen In-Memory Database SQL Reference

Reserved Words

TimesTen reserves words for use in SQL statements.

To use one of these words as an identifier (such as a table name or column name),
enclose the reserved word in quotes. Otherwise, syntax errors may occur.

Reserved words

AGING

ALL

ANY

AS

BETWEEN
BINARY_DOUBLE_INFINITY
BINARY_DOUBLE_NAN
BINARY_FLOAT_INFINITY
BINARY_FLOAT_NAN
CASE

CHAR

COLUMN

CONNECTION
CONSTRAINT

CROSS
CURRENT_SCHEMA
CURRENT_USER
CURSOR
DATASTORE_OWNER
DATE

DECIMAL

DEFAULT

DESTROY

DISTINCT

FIRST

Reserved Words 7-1

Reserved words

FLOAT

FOR
FOREIGN
FROM
GROUP
HAVING
INNER
INTEGER
INTERSECT
INTERVAL
INTO

IS

JOIN

LEFT

LIKE

LONG
MINUS
NULL

ON
ORA_SYSDATE
ORDER
PRIMARY
PROPAGATE
PUBLIC
READONLY
RIGHT
ROWNUM
ROWS
SELECT
SELF
SESSION_USER
SET
SMALLINT
SOME
SYSDATE
SYSTEM_USER
TO

TT_SYSDATE

7-2 Oracle TimesTen In-Memory Database SQL Reference

Reserved words

UID
UNION
UNIQUE
UPDATE
USER
USING
VARCHAR
WHEN

WHERE

Reserved Words 7-3

7-4 Oracle TimesTen In-Memory Database SQL Reference

+, See addition
/ , See dividing

Symbols

%o
in LIKE pattern strings, 4-21
& operator, 3-4
*, See multiplying
+ operator
WHERE clause, 5-170
" operator, 3-4
in LIKE pattern string, 4-21
| operator, 3-4
| | operator, 3-4
~ operator, 3-4

A

ABS function, 3-26
ADD column, 5-35
ADD ELEMENT
replication, 5-15
ADD SUBSCRIBER
replication, 5-15
ADD_MONTHS function, 3-27
addition, 3-3
ADMIN system privilege
definition, 6-1
aggregate functions
ALL, 3-8
and overflow, 1-32
AVG, 3-8
COUNT?*, 3-8
COUNT ColumnName, 3-8
DISTINCT, 3-8
in expressions, 3-3
in query, 5-180
MAX, 3-8
MIN, 3-8
over empty, ungrouped table, 3-8
SQL syntax, 3-8
SUM, 3-8
aging
cache groups, 5-63

IndeXx

AGING reserved word, 7-1
ALL
defined, 3-8
in SELECT statements, 5-170
ALL/ NOT IN predicate (subquery), 4-4
ALL reserved word, 7-1
ALL/NOT IN predicate (value list), 4-6
ALTER ACTIVE STANDBY PAIR statement, 5-2
ALTER ANY CACHE GROUP system privilege
definition, 6-1
ALTER ANY INDEX system privilege
definition, 6-1
ALTER ANY MATERIALIZED VIEW system
privilege
definition, 6-1
ALTER ANY PROCEDURE system privilege
definition, 6-1
ALTER ANY SEQUENCE system privilege
definition, 6-1
ALTER ANY TABLE system privilege
definition, 6-1
ALTER ANY VIEW system privilege
definition, 6-1
ALTER CACHE GROUP statement, 5-6
AUTOREFRESH cache groups, 5-6
AUTOREFRESH state, 5-63
READONLY cache groups, 5-6
ALTER ELEMENT clause
DROP MASTER, 5-21
DROP SUBSCRIBER, 5-20
replication, 5-16
ALTER FUNCTION statement, 5-8
ALTER PACKAGE statement, 5-10
ALTER PROCEDURE statement, 5-12
ALTER REPLICATION statement, 5-14
ALTER SESSION statement, 5-23
ALTER SUBSCRIBER clause, 5-16
ALTER TABLE statement
ADD column, 5-35
defined, 5-30
DROP column, 5-36
PRIMARY KEY, 5-36
table names, 5-32
ALTER USER statement, 5-43
altering
active standby pair, 5-2

Index-1

replication, 5-14
session parameters, 5-23
tables, 5-30
ANSI SQL data types, 1-5
ANY/ IN predicate (subquery), 4-8
ANY/ IN predicate (value list), 4-10
ANY predicate
defined, 4-8
example, 4-8
operators, 4-8
SQL syntax, 4-8
ANY reserved word, 7-1
approximate data types, 1-15
arithmetic operations
and overflow, 1-32
arithmetic operators
in expressions, 3-4
AS reserved word, 7-1
ASC | DESC clause of CREATE INDEX statement
defined, 5-70
ASCII characters, 3-12
ASCIISTR function, 3-29
asynchronous materialized view
creating, 5-74
attributes
altering, 5-2
AUTOREFRESH clause
ALTER CACHE GROUP statement, 5-63
FULL, 5-62
in cache groups, 5-62
INCREMENTAL, 5-62
INTERVAL, 5-7
STATE, 5-7
AVG function
defined, 3-8

basic names

definition, 2-1

objects having, 2-1

rules, 2-1
BETWEEN predicate

defined, 4-13

in search conditions, 4-2

SQL syntax, 4-13
BETWEEN reserved word, 7-1
BIGINT data type, 1-33
BINARY data type, 1-1,1-20, 1-26, 1-33
BINARY_DOUBLE data type, 1-1,1-20, 1-26, 1-33
BINARY_DOUBLE_INFINITY reserved word, 7-1
BINARY_DOUBLE_NAN reserved word, 7-1
BINARY_FLOAT data type, 1-2,1-20, 1-26,1-33
BINARY_FLOAT_INFINITY reserved word, 7-1
BINARY_FLOAT_NAN, 7-1
bitwise AND operator, 3-4
bitwise NOT operator, 3-4
bitwise OR operator, 3-4
bucket count, 5-115

Index-2

Cc

cache grid, 5-64

cache group
definition, 5-54

cache group instance
definition, 5-54

cache groups
aging, 5-63
ALTER CACHE GROUP statement, 5-6
CREATE CACHE GROUP statement, 5-54
DROP CACHE GROUP statement, 5-132
dynamic, 5-55
explicitly loaded, 5-55
FLUSH CACHE GROUP statement, 5-146
global, 5-55
LOAD CACHE GROUP statement, 5-154
local, 5-55
restrictions, 5-61
system managed, 5-54

UNLOAD CACHE GROUP statement, 5-189

user managed, 5-54
user manager, 5-54
CACHE_MANAGER privilege hierarchy, 6-4
CACHE_MANAGER system privilege
definition, 6-1
CALL statement, 5-45
CASE function, 3-30
CASE reserved word, 7-1
CAST function, 3-32
CEIL function, 3-34
CHAR data type, 1-2,1-11,1-26, 1-33
CHAR reserved word, 7-1
CHAR VARYING data type, 1-6
CHARACTER
values in constants, 3-11
character data
and truncation, 1-32
character data types, 1-11
character string, 3-11
CHARACTER VARYING data type, 1-6
CHECK CONFLICTS clause
replication, 5-95
syntax, 5-95
CHR function, 3-33
COALESCE function, 3-35
column alias
in SELECT statement, 5-171, 5-179
column definition, 5-114
column name
in expressions, 3-3
column names
in INSERT SELECT statements, 5-153
in NULL predicates, 4-20
column reference
in SELECT statements, 5-171
syntax, 5-171
COLUMN reserved word, 7-1
columns, 5-114
defining, 5-110
in tables, 5-110

COMMIT statement, 5-47
comparing data types in search conditions, 4-3
comparison predicate
example, 4-15
in search conditions, 4-2
operators, 4-14
SQL syntax, 4-4,4-8,4-14
compound identifiers, 2-2
CONCAT function, 3-36
concatenate operator, 3-4
conflict resolution
check conflicts, 5-16
replication, 5-95
CONNECTION reserved word, 7-1
constants
character strings, 3-11
CHARACTER values, 3-11
DATE values, 3-12,3-13
defined, 3-11
fixed point values, 3-11
FLOAT values, 3-11
HEXIDECIMAL values, 3-12
in expressions, 3-3
in NULL predicates, 4-20
INTEGER values, 3-11
SQL syntax, 3-11
TIME values, 3-13
TIMESTAMP values, 3-14
CONSTRAINT reserved word, 7-1
constraints, defining, 5-109
correlation name
definition, 5-128
in SELECT statement, 5-182
correlation names
in SELECT statements, 5-180
COUNT * function
defined, 3-8
COUNT ColumnName function
defined, 3-8
CREATE ACTIVE STANDBY PAIR statement, 5-48
CREATE ANY CACHE GROUP system privilege
definition, 6-2
CREATE ANY INDEX system privilege
definition, 6-2
CREATE ANY MATERIALIZED VIEW system
privilege
definition, 6-2
CREATE ANY PROCEDURE system privilege
definition, 6-2
CREATE ANY SEQUENCE system privilege
definition, 6-2
CREATE ANY SYNONYM system privilege
definition, 6-2
CREATE ANY TABLE system privilege
definition, 6-2
CREATE ANY VIEW system privilege
definition, 6-2
CREATE CACHE GROUP system privilege
definition, 6-2
CREATE FUNCTION, 5-67

defined, 5-67
CREATE GLOBAL TEMPORARY TABLE, 5-109,
5-110
CREATE INDEX statement
defined, 5-70
example, 5-73
index name, 5-70
table names, 5-70
tables without rows, 5-71
UNIQUE clause, 5-70
CREATE MATERIALIZED VIEW
defined, 5-74
CREATE MATERIALIZED VIEW LOG
statement, 5-80
CREATE MATERIALIZED VIEW system privilege
definition, 6-2
CREATE PACKAGE
defined, 5-82
CREATE PACKAGE BODY, 5-84
CREATE PACKAGE BODY statement

defined, 5-84
CREATE PACKAGE statement, 5-82
CREATE PROCEDURE, 5-85
defined, 5-85
CREATE PROCEDURE system privilege
definition, 6-2
CREATE PUBLIC SYNONYM system privilege
definition, 6-2
CREATE REPLICATION statement, 5-88
CREATE SEQUENCE statement, 5-102
defined, 5-102
CREATE SEQUENCE system privilege
definition, 6-2
CREATE SESSION system privilege
definition, 6-2
CREATE SYNONYM statement, 5-105
CREATE SYNONYM system privilege
definition, 6-2
CREATE TABLE statement
defined, 5-109
examples, 5-118
FOREIGN KEY, 5-111
hash column name, 5-111
maximum columns, 5-110, 5-114
maximum page number, 5-112
PRIMARY KEY, 5-111
CREATE TABLE system privilege
definition, 6-2
CREATE USER statement, 5-124
CREATE VIEW statement, 5-126
CREATE VIEW system privilege
definition, 6-2
creating, 5-175
active standby pairs, 5-48
cache groups, 5-54
constraints, 5-109
functions, 5-67
indexes, 5-70
materialized views, 5-74

Index-3

procedures, 5-85

sequences, 5-102

tables, 5-109

users, b5-124

views, 5-126
CROSS reserved word, 7-1
CURRENT_SCHEMA, 7-1
CURRENT_USER function, 3-89
CURRENT_USER reserved word, 7-1
CURSOR reserved word, 7-1

D

d (ODBC-date-literal syntax), 3-13
DATA data type
using, 1-23
Data Definition Language (DDL), 5-1
Data Manipulation Language (DML), 5-1
data overflow, 1-31
data truncation, 1-31
data types
ANSISQL, 1-5
approximate types, 1-15
backward compatibility support, 1-7
character types, 1-11
comparison rules, 1-27
conversion, 1-28
effect of, 1-1
exact and approximate, 1-15
exact types, 1-15
modes, 1-1
specifications, 1-1
storage requirements, 1-26
TimesTen/Oracle compatibility, 1-7,1-9
TIMEZONE unsupported, 1-24
DATASTORE clause
in CREATE REPLICATION statement, 5-90
DATASTORE_OWNER reserved word, 7-1
DATE and TIME data types
using, 1-23
DATE data type, 1-2,1-22,1-23,1-26,1-33
DATE literal
ODBC date-literal syntax, 3-13
values in constants, 3-12, 3-13
date literal
defined, 3-13
DATE reserved word, 7-1
date string
defined, 3-12
datetime and interval types
arithmetic operations, 1-24
datetime data types, 1-22
using, 1-23
datetime format model
for TO_CHAR of TT_TIMESTAMP and TT_
DATE, 3-23
datetime format models, 3-20
DECIMAL data type, 1-7
DECIMAL reserved word, 7-1
DECODE function, 3-38

Index-4

DEFAULT column value, 5-114, 5-151
DEFAULT reserved word, 7-1
defining, 5-114
DELETE ANY TABLE system privilege
definition, 6-2
DELETE object privilege
definition, 6-3
DELETE statement
and DROP TABLE statement, 5-128
defined, 5-128
search conditions, 5-128
deleting
indexes, 5-143
rows, 5-128
tables, 5-143
derived table, 5-183
derived tables, 5-175,5-183
described, 5-183
in SELECT statement, 5-183
in TableSpec, 5-170
restrictions, 5-76
DESTROY reserved word, 7-1
detail tables, 5-75,5-117,5-187
and ON DELETE CASCADE, 5-37
in materialized views, 5-75
restrictions, 5-159
VIEWS, 5-126
DISTINCT modifier
and subqueries, 3-6
defined, 3-8
in SELECT statement, 5-170
DISTINCT reserved word, 7-1
dividing, 3-3
dividing expressions, 3-3
DOUBLE PRECISION data type, 1-6
DROP ACTIVE STANDBY PAIR statement, 5-131
DROP ANY CACHE GROUP system privilege
definition, 6-2
DROP ANY INDEX system privilege
definition, 6-2
DROP ANY MATERIALIZED VIEW system privilege
definition, 6-2
DROP ANY PROCEDURE system privilege
definition, 6-2
DROP ANY SEQUENCE system privilege
definition, 6-2
DROP ANY SYNONYM system privilege
definition, 6-2
DROP ANY TABLE system privilege
definition, 6-2
DROP ANY VIEW system privilege
definition, 6-2
DROP CACHE GROUP statement, 5-132
DROP column, 5-36
DROP ELEMENT clause
replication, 5-17
DROP FUNCTION statement, 5-133
DROP INDEX statement, 5-134
DROP MATERIALIZED VIEW LOG
statement, 5-137

DROP MATERIALIZED VIEW statement, 5-136
DROP PACKAGE statement, 5-138
DROP PROCEDURE statement, 5-139
DROP PUBLIC SYNONYM system privilege

definition, 6-2
DROP REPLICATION statement, 5-140
DROP SEQUENCE statement, 5-141
DROP SYNONYM statement, 5-142
DROP TABLE statement, 5-143
DROP USER statement, 5-145
DROP VIEW statement, 5-136
dropping

active standby pairs, 5-131

cache groups, 5-132

functions, 5-133

indexes, 5-134,5-143

procedures, 5-138, 5-139

replication schemes, 5-140

sequences, 5-141

tables, 5-143

views, 5-136
duplicate parameters, 2-3
DURABLE clause

in CREATE REPLICATION statement, 5-93
dynamic cache groups, 5-55
dynamic parameters

example, 3-5

in expressions, 3-3, 3-5

in LIKE predicate, 4-21

in single row inserts, 5-150

names, 2-3

naming rules, 2-3

E

ELEMENT clause
in CREATE REPLICATION statement, 5-90
escape character
in LIKE predicate, 4-21
escaped Unicode characters, 3-12
exact data types, 1-15
exclusive OR operator, 3-4
EXECUTE ANY PROCEDURE system privilege
definition, 6-2
EXECUTE object privilege
definition, 6-3
EXISTS predicate, 4-16
defined, 4-16
in search conditions, 4-2
SQL syntax, 4-16
expressions
arithmetic operators in, 3-4
bitwise AND operator, 3-4
bitwise NOT operator, 3-4
bitwise OR operator, 3-4
concatenate operators, 3-4
exclusive OR operator, 3-4
in aggregate functions, 3-8
in BETWEEN predicates, 4-13
in comparison predicate, 4-4,4-8,4-14

in IS INFINITE predicate, 4-18
in LIKE predicates, 4-21
in NAN predicates, 4-19
in NULL predicates, 4-20
in UPDATE statements, 5-191
ROWID, 3-1
ROWNUM, 3-1
specification, 3-3
SQL syntax, 3-3
EXTRACT function, 3-39

F

FAILTHRESHOLD clause
in ALTER REPLICATION statement, 5-17
in CREATE ACTIVE STANDBY PAIR
statement, 5-50
in CREATE REPLICATION statement, 5-91
FIRST reserved word, 7-1
fixed point value
constants, 3-11
defined, 3-11
FLOAT and FLOAT (n) data types, 1-20
FLOAT data type, 1-6
FLOAT reserved word, 7-2
float value
defined, 3-11
FLOAT values
in constants, 3-11
floating-point numbers, 1-19
FLOOR function, 3-40
FLUSH ANY CACHE GROUP system privilege
definition, 6-2
FLUSH CACHE GROUP statement, 5-146
FLUSH object privilege
definition, 6-3
FOR reserved word, 7-2
FOREIGN KEY option
in CREATE TABLE statement, 5-111
FOREIGN reserved word, 7-2
format model

for ROUND and TRUNC date functions, 3-23

for TO_CHAR of TimesTen types, 3-23
format model for TO_CHAR of TimesTen
types, 3-23
format models, 3-16
FROM reserved word, 7-2
fully qualified name, 2-2
functions
creating, 5-67

G

GETDATE function, 3-74
global cache groups, 5-55
GLOBAL TEMPORARY TABLE, 5-109,5-110
global temporary table
object privilege, 5-110
GRANT, 5-148
GRANT statement, 5-148

Index-5

GREATEST, 3-41

GROUP, 7-2

GROUP BY
in aggregate functions, 3-8
in SELECT statements, 5-170

H

hash index

examples, 5-118

for table, 5-111

materialized view, 5-75
hash indexes

pages, 5-112
HashColumnName option

in CREATE TABLE statement, 5-111
HAVING clause

in SELECT statements, 5-171
HAVING reserved word, 7-2
HEXIDECIMAL

values in constants, 3-12
hexidecimal string

defined, 3-12

IN predicate
in search conditions, 4-2
index names
in CREATE INDEX, 5-70
in DROP INDEX, 5-134
INDEX object privilege
definition, 6-3
index owner (not specified), 5-134
indexes
creating, 5-70
dropping, 5-143
owner not specified, 5-134
INF and NAN data types, 1-30
INLINE (NOT INLINE), 5-114
INLINE (NOT INLINE) clause
in ALTER TABLE statement, 5-32
INNER reserved word, 7-2
INSERT ANY TABLE system privilege
definition, 6-3
INSERT object privilege
definition, 6-3
INSERT SELECT statement, 5-153
omitted columns, 5-153
rows with defined values, 5-153
INSERT statement, 5-150
INSTR function, 3-70
INSTR4 function, 3-70
INSTRB function, 3-70
INTEGER data type, 1-6,1-34
INTEGER reserved word, 7-2
integer value
defined, 3-11
INTEGER values
in constants, 3-11

Index-6

INTERSECT reserved word, 7-2

INTERVAL, 7-2

INTERVAL data type, 1-2,1-26,1-34
using, 1-23

interval literal, 3-14

INTO reserved word, 7-2

IS INFINITE predicate, 4-18

IS NAN predicate, 4-19

IS NULL predicate, 4-20
defined, 4-20
SQL syntax, 4-18,4-19,4-20

IS reserved word, 7-2

J

join conditions
+ operator, 5-170
JOIN reserved word, 7-2

join types
INNER, 5-184
LEFT, 5-184

RIGHT, 5-184

joined tables, 5-184

joins
joining table to itself, 5-180
outer, 5-170

L

LEAST function, 3-43
LEFT reserved word, 7-2
LENGTH function, 3-71
LENGTH4 function, 3-71
LENGTHB function, 3-71
LIKE predicate
defined, 4-21
in search conditions, 4-2
pattern matching of NCHAR and NVARCHAR
strings, 4-24
SQL syntax, 4-21
LIKE reserved word, 7-2
LOAD ANY CACHE GROUP system privilege
definition, 6-3
LOAD CACHE GROUP statement, 5-154
LOAD object privilege
definition, 6-3
local cache groups, 5-55
logical operators
in search conditions, 4-2
LONG reserved word, 7-2
lower case letters in names, 2-1
LOWER function, 3-45
LPAD function, 3-46
LTRIM function, 3-48

MASTER clause
in ALTER REPLICATION statement, 5-18
in CREATE ACTIVE STANDBY PAIR
statement, 5-51

in CREATE REPLICATION statement, 5-91
materialized view log, 5-80
materialized views
invalid, 5-77
revoking privileges on detail table, 5-167
revoking privileges on the detail table, 5-77
MAX function
defined, 3-8
maximum
columns in CREATE TABLE, 5-110,5-114
items for DISTINCT option, 5-170
table cardinality, 5-115
tables per query, 5-170
MERGE statement, 5-158
MIN function
defined, 3-8
MINUS, 7-2
MOD function, 3-50
multiplying, 3-3
multiplying expressions, 3-3
MVLOG$_ID
materialized view log, 5-80

N

names
basic names, 2-1
compound identifiers, 2-2
dynamic parameters, 2-3
fully qualified, 2-2
lower case letters, 2-1
owner names, 2-2
simple names, 2-2
used in TimesTen, 2-1
user ID, 2-2
namespace, 2-2
naming dynamic parameters, 2-3
naming rules, 2-1
NATIONAL CHAR data type, 1-6
NATIONAL CHAR VARYING data type, 1-6
NATIONAL CHARACTER data type, 1-6
national character string
constant, 3-12
NCHAR data type, 1-3,1-12,1-26, 1-34
defined, 4-24
example, 4-24
NCHAR VARYING data type, 1-6
NCHR function, 3-51
NLSSORT function, 3-52
NO RETURN clause
in CREATE REPLICATION statement, 5-91
NONDURABLE clause
in CREATE REPLICATION statement, 5-93
NOT INLINE (INLINE), 5-114
NOT INLINE (INLINE) clause
in ALTER TABLE statement, 5-32
NOT NULL clause
in CREATE TABLE statement, 5-115
in INSERT SELECT statement, 5-153
NULL predicate

in search conditions, 4-2
NULL reserved word, 7-2
NULL storage, 1-13,1-27
NULL values

defined, 1-29

in comparison predicates, 4-15

in INSERT statement, 5-151

in search conditions, 4-3

in UPDATE statements, 5-191

sort order in CREATE INDEX, 5-71

sorting, 1-29

SQLBindCol ODBC function, 1-29

SQLBindParameter ODBC function, 1-29
NUMBER data type, 1-3,1-15
NUMBER data type in TimesTen Mode, 1-36
number format models, 3-17
NUMERIC data type, 1-7
numeric data type truncation, 1-32
numeric data types, 1-15
numeric precedence, 1-21
NUMTODSINTERVAL function, 3-54
NUMTOYMINTERVAL function, 3-55
NVARCHAR? data type, 1-3,1-14,1-26

defined, 4-24

example, 4-24
NVL function, 3-56

(o)

object

name

namespace, 2-2
search order, 2-2

object privilege, 6-3
ON reserved word, 7-2
operators

comparison, 4-14

in WHERE clause of SELECT statement, 5-170
ORA_CHAR data type, 1-36
ORA_DATE data type, 1-36
ORA_NCHAR data type, 1-36
ORA_NVARCHAR? data type, 1-37
ORA_SYSDATE reserved word, 7-2
ORA_TIMESTAMP data type, 1-37
ORA_VARCHAR? data type, 1-37
Oracle data types supported in TimesTen type

mode, 1-36

ORDER BY clause

and subqueries, 3-6

in SELECT statement, 5-171

specifying result columns, 5-180
ORDER reserved word, 7-2
OUTER JOIN clause

specifying in SELECT statement, 5-185
outer joins

conditions, 5-170

indicators, 5-170
overflow

during type conversion, 1-32

in aggregate functions, 1-32

Index-7

in arithmetic operations, 1-32
of data, 1-31

owner names, 2-2

owners of index, 5-134

queries
and aggregate functions, 5-180
results, 5-169
syntax, 5-169

P R

package body READONLY reserved word, 7-2
creating, 5-84 REAL data type, 1-7

packages REFERENCES object privilege
CREATE PACKAGE BODY statement, 5-84 definition, 6-3
CREATE PACKAGE statement, 5-82 REFRESH ANY CACHE GROUP system privilege
creating, 5-82 definition, 6-3

parameters REFRESH CACHE GROUP statement, 5-162
duplicate, 2-3 REFRESH MATERIALIZED VIEW statement, 5-165
dynamic REFRESH object privilege

naming rules, 2-3

inferring data type, 2-4
pattern matching in LIKE predicate, 4-21
PORT clause

in CREATE ACTIVE STANDBY PAIR

statement, 5-51

in CREATE REPLICATION statement, 5-91
POWER function, 3-57
predicates

ANY, 4-8

BETWEEN, 4-13

comparison, 4-14

compatible data types, 4-3

EXISTS, 4-16

ISNULL, 4-20

LIKE, 4-21

null values, 4-3

order of evaluation, 4-3
primary

definition, 3-3

in expressions, 3-3
PRIMARY KEY clause

in CREATE TABLE statement, 5-111
PRIMARY reserved word, 7-2
privilege

object, 6-3

system, 6-1
privilege hierarchy, 6-4
procedures

creating, 5-85
PROPAGATE reserved word, 7-2
PROPAGATOR clause

in ALTER REPLICATION statement, 5-18
PUBLIC, 5-148
PUBLIC reserved word, 7-2
PUBLIC role

privileges, 6-5
PUBLIC user

in GRANT statement, 5-148

Q

quantified predicate
in search conditions, 4-2

Index-8

definition, 6-3
refreshing a cache group, 5-7
replication, 5-92
ADD ELEMENT, 5-15
ADD SUBSCRIBER, 5-15
ALTER ELEMENT, 5-16
ALTER SUBSCRIBER, 5-16
CHECK CONFLICTS, 5-95
conflict resolution, 5-95, 5-96
DATASTORE ELEMENT, 5-90
DROP ELEMENT, 5-17
ELEMENT, 5-90
FAILTHRESHOLD, 5-17,5-50,5-91
MASTER, 5-18,5-51,5-91, 5-93
NO RETURN, 5-91
PORT, 5-51,5-91
PROPAGATOR, 5-18
restrictions, 5-96
RETURN RECEIPT, 5-19,5-92
SUBSCRIBER, 5-19, 5-51, 5-91, 5-93
TIMEOUT, 5-20,5-93
TIMESTAMP, 5-95,5-96
TRANSMIT, 5-93
replication element, 5-88
replication scheme, 5-88
reserved words, 7-1
restrictions, 5-75,5-117,5-183, 5-187
result columns in SELECT statement, 5-180
RETURN RECEIPT BY REQUEST clause
in CREATE REPLICATION statement, 5-92
RETURN RECEIPT clause
in ALTER REPLICATION statement, 5-16,5-19
in CREATE REPLICATION statement, 5-92
RETURN TWOSAFE BY REQUEST clause
in ALTER REPLICATION statement, 5-19
RETURN TWOSAFE clause
in ALTER REPLICATION statement, 5-19
in CREATE REPLICATION statement, 5-92
REVOKE, 5-166
REVOKE statement, 5-166
revoking privileges
materialized views, 5-167
RIGHT reserved word, 7-2
ROLLBACK statement, 5-168

ROUND (date) function, 3-58
ROUND (expression) function, 3-59
rowid, 1-21,3-1
ROWID data type, 1-3

description, 1-21

explicit conversion, 1-22

implicit conversion, 1-22

in expressions, 1-21

in INSERT SELECT statement, 1-22
ROWID pseudocolumn

in expressions, 3-3
ROWNUM pseudocolumn, 3-1
ROWNUM reserved word, 7-2
rows

inserting, 5-150

retrieving, 5-169

selecting, 5-169
ROWS reserved word, 7-2
RPAD function, 3-61
RTRIM function, 3-63

S

search condition
compatible predicates, 4-3
general syntax, 4-2
logical operators in, 4-2
SQL syntax, 4-2
type conversion, 4-3
value extensions, 4-3
SELECT
select list, 5-170
SELECT ANY SEQUENCE system privilege
definition, 6-3
SELECT ANY TABLE system privilege
definition, 6-3
select list
defined, 5-170
SQL syntax, 5-179
SELECT object privilege
definition, 6-4
SELECT reserved word, 7-2
SELECT statement, 5-169
GROUP BY clause, 5-170
HAVING clause, 5-171
maximum tables per query, 5-170
ORDER BY clause, 5-171
unique rows, 5-170
WHERE clause, 5-170
SELF reserved word, 7-2
SESSION_USER function, 3-91
SESSION_USER reserved word, 7-2
SET clause
in ALTER ACTIVE STANDBY PAIR
statement, 5-3
in ALTER CACHE GROUP statement, 5-6
in ALTER REPLICATION statement, 5-14
SET PAGES, 5-31
SET reserved word, 7-2
SIGN function, 3-65

simple names, 2-2
SMALLINT data type, 1-7,1-34
SMALLINT reserved word, 7-2
SOME reserved word, 7-2
sorting of NULL values, 1-29
SQL naming rules, 2-1
SQL statements
ALTER REPLICATION, 5-14
ALTER SESSION, 5-23
ALTER TABLE, 5-30
CREATE CACHE GROUP, 5-54
CREATE FUNCTION, 5-67
CREATE INDEX, 5-70
CREATE MATERIALIZED VIEW, 5-74
CREATE PACKAGE, 5-82
CREATE PACKAGE BODY, 5-84
CREATE PROCEDURE, 5-85
CREATE SEQUENCE, 5-102
CREATE TABLE, 5-109
CREATE VIEW, 5-126
DELETE, 5-128
DROP CACHE GROUP, 5-132
DROP FUNCTION, 5-133
DROP PROCEDURE, 5-139
DROP REPLICATION, 5-140
DROP SEQUENCE, 5-141
DROP TABLE, 5-143
FLUSH CACHE GROUP, 5-146
INSERT, 5-150
INSERT SELECT, 5-153
LOAD CACHE GROUP, 5-154
SELECT, 5-169
UNLOAD CACHE GROUP, 5-189
UPDATE, 5-191
SQL syntax
CREATE PACKAGE, 5-82
CREATE PACKAGE BODY, 5-84
CREATE PROCEDURE, 5-85
SQLBindCol ODBC function
and NULL values, 1-29
SQLBindParameter ODBC function
and NULL values, 1-29
SQRT function, 3-67
storage requirements, 1-26
string functions, 3-68
strings
in constants, 3-11
truncated in UPDATE statement, 5-192
subqueries, 3-6
subquery
in EXISTS predicates, 4-16
SUBSCRIBER clause
in ALTER REPLICATION statement, 5-19
in CREATE REPLICATION statement, 5-93
SUBSTR function, 3-69
SUBSTR4 function, 3-69
SUBSTRB function, 3-69
subtraction operator
in expressions, 3-3
SUM function, 3-8

Index-9

SYS_CONTEXT function, 3-72
SYSDATE, 7-2

SYSDATE function, 3-74

system managed cache group, 5-54
system privilege, 6-1

system tables, 2-2

SYSTEM_USER function, 3-92
SYSTEM_USER reserved word, 7-2

T

table names
in ALTER TABLE statement, 5-32
in CREATE INDEX statement, 5-70
in CREATE TABLE statement, 5-110
in DROP INDEX statement, 5-134
in INSERT SELECT statement, 5-153
table owner
not specified, 5-134
tables
creating, 5-109
derived, 5-183
dropping, 5-143
inserting rows, 5-150
maximum cardinality, 5-115
maximum per query, 5-170
owner not specified, 5-134
specifying in SELECT statement, 5-182
unique constraints, 5-192
temporary table, 5-109, 5-110
object privilege, 5-110
TIME
ODBC-time-literal syntax, 3-13
values in constants, 3-13
TIME data type, 1-3,1-22,1-23,1-34
time literal
defined, 3-13
in constants, 3-13
time string
in constants, 3-13
TIMEOUT clause
in ALTER REPLICATION statement, 5-20
in CREATE REPLICATION, 5-93
TIMESTAMP
in CHECK CONFLICTS clause, 5-95
ODBC literal, 3-14
replication, 5-95, 5-96
values in constants, 3-14
TIMESTAMP data type, 1-4,1-23,1-27,1-34
timestamp literal
defined, 3-14
in constants, 3-14
timestamp ODBC literal, 3-14
timestamp string
in constants, 3-14
TimesTen data type mapping, 1-9
TimesTen interval, 1-23
TimesTen type mode, 1-32
TIMEZONE data type
conversions, 1-24

Index-10

TINYINT data type, 1-34
TO reserved word, 7-2
TO_CHAR function, 3-76

SQL syntax, 3-76,3-79
TO_DATE function, 3-78

SQL syntax, 3-78
TO_NUMBER function, 3-79
TRANSMIT clause

replication, 5-93
TRANSMIT DURABLE/NONDURABLE clause

in CREATE REPLICATION statement, 5-93
TRIM function, 3-80
TRUNC (date), 3-83
TRUNC (date) function, 3-83
TRUNC (expression) function, 3-84
TRUNCATE TABLE statement, 5-187
truncation

and numeric data, 1-32

in character data, 1-32

of data, 1-31
TT_BIGINT data type, 1-17,1-27
TT_CHAR data type, 1-8
TT_DATE data type, 1-4,1-23,1-27
TT_DECIMAL data type, 1-8,1-27
TT_HASH function, 3-85
TT_INTEGER data type, 1-4,1-18,1-27,1-34
TT_NCHAR data type, 1-9
TT_NVARCHAR data type, 1-9,1-35
TT_SMALLINT data type, 1-19,1-27
TT_SYSDATE reserved word, 7-2
TT_TIME data type, 1-27
TT_TIMESTAMP data type, 1-5,1-27
TT_TINYINT data type, 1-19,1-27
TT_VARCHAR data type, 1-9,1-35
ttRepSyncSet built-in procedure, 5-50
type conversion

and overflow, 1-32
type mode, 1-1
TypeMode connection attribute, 1-1

U

UID reserved word, 7-3
UID SQL function, 3-86
unary minus

in expressions, 3-3
unary plus

in expressions, 3-3
underflow

defined, 1-32
Unicode characters

example, 4-24

pattern matching, 4-24
UNION reserved word, 7-3
unique constraints

on tables, 5-192
UNIQUE INDEX clause

defined, 5-70
UNIQUE reserved word, 7-3
unique rows, 5-170

UNISTR, 3-87

UNLOAD ANY CACHE GROUP system privilege

definition, 6-3
UNLOAD CACHE GROUP statement
defined, 5-189
UNLOAD object privilege
definition, 6-4
UPDATE ANY TABLE system privilege
definition, 6-3
UPDATE object privilege
definition, 6-4
UPDATE reserved word, 7-3
UPDATE SET clause
in MERGE statement, 5-158
UPDATE statement, 5-191
FIRST N clause, 5-191
string truncation, 5-192
WHERE clause omitted, 5-192
UPPER function, 3-45
USER function, 3-90
USER functions, 3-88
user ID in names, 2-2
user managed cache group, 5-54
USER reserved word, 7-3
USING reserved word, 7-3
UTE-8 Unicode characters, 3-12

\'

VARBINARY data type, 1-5,1-20,1-27,1-35
VARCHAR data type, 1-5
VARCHAR reserved word, 7-3
VARCHAR? data type, 1-5,1-13,1-27
variables in SQL statements, 2-3
views
CREATE MATERIALIZED VIEW statement,
CREATE VIEW statement, 5-126
restrictions on detail tables, 5-75
restrictions on queries, 5-76, 5-126
restrictions on views, 5-75

w

5-74

WHEN reserved word, 7-3
WHERE clause

in SELECT statement, 5-170
WHERE reserved word, 7-3

X

XLA system privilege
definition, 6-3

Index-11

Index-12

	Contents
	Preface
	Audience
	Related documents
	Conventions
	Documentation Accessibility
	Technical support

	What's New
	New features in Release 11.2.1.8.0
	New features in Release 11.2.1.7.0
	New features in Release 11.2.1.6.0
	New features in Release 11.2.1.4.0
	New features in Release 11.2.1.1.0

	1 Data Types
	Type specifications
	ANSI SQL data types
	Types supported for backward compatibility in Oracle type mode
	TimesTen type mapping
	Character data types
	CHAR
	NCHAR
	VARCHAR2
	NVARCHAR2

	Numeric data types
	Exact and approximate numeric data types
	NUMBER
	TT_BIGINT
	TT_INTEGER
	TT_SMALLINT
	TT_TINYINT
	Floating-point numbers

	BINARY and VARBINARY data types
	Numeric precedence
	ROWID data type
	Datetime data types
	DATE
	TIME
	TIMESTAMP
	TT_DATE
	TT_TIMESTAMP

	TimesTen intervals
	Using interval data types
	Using DATE and TIME data types
	Handling timezone conversions
	Datetime and interval data types in arithmetic operations
	Restrictions on datetime and interval arithmetic operations

	Storage requirements
	Data type comparison rules
	Numeric values
	Date values
	Character values
	Binary and linguistic sorting
	Blank-padded and nonpadded comparison semantics

	Data type conversion
	Implicit data type conversion

	NULL values
	INF and NAN
	Constant values
	Primary key values
	Selecting Inf and NaN (floating-point conditions)
	Expressions involving Inf and NaN

	Overflow and truncation
	Underflow
	Replication limits
	TimesTen type mode (backward compatibility)
	Data types supported in TimesTen type mode
	Oracle data types supported in TimesTen type mode

	2 Names, Namespace and Parameters
	Basic names
	Owner names
	Compound identifiers
	Namespace
	Dynamic parameters
	Duplicate parameter names
	Inferring data type from parameters

	3 Expressions
	ROWID specification
	ROWNUM specification
	Expression specification
	Subqueries
	Aggregate functions
	Constants
	Format models
	Number format models
	Datetime format models
	Datetime format elements
	Format model for ROUND and TRUNC date functions
	Format model for TO_CHAR of TimesTen datetime data types

	ABS
	ADD_MONTHS
	ASCIISTR
	CASE
	CAST
	CHR
	CEIL
	COALESCE
	CONCAT
	DECODE
	EXTRACT
	FLOOR
	GREATEST
	LEAST
	LOWER and UPPER
	LPAD
	LTRIM
	MOD
	NCHR
	NLSSORT
	NUMTODSINTERVAL
	NUMTOYMINTERVAL
	NVL
	POWER
	ROUND (date)
	ROUND (expression)
	RPAD
	RTRIM
	SIGN
	SQRT
	String functions
	SUBSTR, SUBSTRB, SUBSTR4
	INSTR, INSTRB, INSTR4
	LENGTH, LENGTHB, LENGTH4

	SYS_CONTEXT
	SYSDATE and GETDATE
	TO_CHAR
	TO_DATE
	TO_NUMBER
	TRIM
	TRUNC (date)
	TRUNC (expression)
	TT_HASH
	UID
	UNISTR
	USER functions
	CURRENT_USER
	USER
	SESSION_USER
	SYSTEM_USER

	4 Search Conditions
	Search condition general syntax
	ALL/ NOT IN predicate (subquery)
	ALL/NOT IN predicate (value list)
	ANY/ IN predicate (subquery)
	ANY/ IN predicate (value list)
	BETWEEN predicate
	Comparison predicate
	EXISTS predicate
	IS INFINITE predicate
	IS NAN predicate
	IS NULL predicate
	LIKE predicate
	NCHAR and NVARCHAR2

	5 SQL Statements
	Comments within SQL statements
	ALTER ACTIVE STANDBY PAIR
	ALTER CACHE GROUP
	ALTER FUNCTION
	ALTER PACKAGE
	ALTER PROCEDURE
	ALTER REPLICATION
	ALTER SESSION
	ALTER TABLE
	ALTER USER
	CALL
	COMMIT
	CREATE ACTIVE STANDBY PAIR
	CREATE CACHE GROUP
	CREATE FUNCTION
	CREATE INDEX
	CREATE MATERIALIZED VIEW
	CREATE MATERIALIZED VIEW LOG
	CREATE PACKAGE
	CREATE PACKAGE BODY
	CREATE PROCEDURE
	CREATE REPLICATION
	CHECK CONFLICTS

	CREATE SEQUENCE
	CREATE SYNONYM
	CREATE TABLE
	Column Definition

	CREATE USER
	CREATE VIEW
	DELETE
	DROP ACTIVE STANDBY PAIR
	DROP CACHE GROUP
	DROP FUNCTION
	DROP INDEX
	DROP [MATERIALIZED] VIEW
	DROP MATERIALIZED VIEW LOG
	DROP PACKAGE [BODY]
	DROP PROCEDURE
	DROP REPLICATION
	DROP SEQUENCE
	DROP SYNONYM
	DROP TABLE
	DROP USER
	FLUSH CACHE GROUP
	GRANT
	INSERT
	INSERT...SELECT
	LOAD CACHE GROUP
	MERGE
	REFRESH CACHE GROUP
	REFRESH MATERIALIZED VIEW
	REVOKE
	ROLLBACK
	SELECT
	SelectList
	TableSpec
	DerivedTable
	JoinedTable

	TRUNCATE TABLE
	UNLOAD CACHE GROUP
	UPDATE
	Join update

	6 Privileges
	System privileges
	Object privileges
	Privilege hierarchy
	The PUBLIC role

	7 Reserved Words
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

