ORACLE

Oracle® TimesTen In-Memory Database
TTClasses Guide

Release 11.2.1

E13074-06

January 2011

Oracle TimesTen In-Memory Database TTClasses Guide, Release 11.2.1
E13074-06
Copyright © 2006, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

PUROIACE ... e e et eenaeen Xi
AN S Lo 1= V< T SR SRR Xi
ReEIATEA AOCUIMIEIES ...ttt ettt et e e et e e ettt e e et e e seaaeeesaaaeseaaeeseaseesastesssaseessnseessneneean Xi
(@) 723 41 10 1= TR Xii
Documentation ACCeSSIDILItYcueveiiuiieiiiiiicic e Xiii
TechNiCal SUPPOTL....c.ccviiiiiiiii s xiii

WIRAL'S INEOW ...ttt na s nassnanen XV
New features in Release 11.2.1.60.0 ..ottt ettt et e et e e st e eseaaeeseaaeeesnaeeseneeesanneeas XV
New features in Release 11.2.1.1.0 ..ottt et s e e et e srveeaeeeaessnteenesereeens XVi

1 TTClasses Development Environment

Setting UP TTCIASSESc.ccoiiiiiiiiiiici s 1-1
Setting up TTClasses on UNIX.........cooiiiiiiii 1-1
Set UNIX environment variables..........cccooiiiiiiiiiiiiccceceeceas 1-1
Compile TTClasses 0n UNIXc.ccccciiririiiiiiniiiireeeereeeeseeseseee s 1-2
Compilation options on UNIX........ccoiiiiiicc s 1-2
Install TTClasses after compilation (UNIX only)cccooveieiiiieieiniicneiceeeccecnen 1-2
Setting up TTClasses 0N WINAOWS..........ccoiuriiiiiriiiic 1-3
Set Windows environment variables ..., 1-3
Compile TTClasses 0n WINAOWS........cccouiuiiiiriiiiiiiiiiiiiiccccnsss e 1-3
Compilation options 0N WINAOWSccceuiiiiiiiiiiiiiiiees 1-3
TTClasses cOMPIler MACTOScucuiiiuiiiieiiiicie i 1-4
TTC_USE_STRINGSTREAM, USE_OLD_CPP_STREAMS: For C++ 1/0 streams........... 1-4
TTC_USE_STRINGSTREAM: For C++ I/O stream code with ostringstream............ 1-4
Neither: For newer C++ I/0 stream code with ostrstream........cccocceevevvveveerivceeevenens 1-4
USE_OLD_CPP_STREAMS: For older C++ I/0O stream code with ostrstream 1-4
TTDEBUG: Generate additional debugging and error checking logicccoeeueviunnnen. 1-5
TT_64BIT: Use TTClasses with 64-bit TIMESTENcceviivviiiiiiiieie e 1-5
Platform-specific compiler Macros. ... 1-5
GCC i s 1-5

HPUX o 1-5
Compiling and linking applications ... 1-5
Compiling and linking applications on UNIX..........ccccooiiiiiiiiiiiieeeeas 1-5
Compiling and linking applications on Windowscccceueiiiiiiiiiciciiccccce 1-6

Considerations when using an ODBC driver manager (Windows).........cccccouoirieiniiiniciciinne, 1-7
About the TimesTen TTClasses demOs............ccceviiriiiiiiiicieicc e 1-7

2 Understanding and Using TTClasses

OVerview Of TTCIASSEScccoiiiiiiiiiiiiiiiicc s 2-1
Using TTCmd, TTConnection, and TTConnectionPool................ccccccoviinniiniii, 2-1
Considering TimesTen features for access cONtrolccccoiiiiniiiiiiiii, 2-4
Managing TimesTen conNections..............cccoouiiiiiiiiiiiiii e 2-5
ADOUL DS ...t 2-5
Connecting and diSCONNECHINEc.oviurueiiiiiieicc e 2-5
Access control for CONNECHONSccccuiiiiiiiiiiii s 2-6
Connection method signatures for access CONEIOL............occviiiiiiiiiecieiceeeeeeeenes 2-6
CREATE SESSION privilege for access CONtIol...........coooeueioiiciciiiiciceccees 2-7

XLA privilege for XLA cONNECHONSc.cviiviviiiiiciicci s 2-7
Managing TimesTen data.............ccccocoiiiiiiiiii e 2-7
Binding parameters..........cocouoiiiiiiiiiiic 2-7
Binding IN parameters.........cccooicurieiiiicicie et 2-8
Registering parameters ... 2-9
Binding OUT or IN OUT parameters...........coocueueueiiurieiiiicieieicee e 2-10
Binding duplicate parameters..........c.cooocruoiiiiiieiiiiccc 2-12
Working with REF CURSORSc.cooiiiiiiiiiiieicceeeeecee et eseees 2-13
Working With TOWIASc.ovoieii 2-15
Setting a timeout or threshold for executing SQL statements............cccccouoirriiiiiiciennen, 2-16
Using TTClasses IogGINg ..o 2-16
Using TTClasses XLA ..o 2-17
Acknowledging XLA updates without using transaction boundariescccccceevriinnnnee. 2-17
Acknowledging XLA updates at transaction boundaries............cccccocoeeueiceieciiceeccenenee 2-18
Access control impact 0n XLA ... 2-19

3 Class Descriptions

Commonly used TTCLASSES...........ccoiiiiiiiiiiiiiiiccc s 3-1
TTGLODAL....c.oeeieteeeetece ettt ettt ettt ettt e e te et e ebeebeeaeeebeeraebeessenseessenseessenseesseseensenseeneas 3-1
USAGE.. vttt 3-1
PUDLIC TNEIMDETS ...ttt ettt ettt et eb e ebesae b 3-2
PUDLC METNOAS ..ottt ettt et et e be et s be et e beebe b e eab e seenes 3-2
diSADIELOGZING() -v-vvvvreremereieieieicieieieieie ettt 3-2
SEtLOGLEVEL() c.vivvviiciiciicccc s 3-2
SEELOGSLIEAIMN()vveiiiiiic s 3-3
SALINENIV () .. 3-3

T SEALUS .ttt b et b bbbt e et e st et e st e bt e bt e bt s bt e b et e s b e st et et et ebeebeebenaea 3-3
USAZE....eiitiiiiitctc et s 3-3
SUDCLASSEScvveeietitiiesiestet ettt ettt et e te st et e b e b e b esbesbesseseesseseesaeseasassessessassessessessassassassesenseasens 3-4
TTEITOT ettt et b et st bt et st e bt ebt et st e bt eseebesmeenaeeneen 3-4
TTWAININGcviviiiiiiiicc s 34

PUDLIC TNEIMDETS ..ottt ettt ettt a et e e et e s sessessessessessessessessessasaesenseasens 3-4
PUbLic MEthOAS ...ttt ettt eaea 3-5
1SCONNECHONINVALIA()..v.veverereeiirieerieirie ettt 3-5

OSEIEAIN() 1.ttt ettt ettt bbbttt et ea et be e bt be s b sb e b et et et et et e bbb e 3-5

TESEEETTOTS() c.ventvirteiirieiric ettt sttt s s 3-5
FNTOWETTOT() 1ovvevterierieeieeeeee ettt ettt ettt et e ae s te b e e be st essesseseaseesassesseesesessessessassans 3-5
TTCONNECION ...ttt ettt ettt e b e s bbb e b et et et et e st e a e bt sbe st e st et e sa et ente st eneebeebesbesaens 3-6
USAGE....eiiiietetet s 3-6
PUDIIC NEIMDETS ...ttt et et b ettt eene 3-7
PUDLic MEtOAS ...ttt sttt ettt st 3-7
COMUIMIE() 1ottt ettt ettt st st et b e bt se e s e b aene 3-7
CompactDataStore() ..o 3-8
COMINECE() ettt ettt sttt ettt ettt b bbbt b e et et e s et e st e bt e bt s aesb e be st e st e s et et eseebeebenae 3-8
DASCONMECE() +.venvvervenerieerieirtetrte ettt ettt sttt st be sttt b e bt et st saebeneene 3-9
DUrableCOmmMUt().....ccuecveeeieieiriirieieieeeeeteeeeereste e sessessesseseeseeseeseesessessessassessessessesseseens 3-9
GEHADC() coovviiiiieic s 3-9
GEETTCONEEXE() cvervevereenerienirieirieertere ettt ettt et st b e sttt be e b sa e s s eene 3-9
ISCONNECEEA() .. evvevrereerierieteeti sttt et et et et e teste st e b e b e sessesbesseseeseasessessessessessessassessessaseasensenns 3-9
ROIDACK() -ttt ettt et s ettt et ebe b 3-9

Set AULOCOMIMITOLE() ..euvveirriieieieiereere ettt 3-9
SetAULOCOMMUITON() cvveveerieiieieieeeere et re ettt et e et e e s e ete s e essesseessesseensesseensenseens 3-10
SetlsoReadCommMutted ()coververerterieieieiieite ettt st 3-10
SetISOSErialiZable().....covevervrueriererieiirieierieierie ettt 3-10
SELLOCKWAIL() cvevvevverierieeieieiettetieee sttt ettt et te s e eseesassessessebessessessessessessesassansensens 3-10
SetPrefetChClLOSEOL() . .euivveeiierieieeieieirie ettt ettt ettt ettt e b e esenees 3-10
SetPrefetChCLOSEOMN() «..c.evveveriereriererieirieierte ettt sttt ettt sae et ebe e 3-10
SetPrefetCNCOUNT() . ..o eoveveieieieieieieere et e et e et et et e e e e e e ssessessessessessessessessesaesansensens 3-11
TTCONNECHONPOOL ...ttt sttt ettt ettt aen 3-11
USAGE....eiiieietitet s 3-11
PUDIIC NEIMDETSveiiviiiiieiiieee ettt ettt sttt ettt et be e 3-12
PUDLic MEthOAS . ..ottt 3-12
AddConnectioNTOPOOL().....ccurveririeririenirierireieierteerteerte ettt ettt 3-12
CONNECEAIL() 1rvieriierierieietetet ettt ettt ettt e b et e e eseeseesesse st essessessessessessessesseseeseasens 3-12
DASCONNECEATL() .ttt sttt st sttt st et ettt eb e b b saens 3-13
FrEECONNECHION(). v euevenerreiereieteiet ettt ettt ettt ettt sttt sttt ettt sttt e e bt ebenees 3-13
etCONNECHON() . .ouiiiiiiiiiiiiic s 3-13
GEESEALS() .vvvreiitcte s 3-13
TTCINA vttt ettt et et e b et e be b e b e s s et essesa s esebeseebeseebaseebaseeseseeseseesansesansns 3-14
USAGE....eviiiiiicc b 3-14
PUDLIC TNEMDETS ...ttt st sttt et ebt bbbt be b 3-14
Public methods for general use and non-batch operationsc...cccccoeeiviiiiininirennnes 3-15
CLOSE() c.vevenveieierieniesteteetette e ete et b e e besbesbesbessessesteseesaasassessessessessassessessessassasaesaaseasensesessens 3-16
DIOP() - 3-16
EXEOULE() vttt ettt et st b et b bbbt st be st 3-16
ExecuteImmediate().....c.ccveveiriniriisiiriirieiestesiete e tee e e eteete e sse st essesse st s esaesaessesaesaesensens 3-16
FEECIINEXE() c-venveneeneeieteitet ettt s st st sttt et et b bt et eb e be b saens 3-17
GELCOIUMIN() .. s 3-17
getColumnLength()cccciiiiii s 3-19
getColumnINUllable() ..o 3-19
GEtHANALE() ..o 3-19

GEtMAXROWS() covvviiiiiiciicicccc s 3-19

etNeXtCOIUMN() ..o e 3-20
getNextColumnNullable()......cccccociiiiiice s 3-20
GETPATAIN()..vvvvviieieicicce s 3-20
getQueryThreshold() ..o 3-21
GEtROWCOUNL() ..o 3-21
ISCOIUMNINUIL() -ttt ettt ettt ettt 3-21
Prepare() ... s 3-21
PINECOIUMNI) coenieieiii et eees 3-22
registerParami()......cccceeriiiiiiiiiiiiiii s 3-22
REPTIEPATE() c.oviiiiiiiiiiiciciicc s 3-22
SEEMAXIROWS() 1.vvevveeerenieeeeeieeierieetestestertestesseetesseestesseessesseensesseessesseessessesnsessesnsessensenseens 3-22
SEEPATAIN() vttt ettt st st be b e 3-22
setParamLength()..........ccccooviiiiiiiiiiii 3-24
SEtPATAMINUIL() c.vcvvevieeieeieeeeeeeteeee ettt ettt b e saese e e eseeseesaesassessens 3-24
5etQueryThreshold() ... 3-25
5etQUEryTImMEOUt()cceviviiiiiiiiiii s 3-25
Public methods for obtaining TTCmd object properties...........cccococeeccccccccrcrerecnenens 3-25
getColumnINAME()cveviviiiiiiiiic s 3-26
getColumnNUllability ()coevoiiie e 3-26
etCOIUMNPIECISION() -...vvvviiiieieieieieieieieeiee ettt eenee 3-26
getColumnSCale()......ccvuiviuiiiiiiiiiii s 3-26
getColUMNTYPE()....eerveiiiiecie e 3-26
GEENCOIUMNS()..vvviiiiciciccceeee e eeeeee e e e 3-26
GEtNPArameters()......ccceovveviriiiiiiiiiieiiieieee s 3-26
getParamNUullability ()ooceveiiiiie 3-26
getParamPTeciSIoN() ..o 3-27
GetParamSCale().....ooviviviuiiiiiiiii s 3-27
getParamTyPe()....cooeueueiiicieieicee e 3-27
isBeingExecuted ... 3-27
Public methods for batch Operationsccoevviviiiniiniis 3-27
DALCNSIZE() ..ottt 3-28
BindParameter()evveeveeierieieinieistietesiet et etet ettt et ee et sesaesaesaesaeseesaesansenrens 3-28
EXECULEBAtCI() ...ttt st 3-29
PrepareBatchi()cccoeiiiiiiiiiiiicc s 3-32
setParamLength().........ccccceiiiiiiiiic s 3-32
SEtPATAMINULIL() .ttt ettt 3-33
System catalog ClASSES ..o 3-33
TTCALALOG ...t 3-34
PUDLIC TNEMDETS ...ttt sttt et et ettt st sbe e 3-34
PUDBIIC MENOAS ...ttt ettt eseesesseeaens 3-34
fetchCatalogData().......c.cocueueueueuiuiueieieicicieeeee e 3-34
getNUMSYSTADIES() ...cocvviiiici e 3-35
GENUMTADIES() ... 3-35
GEtNUMUSEITADIES()vvviiiiiciciciccccce e 3-35
GetTable() c.ovoveviiiic s 3-35

getTableINdex()ociuiiiiiiiicc s 3-35

getUserTable() ..o 3-36

TTCatalogTablecooiiiii s 3-36
PUDIIC NEIMDETS ...ttt sttt sttt ettt et b e b ene 3-36
PUDLic MEthOAS . ..ottt eb e s 3-36

ELCOIUMIN() ..o 3-37
GEEINAEX() coovveiiciieec s 3-37
GEtNUMCOIUMNS()..vvvviiieicieiiicci s 3-37
GEtNUMINAEXES()vvviiiiiiiici s 3-37
getNUMSPecialCOIUMMNS()oueumimeecieiiiciiiciccicccee e 3-37
getSpecialColUMN() ...c.civiviiiiiiiiii s 3-38
getTableName()......ccooovviiiiiiii s 3-38
EtTADIEOWNET() ..ottt 3-38
GetTableTYPe() cucvevieieeiiieci e 3-38
ISSYStEMTABIE() ..ovvviiiiiiii s 3-38
ISUSEITADIE() ..veveieieieeieietetetete ettt ettt e et te e sre st e b e sbessessessessessessesansensens 3-38

TTCatalogCOIUMN ... 3-38
PUDIIC TNEIMDETS ...ttt et e ae st sttt et estebe b ebeebesbenaens 3-38
PUDIIC MEINOAS ...ttt ettt 3-39

getColumnINAME()cvoviviiiiiiiiiieiicc s 3-39
getDataTyPe() . oveveviceeieieeec s 3-39
GEELENGEN() .o 3-39
GEtNULLADIE()vviiiii s 3-39
GEIPTECISION() c..vivivviiiiiiiccc s 3-39
GEERAAIX() c+-vvveereieicecie s 3-39
GEESCALE() w.vvviiiiiice s 3-39
EtTYPENAME() «.vvieieiiiiiccie e 3-40

TTCAtaloGINAEXovviiiiiieiiiiiciccecee e 3-40
PUDLIC TNEIMDETS ...ttt st sttt et ebt bbb b benbens 3-40
PUDLIC METNOAS ...ttt sttt b e et sae 3-40

GELCOIAtION() ...ttt 3-40
getColumnINAME()coviviieiiiiiiiiicec s 3-40
getINAEXINAME() . ..vvviiiiiiicii s 3-40
EINAEXOWIIET() ...ttt 3-40
GEtNUMCOIUMNS()..vvvvviiicicieiiccc s 3-41
getTableName()......ccovuiiiiiiiiiiii s 3-41
EETYPE() cvviiiiiici s 3-41
ISUNIQUE() vt 3-41

TTCatalogSpecial COIUMI ..o s 3-41
USAGE....eviiiiictiic e 3-41
PUDLIC TNEIMDETS ...ttt bbbttt et ebt bbbt be b 3-41
PUDBIIC MENOAS ...ttt sttt eeeeseeseesessesesens 3-41

etCOIUMNINAIMIE() ...ttt 3-42
getDataTyPe()..oeueveeeeeieiece s 3-42
GELLENGEN()...oviiiiici s 3-42
EtPTECISION() ..vvviviiiiciiiii s 3-42
GEESCALE() w.vvviiicicic s 3-42
GEtTYPENAME() ..o 3-42

vii

viii

TTXIaPErsiStCONNECIONecuieuieiieiiettet ettt ettt ettt et et ebe et besteste st e st et estent et eneeseebeesessenean 3-43
USAGE....eviiiiiciccicc e 3-43
PUDLIC TNEMDETS ...ttt sttt ettt st sbe e 3-44
PUDIC MENOAS ...ttt sttt ettt eae 3-44

ACKUPAALES() ..ttt 3-44
COMINECE() 1ttt ettt ettt ettt ettt et et es e bt e bt e bt s bbb s be st et et et et ent et et eseebesbestens 3-44
deleteBookmark AndDiSCONNECE()coveverveverueerieririeinieirieenieenietrieeniee et ereeereeeienees 3-45
DHSCONNECE() c.vvevveveeieeieeieeieeie et et st e e et et e st e e s e et et ee e et esesseessesseessesseessesneensessennsenseens 3-45
fetchUpdatesWait().......ccovuruiiiniiiiiiiiiiiiiicc s 3-46
getBookmarkIndeX().......cccovuviiiiiiiiiiiiiiiiii s 3-46
SEtBOOKMATKINAEX() c.vevvevieviiiisririiiesieietetet ettt et se e e esaeseesassansessens 3-46

TTXIAROW VIEWET ...ttt ettt ettt ettt ettt sh bbb st et e st et e bt eb e e bt ebeebeebesbesbennen 3-46
USAGE....etiieiieiee e 3-46
PUDIIC NEIMDETS ...ttt ettt ettt b e b ene 3-47
PUDLic MEthOAS . ..ottt s 3-47

COLUMNPTEC() vttt sttt sttt 3-47
COIUMMNSCALE() venvenierierienieeetetete ettt ettt e e et e st esaesaeseste st e besbessessessessessessesaaseasens 3-47
GBE() wevveveneereteteet ettt ettt ettt ettt ettt ettt ettt ettt se et e st et e st et e s et eneeae st eteneeteneetenees 3-47
ELCOIUMIN() ..vviiiiiii s 3-48
iSCOluMNTTTIMESTAINP() «.vevvveieieiririeeeeee s 3-48
ISINTULL() ettt sttt ettt et ebe b b sae 3-49
NUMUPAatedCols()ovvivimiiiiiiiiiiiiiiii s 3-49
SEETUPLE() covieiiiiiicc s 3-49
UPAAtedCOL() c.ovviiiiiiiiii s 3-50

TTXIATADIEHANAIET ...ttt ettt sttt st sttt ae b e b ebe e nean 3-50
USAGE....eeiiiicicicitcc b 3-50
PUDLIC TNEMDETS ...ttt sttt ettt ettt sbe e 3-51
Protected MEMDETSooiiiiiieeeeeee ettt sttt ettt be e eae 3-51
PUDIIC MEINOAS .ttt ettt ettt 3-51

DisableTracking()......cccevvuererereririieieieiiieiieieiiee s 3-51
EnableTracking().......ccceeveueiriiiiiiiiiciiiiiciiii s 3-51
generateSQL() ..o 3-51
HandIeChange()........cccovereiiiiiiiiiiiiiiicciieecc s 3-52
HaNAIEDELEE() ...cveuereeririeiirieirieertetrtetrtet ettt ettt ettt ettt be sttt 3-52
HaNAIEINSETE() .vvevvevieeeeiieiieiiietieieete sttt ettt ettt s te e se e s sesse s esbesaessesseseessesassassensens 3-52
HandleUpdate()c.coeiiviiiiiiiiiiiiiiiciciiiici s 3-52

TTXIATADIELASE. ..cveveeetieeieieeteetect ettt ettt ettt ete et e te et e ebe e beetaesbeessenbeesseseessensesrseseesnan 3-53
USAGE....eeiiiiitccc e 3-53
PUDLIC TNEIMDETS ...ttt sttt ettt et sbe b 3-53
PUDLC METNOAS ...ttt ettt et ettt e re ettt ere e reens 3-53

AAA () eeereeetetet ettt b bbb st b et b et b bbb bt et st enesteneas 3-53
EL() cveneerentet ettt ettt bbbttt se et s et e st ene e e st teneeteneesenees 3-54
HandIleChange().........cccevuririiiiiiiiiiiiiiiecicrce s 3-54

TTXIATADIE ...ttt ettt et bbbttt b et bt eb et ebe e ene 3-54
USAZE...uveieieieteiete ittt 3-54
PUDLIC MEMDETS ...ttt ettt e eae et b e st e ra e be et e beensereenes 3-54

Index

) R 01 o) S Tall s g V<1 4 VoY IR 3-54

GELCOINUMDET() ... 3-54
GEENCOIS() vt 3-55
GEtOWNEINAIMNE() ...vvviiiiiiicic s 3-55
getTableName() ..o 3-55
TTXIACOIUININ .cetiietieieie ettt ettt ettt s et bbb et be et e e e be e be st beneene 3-55
USAGE...uveieiiteieteietet ettt 3-55
PUDIIC TNEIMDETS ...ttt ettt ettt st ettt et st ebeebeebeebeebessens 3-55
PUDLIC MEINOAS ..ttt ettt 3-55
ELCOINAME() ..vvviiiiiicie s 3-56
GEIPTECISION() c..viviviiiiiiiicc s 3-56
GEESCALE() .ttt 3-56
GEESIZE() vveveviviieicieete s 3-56
EtSYSCOINUM() ...t 3-56
EETYPEO() cvvieiiiic s 3-56
etUSETCOINUM() ..vovviiiiiiicieieiccece s 3-56
ISINUILADIE() vvveveeeeveeieieieieieiet ettt ettt ettt ese st esesbes e besessesessesessanessanees 3-56
ISPKCOIUIMIN() vevvevvevierieeieiieietietisiesestetebestestesesseseeseesessessessassessassessessessessessessessesessensensens 3-57
ISTTTIMESTAMP() . vveuiviiiniiricicci s 3-57
ISUPAAted() .vovvviviiiiiiciiic s 3-57

Preface

Oracle TimesTen In-Memory Database is a memory-optimized relational database.
Deployed in the application tier, TimesTen operates on databases that fit entirely in
physical memory using standard SQL interfaces. High availability for the in-memory
database is provided through real-time transactional replication.

TimesTen supports a variety of programming interfaces, including ODBC (Open
DataBase Connectivity), OCI (Oracle Call Interface), Oracle Pro*C/C++ (precompiler
for embedded SQL and PL/SQL instructions in C or C++ code), and PL/SQL (Oracle
procedural language extension for SQL).

The TimesTen C++ Interface Classes (TTClasses) library was written to provide an
easy-to-use, high-performance interface to TimesTen. This C++ class library provides
wrappers around the most common ODBC functionality.

This preface covers the following topics:
= Audience

= Related documents

= Conventions

= Documentation Accessibility

s Technical support

Audience

This guide is for application developers who administer and access TimesTen through
Ct++.

In addition to familiarity with the particular programming interface you use, you
should be familiar with TimesTen, SQL (Structured Query Language), database
operations, and ODBC.

Related documents

TimesTen documentation is available on the product distribution media and on the
Oracle Technology Network:

http://www.oracle.com/technetwork/database/timesten/documentation/

Oracle documentation is also available on the Oracle Technology network at the
following location. This may be especially useful for Oracle features that TimesTen
supports but does not attempt to fully document, such as OCI and Pro*C/C++.

xi

http://www.oracle.com/technetwork/database/enterprise-edition/documentation/

In particular, these Oracle documents may be of interest:
» Oracle Call Interface Programmer’s Guide

» Pro*C/C++ Programmer’s Guide

» Oracle Database Globalization Support Guide

s Oracle Database Net Services Administrator's Guide

» Oracle Database SQL Language Reference

This manual occasionally refers to ODBC APIs. ODBC API reference documentation is
available from Microsoft or a variety of third parties. For example:

http://msdn.microsoft.com/en-us/library/ms714562 (VS.85) .aspx

Conventions

Xii

TimesTen supports multiple platforms. Unless otherwise indicated, the information in
this guide applies to all supported platforms. The term Windows refers to Windows
2000, Windows XP and Windows Server 2003. The term UNIX refers to Solaris, Linux,
HP-UX, Tru64 and AIX.

Note: In TimesTen documentation, the terms "data store" and
"database" are equivalent. Both terms refer to the TimesTen database
unless otherwise noted.

This document uses the following text conventions:

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates code, commands, URLs, class names,
function names, method names, attribute names, directory names, file
names, text that appears on the screen, or text that you enter.

italic monospace Italic monospace type indicates a variable in a code example that you
must replace. For example:

Driver=install_dir/lib/libtten.sl

Replace install_dir with the path of your TimesTen installation

directory.
[] Square brackets indicate that an item in a command line is optional.
{} Curly braces indicated that you must choose one of the items separated

by a vertical bar (|) in a command line.
| A vertical bar (or pipe) separates alternative arguments.

An ellipsis (. . .) after an argument indicates that you may use more
than one argument on a single command line.

Y% The percent sign indicates the UNIX shell prompt.
The number (or pound) sign indicates the UNIX root prompt.

TimesTen documentation uses the following variables to identify path, file and user

names.

Convention Meaning

install dir The path that represents the directory where the current release of
TimesTen is installed.

TTinstance The instance name for your specific installation of TimesTen. Each
installation of TimesTen must be identified at install time with a unique
alphanumeric instance name. This name appears in the install path.

bitsor bb Two digits, either 32 or 64, that represent either the 32-bit or 64-bit
operating system.

releaseor rr Numbers that represent a major TimesTen release, with or without dots.
For example, 1121 or 11.2.1 represents TimesTen Release 11.2.1.

DSN The data source name (for the TimesTen database).

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Technical support

For information about obtaining technical support for TimesTen products, go to the
following Web address:

http://www.oracle.com/support/contact.html

xiii

Xiv

What's New

This section summarizes new features and functionality of Oracle TimesTen
In-Memory Database Release 11.2.1 that are documented in this guide, providing links
into the guide for more information.

New features in Release 11.2.1.6.0

TTClasses implements the following features beginning with the TimesTen Release
11.2.1.6.0.

OUT parameters

Discussion of binding parameters includes new support for binding OUT and IN
OUT parameters.

See appropriate subsections under "Binding parameters" on page 2-7.
Duplicate parameters

TimesTen supports either of two modes for binding duplicate parameters in a SQL
statement. Use the DuplicateBindMode general connection attribute to choose
between Oracle mode (now the default) and traditional TimesTen mode.

See "Binding duplicate parameters” on page 2-12.
REF CURSORs

REF CURSOR is a PL/SQL concept, where a REF CURSOR is a handle to a cursor
over a SQL result set and can be passed between PL/SQL and an application.

See "Working with REF CURSORs" on page 2-13.
Rowids

Each row in a TimesTen database table has a unique identifier known as its rowid.
TimesTen now supports Oracle-style rowids. An application can retrieve the rowid
of a row from the ROWID pseudocolumn. Rowids can be represented in either
binary or character format.

See "Working with rowids" on page 2-15.
DML returning (RETURNING INTO clause)

TimesTen now supports the RETURNING INTO clause, referred to as DML
returning, with an INSERT, UPDATE, or DELETE statement to return specified items
from a row that was affected by the action. This is included in the discussion of
OUT parameters in "Binding OUT or IN OUT parameters" on page 2-10.

Exception handling

XV

By default, TTStatus objects are thrown as exceptions whenever an error occurs.
This allows C++ applications to use {try/catch} blocks to detect and recover
from failure, which is the recommended mode of operation. The TTEXCEPT flag,
which allowed exceptions to be disabled in previous releases, is now deprecated. It
is possible, however, to selectively suppress exceptions and manually check a
TTStatus object for error conditions by initializing the TTStatus object with the
value TTStatus: : DO_NOT_THROW, then passing that object as the last parameter
of a method call. Most TTClasses methods documented in this manual also
support a signature with this TTStatus& parameter as the last parameter in the
calling sequence, although these signatures are not documented and it is generally
not recommended to operate in this way.

See "TTStatus" on page 3-3.
API changes

Be aware that there have been numerous method additions and changes,
especially regarding TTStatus parameters in the calling sequences. Consult the
documentation in Chapter 3, "Class Descriptions," carefully. Many methods were
documented with a TTStatus parameter in previous releases, and while these are
still supported for backward compatibility, using these methods is no longer
documented or encouraged.

New features in Release 11.2.1.1.0

XVi

Quick Start demos

The 11.2.1 release includes an optional Quick Start feature with introductory
information, tutorials, and new or reworked demo applications. Note that the
demos are in a different location than in earlier releases and some have been
renamed.

See "About the TimesTen TTClasses demos" on page 1-7 and
install dir/quickstart.html in your installation.

Access control

Perhaps the most significant overall change to previous functionality in TimesTen
Release 11.2.1 is access control. TimesTen has features to control database access
with object-level resolution for database objects such as tables, views, materialized
views, and sequences. This also affects access to certain TimesTen built-in
procedures, utilities, and connection attributes.

See "Considering TimesTen features for access control" on page 2-4. For general
information, see "Managing Access Control" in Oracle TimesTen In-Memory Database
Operations Guide.

1

TTClasses Development Environment

This chapter provides information to help you get started with your TTClasses
development environment.

TTClasses comes compiled and preconfigured during TimesTen installation. If you
have a different C++ runtime than what TTClasses was compiled with, recompile the
library using the make (UNIX) or nmake (Microsoft Windows) utility.

The information here includes a discussion of environment variables and compilation
for TTClasses itself, information for compiling and linking your TTClasses
applications, and an introduction to the Quick Start demo applications for TTClasses.
The following topics are covered:

= Setting up TTClasses
s Compiling and linking applications

s About the TimesTen TTClasses demos

Setting up TTClasses
This section discusses how to set up TTClasses, covering the following topics:
m Setting up TTClasses on UNIX
s Setting up TTClasses on Windows

» TTClasses compiler macros

Setting up TTClasses on UNIX

This section covers the following topics for setting up TTClasses in a UNIX
environment:

= Set UNIX environment variables

s Compile TTClasses on UNIX

= Compilation options on UNIX

s Install TTClasses after compilation (UNIX only)

Set UNIX environment variables

To use TTClasses, ensure that your shell environment variables are set correctly. You
can optionally source one of the following scripts or add a line to source one of these
scripts in your login initialization script (.profile or . cshrc), where install_dir
is your TimesTen installation directory.

TTClasses Development Environment 1-1

Setting up TTClasses

install dir/bin/ttenv.sh (sh/ksh/bash)
install_dir/bin/ttenv.csh (csh/tcsh)

Compile TTClasses on UNIX

If you have application linking problems, which can be caused by using a different
C++ runtime than what TTClasses was compiled with, recompile the library using the
make utility.

To recompile TTClasses, change to the ttclasses directory, where install_diris
your TimesTen installation directory:

$ cd install_dir/ttclasses

Runmake clean for a fresh start:

S make clean

You can recompile TTClasses for both direct and client/server connections as follows:

$ make

Alternatively, to compile TTClasses for client/server only, use the MakefileCS
Makefile:

$ make -f MakefileCS

Compilation options on UNIX

The following make target options are available when you compile TTClasses in a
UNIX environment:

= all:Build a shared optimized library or libraries (default). When used with
Makefile this can be for either direct or client/server connections. When used
with MakefileCs this is for client/server only.

» shared_opt: Build a shared optimized library. Currently this has the same effect
asall.

» shared_debug: Build a shared debug library.

s static_opt: Build a static optimized library.

= static_debug: Build a static debug library.

= opt: Build the optimized libraries (shared and static).

= debug: Build the debug libraries (shared and static).

= clean: Delete the TTClasses libraries and object files.

To specify a make target, use the name of the make target on the command line.
For example, to build a shared debug version of TTClasses:

$ make clean
$ make shared_debug

Install TTClasses after compilation (UNIX only)

After compilation, install the library so all users of the TimesTen instance can use
TTClasses. The following shows the steps to install the TTClasses library on a UNIX
system.

S cd install dir/ttclasses
$ make install

1-2 Oracle TimesTen In-Memory Database TTClasses Guide

Setting up TTClasses

Setting up TTClasses on Windows

This section covers the following topics for setting up TTClasses in a Windows
environment:

s Set Windows environment variables
s Compile TTClasses on Windows

s Compilation options on Windows

Note: Installing TTClasses after compiling the TTClasses library
happens automatically on Windows.

Set Windows environment variables

Before recompiling, ensure that the PATH, INCLUDE, and LIB environment variables
point to the correct Visual Studio directories. Execute the applicable Visual Studio C++
batch file (for example, VCVARS32 . BAT or VSVARS32 . BAT) to accomplish this.

Then set environment variables for TimesTen (if they were not already set during
installation) by running the following:

install_dir\bin\ttenv.bat

Compile TTClasses on Windows

If you have application linking problems, which can be caused by using a different
C++ runtime than what TTClasses was compiled with, recompile the library using the
nmake utility.

To recompile TTClasses, change to the ttclasses directory, where install diris
your TimesTen installation directory:

install_dir\ttclasses

Run nmake clean for a fresh start:

install_dir\ttclasses> nmake clean

Then recompile. By default this is for both direct and client/server connections:

install_dir\ttclasses> nmake

Compilation options on Windows

The following make target options are available when you compile TTClasses in a
Windows environment:

= all:Build shared optimized libraries for direct and client/server connections
(default).

s client: Build shared optimized library for client/server only.

» msdm: Build shared optimized library for Microsoft driver manager.

= clean: Delete the TTClasses libraries and object files.

To specify a make target, use the name of the make target on the command line.
For example, to build only the client/server TTClasses library:

install_dir\ttclasses> nmake clean
install_dir\ttclasses> nmake client

TTClasses Development Environment 1-3

Setting up TTClasses

TTClasses compiler macros

Most users have no need to manipulate the TTClasses Makefile. If you must modify it
manually, you can add flags for the TTClasses compiler macros to the Makefile. For
UNIX, add -Dflagname. For Windows, add /Dflagname.

This section includes information about the following compiler macros:

s TTC_USE_STRINGSTREAM, USE_OLD_CPP_STREAMS: For C++1/0 streams
s TTDEBUG: Generate additional debugging and error checking logic

m TT_64BIT: Use TTClasses with 64-bit TimesTen

s Platform-specific compiler macros

TTC_USE_STRINGSTREAM, USE_OLD_CPP_STREAMS: For C++ I/O streams

There are multiple types of C++ streams and they are not compatible with each other.
TimesTen provides two related flags. Which streams you use in your application
determines which flag to set, or whether you should set neither, as follows (from
newer stream types to older):

= For types of streams where you are including <iostream> and using the
ostringstream class, set the TTC_USE_STRINGSTREAM flag.

= For types of streams where you are including <iostream> and using the
ostrstream class, set neither flag. This is the default for most platforms and
compilers.

= For types of streams where you are including <iostream.h> and using the
ostrstream class, set the USE_OLD_CPP_STREAMS flag. This is the default for
some older platforms and compilers.

Check your TTClasses Makefile. If the flags are not set properly, then update the
Makefile as appropriate, recompile TTClasses, and replace the previous TTClasses
library file with the recompiled one.

Also see the subsections that follow.

TTC_USE_STRINGSTREAM: For C++ I/O stream code with ostringstream This compiler flag is
for use with C++ compilers that reliably support C++ stream types utilizing the
ostringstream class. If your program uses C++ stream code where you include
<iostream> and use ostringstream, then TTClasses must be compiled with the
-DTTC_USE_STRINGSTREAM setting.

Also note that in this case, the USE_OLD_CPP_STREAMS flag must not be set.

Note: With gcc version 3.2 or higher, the TTC_USE_STRINGSTREAM
flag is set by default in the file
install dir/include/ttclasses/TTIostream.h.

Neither: For newer C++ 1/O stream code with ostrstream If your program uses C++ stream
code where you include <iostream> and use the ostrstream class, neither the
TTC_USE_STRINGSTREAM flag nor the USE_OLD_CPP_STREAMS flag should be set.

USE_OLD_CPP_STREAMS: For older C++ I/O stream code with ostrstream This compiler flag
is for older C++ compilers that do not support <iostream>. If your program uses old
C++ stream code where you include <iostream.h> and use the ostrstream class,
then TTClasses must be compiled with the -DUSE_OLD_CPP_STREAMS setting.

1-4 Oracle TimesTen In-Memory Database TTClasses Guide

Compiling and linking applications

Also note that in this case, the TTC_USE_STRINGSTREAM flag must not be set.

TTDEBUG: Generate additional debugging and error checking logic

Compile TTClasses with ~-DTTDEBUG to generate extra debugging information. This
extra information reduces performance somewhat, so use this flag only in
development (not production) systems.

TT _64BIT: Use TTClasses with 64-bit TimesTen

Compile TTClasses with -DTT_64BIT if you are writing a 64-bit TimesTen
application.

Note that 64-bit TTClasses has been tested on AIX, HP-UX, Solaris, Red Hat Linux,
and Tru64.

Platform-specific compiler macros

The following compiler macros are specific to a particular platform or compiler
combination. You should not have to specify these compiler macros manually. Their
use is determined by the Makefile chosen by the configure program.

GCC Compile TTClasses with the -DGCC flag when using gcc on any platform.

HPUX Compile TTClasses with the ~-DHPUX flag when compiling on HP-UX.

Compiling and linking applications

This section discusses how to compile and link your TTClasses applications on UNIX
and Windows, including a section on considerations when using the ODBC driver
manager on Windows.

You can also refer to the following sections in Oracle TimesTen In-Memory Database C
Developer’s Guide for related information:

= 'Linking options" for general information about TimesTen linking options, such as
using the direct driver versus the client driver or, on Windows, whether to use a
driver manager.

s "Compiling and linking applications"

Compiling and linking applications on UNIX

A\
UNIX
f S

For compiling your applications, include the TTClasses header files that are in the
install_dir/include/ttclasses directory. You can accomplish this simply by
including TTInclude.h from that directory, as follows.

Use the following compile command:

-Iinstall_dir/include

And use the following line in your code:

#include <ttclasses/TTInclude.h>

TTClasses XLA programs must also include the following:

#include <ttclasses/TTXla.h>

Table 1-1 summarizes the TTClasses libraries available for linking your applications.

TTClasses Development Environment 1-5

Compiling and linking applications

77N\
AlX
) g

Table 1-1 Summary of TTClasses libraries for UNIX

Usage Library
For TimesTen direct connections. libttclasses.so
For TimesTen client/server connections. libttclassesCS.so

For example, adding the following to the link command would result in use of the
client driver:

-Linstall_dir/lib -1lttclassesCS
The -L option tells the linker to search the TimesTen 1ib directory for library files. The
-lttclassesCs option links in the driver.

On AIX, when linking applications with the TimesTen ODBC client driver, the C++
runtime library must be included in the link command (because AIX does not link it
automatically) and must follow the client driver:

-Linstall_dir/lib -1lttclassesCS -1C_r

You can use the Makefile in the quickstart/sample_code/ttclasses directory
to guide you in creating your own Makefile.

Compiling and linking applications on Windows

1
WINDOWS
L

For compiling your applications, include the TTClasses header files that are in the
install_dir\include\ttclasses directory. You can accomplish this simply by
including TTInclude.h from that directory, as follows.

Use the following compile command:

/Iinstall_dir\include

And use the following line in your code:

#include <ttclasses/TTInclude.h>

TTClasses XLA programs must also include the following:

#include <ttclasses/TTXla.h>
Table 1-2 summarizes the TTClasses libraries available for linking your applications.

Table 1-2 Summary of TTClasses libraries for Windows

Usage Library

For TimesTen direct connections. ttclassesl121.1ib
For TimesTen client/server connections. ttclassesl121CS.1lib
For the Microsoft ODBC driver manager. ttclassesll121DM.1lib

See the next section,
"Considerations when using
an ODBC driver manager
(Windows)".

Add the appropriate library, for example install_dir\lib\ttclasses1121.1ib,
to your link command.

1-6 Oracle TimesTen In-Memory Database TTClasses Guide

About the TimesTen TTClasses demos

You can use the Makefile in the quickstart\sample_code\ttclasses directory
to guide you in creating your own Makefile.

Considerations when using an ODBC driver manager (Windows)

Be aware of the following limitations in TTClasses when you use the ODBC driver
manager on Windows. (These restrictions do not apply to the demo t tdm driver
manager supplied with the TimesTen Quick Start.)

= XLA functionality does not work.
= REF CURSOR functionality does not work.

In addition, the driver manager does not support the ODBC C types SQLBIGINT and
SQLTINYINT when used with TimesTen. When using the driver manager, you cannot
call methods that use either of these data types in their signatures. This includes the
applicable overloaded versions of any of the following TTCmd methods:

getColumn (), getColumnNullable (), getNextColumn (),
getNextColumnNullable (), setParam(), getParam(), and

BindParameter ().

About the TimesTen TTClasses demos

After you have configured your C++ environment, you can confirm that everything is
set up correctly by compiling and running the TimesTen Quick Start demo
applications. Refer to the Quick Start welcome page at
install_dir/quickstart.html, especially the links under SAMPLE
PROGRAMS, for information about the following;:

= Demo schema and setup: The build_sampledb script creates a sample database
and demo schema. You must run this before you start using the demos.

s Demo environment and setup: The ttquickstartenv script, a superset of the
ttenv script generally used for TimesTen setup, sets up the demo environment.
You must run this each time you enter a session where you want to compile and
run any of the demos.

s Demos and setup: TimesTen provides demos for TTClasses and XLA in
subdirectories under the install_dir/quickstart/sample_code directory.
For instructions on compiling and running the demos, see the README files in
the subdirectories.

= What the demos do: A synopsis of each demo is provided when you click
TTClasses (C++) under SAMPLE PROGRAMS.

TTClasses Development Environment 1-7

About the TimesTen TTClasses demos

1-8 Oracle TimesTen In-Memory Database TTClasses Guide

2

Understanding and Using TTClasses

This chapter provides some general overview and best practices for TTClasses. It
includes the following topics:

s Overview of TTClasses

s Using TTCmd, TTConnection, and TTConnectionPool
= Considering TimesTen features for access control

= Managing TimesTen connections

= Managing TimesTen data

s Using TTClasses logging

s Using TTClasses XLA

Overview of TTClasses

The TimesTen C++ Interface Classes library (TTClasses) provides wrappers around the
most common ODBC functionality to allow database access. It was developed to meet
the demand for an API that is easier to use than ODBC but does not sacrifice
performance. Refer to ODBC API reference documentation for detailed information
about ODBC.

In addition to providing a C++ interface to the TimesTen ODBC interface, TTClasses
supplies an interface to the TimesTen Transaction Log API (XLA). XLA allows an
application to monitor one or more tables in a database. When other applications
change that table, the changes are reported through XLA to the monitoring
application. TTClasses provides a convenient interface to the most commonly used
aspects of XLA functionality. For general information about XLA, see "XLA and
TimesTen Event Management" in Oracle TimesTen In-Memory Database C Developer’s
Guide.

TTClasses is also intended to promote best practices when writing application
software that uses the TimesTen Data Manager. The library uses TimesTen in an
optimal manner. For example, autocommit is disabled by default. Parameterized SQL
is strongly encouraged and its use is greatly simplified in TTClasses compared to
hand-coded ODBC.

Using TTCmd, TTConnection, and TTConnectionPool

While TTClasses can be used in several ways, the following general approach has been
used successfully and can easily be adapted to a variety of applications.

Understanding and Using TTClasses 2-1

Using TTCmd, TTConnection, and TTConnectionPool

To achieve optimal performance, real-time applications should use prepared SQL
statements. Ideally, all SQL statements that will be used by an application are prepared
when the application begins, using a separate TTCmd object for each statement. In
ODBC, and thus in TTClasses, statements are bound to a particular connection, so a
full set of the statements used by the application will often be associated with every
connection to the database.

An easy way to accomplish this is to develop an application-specific class that is
derived from TTConnection. For an application named XYZ, you can create a class
XYZConnection, for example. The XYZConnection class contains private TTCmd
members representing the prepared SQL statements that can be used in the
application, and provides new public methods to implement the application-specific
database functionality through these private TTCmd members.

Before a TTCmd object can be used, a SQL statement (such as SELECT, INSERT,
UPDATE, or DELETE) must be associated with it. The association is accomplished by
using the Prepare () method, which also compiles and optimizes the SQL statement
to ensure it will be executed in an efficient manner. Note that the Prepare () method
only prepares and does not execute the statement.

With TimesTen, statements are typically parameterized for better performance.
Consider the following SQL statements:

SELECT coll FROM tablel WHERE C 10;
SELECT coll FROM tablel WHERE C = 11;

It is more efficient to prepare a single parameterized statement and execute it multiple
times:

SELECT coll FROM tablel WHERE C = ?;

The value for "?" is specified at runtime by using the TTCmd: : setParam () method.

There is no need to explicitly bind columns or parameters to a SQL statement, as is
necessary when you use ODBC directly. TTCmd automatically defines and binds all
necessary columns at prepare time. Parameters are bound at execution time.

Note that preparing is a relatively expensive operation. When an application
establishes a connection to TimesTen, using TTConnection: :Connect (), the
application should prepare all TTCmd objects associated with the connection.

A TTStatus object is thrown as an exception if an error occurs during the prepare
operation. In general, anytime a TTClasses method encounters an error, it throws an
exception in this way, which the application should catch and handle appropriately.
The TTClasses Quick Start demo applications show examples of how this is done. (See
"About the TimesTen TTClasses demos" on page 1-7.)

Note: If TTConnection and TTCmd lack any getter or setter
methods you need, you can access underlying ODBC connection and
statement handles directly, through the

TTConnection: :getHdbc () and TTCmd: : getHandle () methods.
Similarly, there is a TTGlobal: : sglhenv () method to access the
ODBC environment handle.

Example 2—-1 Definition of a connection class

This is an example of a class that inherits from TTConnection.

class XYZConnection : public TTConnection {
private:

2-2 Oracle TimesTen In-Memory Database TTClasses Guide

Using TTCmd, TTConnection, and TTConnectionPool

TTCmd updateData;
TTCmd insertData;
TTCmd queryData;

public:
XYZConnection() ;
~XYZConnection() ;
virtual void Connect (const char* connStr, const char* user, const char* pwd);
void updateUser ();
void addUser (char* nameP);
void queryUser (const char* nameP, int* valueP);
}i

In this example, an XYZConnection object is a connection to TimesTen that can be
used to perform three application-specific operations: addUser (), updateUser (),
and queryUser (). These operations are specific to the XYz application. The
implementation of these three methods can use the updateData, insertData, and
queryData TTCmd objects to implement the database operations of the application.

To prepare the SQL statements of the application, the XYZConnection class overloads
the Connect () method provided by the TTConnection base class. The
XYZConnection: :Connect () method calls the Connect () method of the base
class to establish the database connection and also calls the Prepare () method for
each TTCmd object to prepare the SQL statements for later use.

Example 2-2 Definition of a Connect() method

This example shows an implementation of the XYZConnection: :Connect ()
method.

void

XYZConnection: :Connect (const char* connStr, const char* user, const char* pwd)

{

try {

TTConnection: :Connect (connStr, user, pwd);
updateData.Prepare(this, "update mydata v set foo = ? where bar = ?");
insertData.Prepare(this, "insert into mydata values(?,0)");
queryData.Prepare(this, "select i from mydata where name = ?");

}
catch (TTStatus st) {
cerr << "Error in XYZConnection::Connect: " << st << endl;

}

return;

}

This Connect () method makes the XYZConnection object and its
application-specific methods fully operational.

This approach also works well with the design of the TTConnectionPool class. The
application can create numerous objects of type XYZConnection and add them to a
TTConnectionPool object. By calling TTConnectionPool: :ConnectAll (), the
application connects all connections in the pool to the database and prepares all SQL
statements. Refer to the usage discussion under "TTConnectionPool" on page 3-11,
which includes important information.

This application design allows database access to be easily separated from the
application business logic. Only the XYZConnection class contains database-specific
code.

Understanding and Using TTClasses 2-3

Considering TimesTen features for access control

Examples of this application design can be found in several of the TTClasses sample
programs that are included with the TimesTen Quick Start. See "About the TimesTen
TTClasses demos" on page 1-7.

Note that other configurations are possible. Some customers have extended this
scheme further, so that SQL statements to be used in an application are listed in a table
in the database, rather than being hard-coded in the application itself. This allows
changes to database functionality to be implemented by making database changes
rather than application changes.

Example 2-3 Definition of a Disconnect() method

This example shows an implementation of the XYZConnection: :Disconnect ()
method.

void

XYZConnection: :Disconnect ()

{
updateData.Drop () ;
insertData.Drop () ;
queryData.Drop () ;

TTConnection: :Disconnect () ;

Considering TimesTen features for access control

TimesTen has features to control database access with object-level resolution for
database objects such as tables, views, materialized views, sequences, and synonymes.
You can refer to "Managing Access Control" in Oracle TimesTen In-Memory Database
Operations Guide for general information about these features. Also see "Considering
TimesTen features for access control" in Oracle TimesTen In-Memory Database C
Developer’s Guide.

For any query, SQL DML statement, or SQL DDL statement discussed in this
document or used in an example, it is assumed that the user has appropriate privileges
to execute the statement. For example, a SELECT statement on a table requires
ownership of the table, SELECT privilege granted on the table, or the SELECT ANY
TABLE system privilege.

Refer to "SQL Statements" in Oracle TimesTen In-Memory Database SQL Reference for the
privilege required for any given SQL statement.

Privileges are granted through the SQL statement GRANT and revoked through the
SQL statement REVOKE. Some privileges are granted to all users through the PUBLIC
role, of which each user is a member. See "The PUBLIC role" in Oracle TimesTen
In-Memory Database SQL Reference for information about that role.

In addition, access control affects connecting to a database (as discussed in "Access
control for connections” on page 2-6), setting connection attributes, using XLA (as
discussed in "Access control impact on XLA" on page 2-19), and executing C utility
functions.

2-4 Oracle TimesTen In-Memory Database TTClasses Guide

Managing TimesTen connections

Notes:
s Access control cannot be disabled.

= Access control privileges are checked both when SQL is prepared
and when it is executed in the database, with most of the
performance cost coming at prepare time.

Managing TimesTen connections

About DSNs

This section covers topics related to connecting to a database:
= About DSNs
= Connecting and disconnecting

s Access control for connections

Oracle TimesTen In-Memory Database Operations Guide contains information about
creating a DSN (data source name) for a database. The type of DSN you create
depends on whether your application will connect directly to the database or will
connect by a client.

If you intend to connect directly to the database, refer to "Managing TimesTen
Databases" in Oracle TimesTen In-Memory Database Operations Guide. There are sections
on creating a DSN for a direct connection from UNIX or Windows.

If you intend to create a client connection to the database, refer to "Working with the
TimesTen Client and Server" in Oracle TimesTen In-Memory Database Operations Guide.
There are sections on creating a DSN for a client/server connection from UNIX or
Windows.

Note: A TimesTen connection cannot be inherited from a parent
process. If a process opens a database connection before creating a
child process, the child must not use the connection.

Connecting and disconnecting

Based on the XYZConnection class discussed in "Using TTCmd, TTConnection, and
TTConnectionPool" on page 2-1, you could connect to and disconnect from TimesTen
as shown in the following example.

Example 2-4 Connecting to and disconnecting from TimesTen

XYZConnection conn;
char connStr[256];
char user([30];
char pwd[30];

try {
conn.Connect (connStr, user, pwd);

}

Understanding and Using TTClasses 2-5

Managing TimesTen connections

catch (TTWarning st) {
cerr << "Warning connecting to TimesTen: " << st << endl;
}
catch (TTError st) {
cerr << "Error connecting to TimesTen " << st << endl;
exit(1);

// ... Work with the database connection...

try {
conn.Disconnect () ;

}

catch (TTStatus st) {
cerr << "Error disconnecting from TimesTen: " << st << endl;
exit (1) ;

Access control for connections

This section covers access control features related to how you connect to the database
with TTClasses.

For a general access control overview, refer to "Considering TimesTen features for
access control” on page 2-4.

Connection method signatures for access control

The following method signatures are defined for the TTConnection,
TTConnectionPool, and TTX1laPersistConnection classes. (Note that in all
cases, signatures are also supported with a TTStatus object as the last parameter, but
using the methods with TTStatus is not typical.)

virtual void
TTConnection: :Connect (const char* connStr)

virtual void
TTConnection: :Connect (const char* connStr, const char* username,
const char* password)

virtual void
TTConnection: :Connect (const char* connStr,
DRIVER_COMPLETION_ENUM driverCompletion)

void
TTConnectionPool: :ConnectAll (const char* connStr)

void
TTConnectionPool: :ConnectAll (const char* connStr, const char* username,
const char* password)

virtual void

TTXlaPersistConnection: :Connect (const char* connStr, const char* username,
const char* password, const char* bookmarkStr,
bool createBookmarkFlag)

virtual void
TTXlaPersistConnection: :Connect (const char* connStr,
DRIVER_COMPLETION_ENUM driverCompletion,
const char * bookmarkStr, bool createBookmarkFlag)

2-6 Oracle TimesTen In-Memory Database TTClasses Guide

Managing TimesTen data

virtual void
TTXlaPersistConnection: :Connect (const char* connStr, const char* username,
const char* password, const char* bookmarkStr)

virtual void

TTX1laPersistConnection: :Connect (const char* connStr,
DRIVER_COMPLETION_ENUM driverCompletion,
const char * bookmarkStr)

Notes:

s The connection string (connStr value) can specify the user name
and password, such as
"DSN=testdb;uid=brian;pwd=welcome". But note that for
signatures that take connection string, user name, and password
arguments, the user name and password arguments take
precedence over any user name or password specified in the
connection string.

= See "TTConnection" on page 3-6 for information about
DRIVER_COMPLETION_ENUM values.

CREATE SESSION privilege for access control

Privilege to connect to a database must be explicitly granted to every user other than
the instance administrator, through the CREATE SESSION privilege. This is a system
privilege. It must be granted by an administrator to the user, either directly or through
the PUBLIC role. Refer to "Managing Access Control" in Oracle TimesTen In-Memory
Database Operations Guide for additional information and examples.

XLA privilege for XLA connections

In addition to the CREATE SESSION privilege, a user must be granted the XLA
privilege to create an XLA connection and execute XLA functionality, as noted in
"Access control impact on XLA" on page 2-19.

Managing TimesTen data
This section covers the following topics for working with data.
= Binding parameters
= Working with REF CURSORs
= Working with rowids

= Setting a timeout or threshold for executing SQL statements

Binding parameters

This section discusses parameter binding for SQL statements. The TTCmd class
supplies the methods setParam () and BindParameter () (for batch operations) to
bind parameters. It also supplies the method registerParam() to support output
and input/output parameters or to override default bind types. There is also
functionality to support either possible TimesTen DuplicateBindMode setting if
there are duplicate parameters.

These topics are covered in the following sections.

Understanding and Using TTClasses 2-7

Managing TimesTen data

= Binding IN parameters
= Registering parameters
= Binding OUT or IN OUT parameters

» Binding duplicate parameters

Binding IN parameters

For non-batch operations, use the TTCmd: : setParam () method to bind IN
parameters for SQL statements, specifying the parameter position and the value to be
bound. For batch operations, use the TTCmd : : BindParameter () method. (See
Example 3-5, "Using the ExecuteBatch() method" on page 3-30 for an example of batch
operations.)

For non-batch operations, Example 2-5 shows snippets from a class
SampleConnection, where parameters are bound to insert a row into a table. (This
example is from the TimesTen Quick Start demo basics. cpp. See "About the
TimesTen TTClasses demos" on page 1-7.) Implementation of the Connect () method
is omitted here, but see Example 2-2 on page 2-3 for a Connect () implementation.

Assume a table basics, defined as follows:

create table basics (name char(10) not null primary key, 1 tt_integer);

Example 2-5 Binding parameters to insert a row (non-batch)

class SampleConnection : public TTConnection
{

using TTConnection::Connect;

private:
TTCmd insertData;

protected:

public:
SampleConnection() ;
~SampleConnection() ;

virtual void Connect (const char* connStr,
DRIVER_COMPLETION_ENUM driverCompletion) ;
void insert (char* nameP);

// Assume a Connect () method implemented with the following:
// insertData.Prepare(this, "insert into basics values(:name, :value)");

void

SampleConnection: :insert (char* nameP)

{
static long i = 0;
insertData.setParam(l, nameP);
insertData.setParam(2, i++);
insertData.Execute() ;

2-8 Oracle TimesTen In-Memory Database TTClasses Guide

Managing TimesTen data

int
main(int argc, char** argv)

{

char name[10];
SampleConnection conn;

// Assume conn set as a connection, name as a character string.

try {

conn.insert (name) ;

}

catch (TTStatus st)

cerr << "Error inserting row " << name << ":" << st << endl;

conn.Rollback() ;

}

Registering parameters

The TTCmd class provides the method registerParam (), which enables you to
specify the SQL type, precision, and scale of a parameter (as applicable) and whether
the parameter is IN, OUT, or IN OUT. A registerParam() callis required for an OUT
or IN OUT parameter, which could be a REF CURSOR (OUT only) or a parameter from
a PL/SQL RETURNING INTO clause (OUT only), procedure, or function.

For an IN parameter, TTClasses by default derives the SQL type from the bound C
type for the setParam () or BindParameter () call according to the mappings
shown in Table 2-1. It is not typical to need a registerParam() call for an IN
parameter, but you can call it if you have reason to use a particular SQL type or

precision or scale.

Table 2-1 TTClasses C type to SQL type mappings

C type

SQL type

char*

SQL_VARCHAR

const char*

SQL_VARCHAR

const void*

SOL_VARBINARY

double SQL_DOUBLE
DATE_STRUCT SQL_DATE
float SQL_REAL

int SQL_INTEGER
SQLBIGINT SQL_BIGINT
SQLCHAR* SQL_VARCHAR
SQLINTEGER SQL_INTEGER
SQLSMALLINT SQL_SMALLINT
SQLTINYINT SQL_TINYINT
SQLWCHAR* SQL_WVARCHAR

Understanding and Using TTClasses 2-9

Managing TimesTen data

Table 2-1 (Cont.) TTClasses C type to SQL type mappings

C type SQL type
TIME_STRUCT SQL_TIME
TIMESTAMP_STRUCT SQL_TIMESTAMP

A registerParam() call can be either before or after the related setParam() or
BindParameter () call and takes precedence regarding SQL type, precision, and
scale (as applicable).

The method signature is as follows:

inline void

TTCmd: :registerParam(int pno,
int inputOutputType,
int sqgltype,
int precision = 0,
int scale = 0)

= pnois the parameter position in the statement.

» InputOutputType can be TTCmd: : PARAM_IN, TTCmd: : PARAM OUT, or
TTCmd: : PARAM_TNOUT.

s sqgltypeisthe SQL type of the data (for example, SQLINTEGER).

s precisionand scale (both optional) are used the same way as in an ODBC
SQLBindParameter call. For primitive types, precision and scale settings
are ignored.

Note: See the next section, "Binding OUT or IN OUT parameters",
for an example. Also see "registerParam()" on page 3-22 for additional
reference information.

Binding OUT or IN OUT parameters

TTClasses supports output and input/output parameters. This includes REF
CURSORSs (0UT only), parameters from a PL/SQL procedure or function that has OUT
or IN OUT parameters, or a parameter from a RETURNING INTO clause (OUT only).

You must use the TTCmd: : registerParam() method, described in the preceding
section, to inform TTClasses if a parameter in a SQL statement is OUT or IN OUT. For
the intputOutputParameter setting in the method call, use TTCmd: : PARAM_OUT
or TTCmd: : PARAM_INOUT as appropriate.

For non-batch operations, after the SQL statement has been executed, use the
appropriate TTCmd: : getParam () method to retrieve the output value, specifying the
parameter position and the variable into which the value is placed. There is a signature
for each data type.

For batch operations, TTCmd: : BindParameter () is used for OUT or IN OUT
parameters as well as for IN parameters, in either case before the statement is
executed. After statement execution, the data for an OUT value will be in the buffer
specified in the BindParameter () call. BindParameter () has a signature for each
data type. Note that for an IN OUT parameter in batch operations,

BindParameter () is called only once, before statement execution. Before execution
the specified buffer contains the input, and after statement execution it contains the
output.

2-10 Oracle TimesTen In-Memory Database TTClasses Guide

Managing TimesTen data

The following examples provide code fragments showing the use of OUT and IN OUT
parameters.

Example 2-6 Using IN and OUT parameters (non-batch)

This example uses input and output parameters. The set Param () call binds the value
of the input parameter :a. The getParam () call retrieves the value of the output
parameter :b. The output parameter is also registered as required.

// tl has a single TT_INTEGER column

cmd. Prepare (&conn, "insert into tl values (:a) returning cl into :b");
cmd.setParam (1, 99);

cmd.registerParam(2, TTCmd::PARAM OUT, SQLINTEGER) ;

cmd. Execute () ;

SQLINTEGER outval;

if (cmd.getParam(2, &outval))
cerr << "The output value is null." << endl;
else
cerr << "The output value is " << outval << endl;

Example 2-7 Using IN and OUT parameters (batch operations)

This example uses input and output parameters in a batch operation. The first
BindParameter () call provides the input data for the first parameter : a. The second
BindParameter () call provides a buffer for output data for the second parameter
:b.

#define BATCH_SIZE 5

int input_int_array[BATCH_SIZE] = { 91, 92, 93, 94, 95 };
int output_int_array[BATCH _SIZE] = { -1, -1, -1, -1, -1 };
int numrows;

cmd. PrepareBatch (&conn, "insert into tl values (:a) returning cl into :b",
BATCH_SIZE) ;

cmd.BindParameter (1, BATCH_SIZE, input_int_array);

cmd.BindParameter (2, BATCH_SIZE, output_int_array);

cmd.registerParam(2, TTCmd::PARAM OUT, SQL_INTEGER);

numrows = cmd.ExecuteBatch (BATCH_SIZE) ;

Example 2-8 Using IN OUT parameters

This example uses an IN OUT parameter. It is registered as required. The setParam ()
call binds its input value and the getParam () call retrieves its output value.

cmd. Prepare (&conn, "begin :x := :x + 1; end;");
cmd.registerParam(1l, TTCmd::PARAM INOUT, SQL_INTEGER);
cmd.setParam (1, 99);

cmd. Execute () ;

SQLINTEGER outval;

if (cmd.getParam(1l, &outval))
cerr << "The output value is null." << endl;
else
cerr << "The output value is " << outval << endl;

Understanding and Using TTClasses 2-11

Managing TimesTen data

Example 2-9 Using OUT and IN OUT parameters

This example uses OUT and IN OUT parameters. Assume a PL/SQL procedure as
follows:

create or replace procedure my_proc (
a in number,
b in number,
¢ out number,
d in out number) as

begin
c :=a + b;
d:=a+b-d;
end my_proc;

The input parameters for the procedure are taken as constants in this example rather
than as bound parameters, so only the OUT parameter and IN OUT parameter are
bound. Both are registered as required. The setParam () call provides the input value
for the IN OUT parameter :varl. The first getParam () call retrieves the value for
the OUT parameter : sum. The second getParam () call retrieves the output value for
the IN OUT parameter :varl.

cmd. Prepare (&conn, "begin my_proc (10, 5, :sum, :varl); end;");
cmd.registerParam (1, TTCmd::PARAM_OUT, SQL_DECIMAL, 38);
cmd.registerParam (2, TTCmd::PARAM_INOUT, SQL_DECIMAL, 38);
cmd. setParam(2, "99");

cmd. Execute () ;

SQLINTEGER outvall, outval2;

if (cmd.getParam(l, &outvall))
cerr << "The first output value is null." << endl;
else
cerr << "The first output value is " << outval << endl;
if (cmd.getParam(2, &outvall))
cerr << "The second output value is null." << endl;
else
cerr << "The second output value is " << outval << endl;

Binding duplicate parameters

TimesTen supports two modes for binding duplicate parameters in a SQL statement.
In the Oracle mode, where DuplicateBindMode=0 (the default), multiple
occurrences of the same parameter name are considered to be distinct parameters. In
the traditional TimesTen mode, where DuplicateBindMode=1, multiple occurrences
of the same parameter name are considered to be the same parameter (as in earlier
TimesTen releases).

Note: Refer to "DuplicateBindMode" in Oracle TimesTen In-Memory
Database Reference and "Binding duplicate parameters in SQL
statements" in Oracle TimesTen In-Memory Database C Developer’s Guide
for additional information.

For illustration, consider the following query:

SELECT * FROM employees
WHERE employee_id < :a AND manager_id > :a AND salary < :b;

2-12 Oracle TimesTen In-Memory Database TTClasses Guide

Managing TimesTen data

In the Oracle mode, when parameter position numbers are assigned, a number is
given to each parameter occurrence without regard to name duplication. The
application must, at a minimum, bind a value for the first occurrence of each
parameter name. For any subsequent occurrence of a given parameter name, the
application can bind a different value for the occurrence or it can leave the parameter
occurrence unbound. In the latter case, the subsequent occurrence takes the same
value as the first occurrence. In either case, each occurrence still has a distinct
parameter position number.

In TimesTen mode, SQL statements containing duplicate parameters are parsed such
that only distinct parameter names are considered as separate parameters. Binding is
based on the position of the first occurrence of a parameter name. Subsequent
occurrences of the parameter name are not given their own position numbers, and all
occurrences of the same parameter name take on the same value.

Example 2-10 Duplicate parameters: Oracle mode

To use a different value for the second occurrence of a in the SQL statement above in
the Oracle mode:

mycmd.setParam(l, ...); // first occurrence of :a
mycmd.setParam(2, ...); // second occurrence of :a
mycmd.setParam(3, ...); // occurrence of :b

To use the same value for both occurrences of a:

mycmd.setParam(l, ...); // both occurrences of :a
mycmd.setParam(3, ...); // occurrence of :b

Parameter b is considered to be in position 3 regardless, and the number of parameters
is considered to be three.

Example 2-11 Duplicate parameters: TimesTen mode

For the SQL statement above, in TimesTen mode the two occurrences of a are
considered to be a single parameter, so cannot be bound separately:

mycmd.setParam(l, ...); // both occurrences of :a
mycmd.setParam(2, ...); // occurrence of :b

Note that in TimesTen mode, parameter b is considered to be in position 2, not
position 3, and the number of parameters is considered to be two.

Working with REF CURSORs

REF CURSOR is a PL/SQL concept, where a REF CURSOR is a handle to a cursor over
a SQL result set and can be passed between PL/SQL and an application. In TimesTen,
the cursor can be opened in PL/SQL, then the REF CURSOR can be passed to the
application for processing. This usage is an OUT REF CURSOR, an OUT parameter with
respect to PL/SQL. As with any OUT parameter, it must be registered using the
TTCmd: : registerParam() method. (See "Registering parameters" on page 2-9 and
"Binding OUT or IN OUT parameters" on page 2-10.)

In the TimesTen implementation, the REF CURSOR is attached to a separate statement
handle. The application prepares a SQL statement that has a REF CURSOR parameter
on one statement handle, then, before executing the statement, binds a second
statement handle as the value of the REF CURSOR. After the statement is executed, the

Understanding and Using TTClasses 2-13

Managing TimesTen data

application can describe, bind, and fetch the results using the same APIs as for any
result set.

In TTClasses, because a TTCmd object encapsulates a single SQL statement, two TTCmd
objects are used to support this REF CURSOR model.

Important:

» For passing REF CURSORs between PL/SQL and an application,
TimesTen supports only OUT REF CURSORSs, from PL/SQL to the

application, and supports a statement returning only a single REF
CURSOR.

= Asnoted in "Considerations when using an ODBC driver
manager (Windows)" on page 1-7, REF CURSOR functionality
does not work in TTClasses when you use an ODBC driver
manager. (This restriction does not apply to the demo ttdm driver
manager supplied with TimesTen Quick Start.)

Example 2-12 below demonstrates the following steps for using a REF CURSOR in
TTClasses.

1. Declare a TTCmd object for the PL/SQL statement that returns a REF CURSOR
(cmdPLSQL in the example).

2. Declare a TTCmd* pointer to point to a second TTCmd object for the REF CURSOR
(cmdRefCursor in the example).

3. Use the first TTCmd object (cmdPLSQL) to prepare the PL/SQL statement.

4. Usethe TTCmd: : registerParam() method of the first TTCmd object to register
the REF CURSOR as an OUT parameter.

5. Use the first TTCmd object to execute the statement.

6. Usethe TTCmd: : getParam() method of the first TTCmd object to retrieve the
REF CURSOR into the second TTCmd object (using &cmdRefCursor). There is a
getParam(int paramNo, TTCmd** rcCmd) signature for REF CURSORs.

7. Fetch the results from the TTCmd object for the REF CURSOR and process as
desired.

8. Drop the first TTCmd object.
9. Drop the pointer to the TTCmd object for the REF CURSOR.
10. Issue a delete statement to delete the TTCmd object for the REF CURSOR.

Example 2-12 Using a REF CURSOR

This example retrieves and processes a REF CURSOR from a PL/SQL anonymous
block. See the preceding steps for an explanation.

TTCmd cmdPLSQL;
TTCmd* cmdRefCur;
TTConnection conn;

// ¢l is a TT_INTEGER column.
cmdPLSQL . Prepare (&conn, "begin open :rc for select cl from t; end;")
cmdPLSQL . registerParam (1, TTCmd::PARAM_OUT, SQL_REFCURSOR);

2-14 Oracle TimesTen In-Memory Database TTClasses Guide

Managing TimesTen data

cmdPLSQL . Execute () ;
if (cmdPLSQL.getParam(l, &cmdRefCur) == false)
SQLINTEGER fetchval;

while (!cmdRefCursor->FetchNext()) {
cmdRefCur->getColumn (1, &fetchval);

}

cmdRefCursor->Drop() ;

delete cmdRefCursor;

}

cmdPLSQL.Drop () ;

Notes:

= Any TTCmd object, including one for a REF CURSOR, has an
ODBC statement handle allocated for it. The REF CURSOR
statement handle is dropped at the time of the Drop () statement
and the resource is freed after the delete statement.

s Unlike TTCmd: : getParam () calls for other data types, a
getParam() call with a TTCmd* * parameter for a REF CURSOR
can only be called once. Subsequent calls will return NULL.

Working with rowids

Each row in a table has a unique identifier known as its rowid. An application can
retrieve the rowid of a row from the ROWID pseudocolumn. Rowids can be represented
in either binary or character format.

An application can specify literal rowid values in SQL statements, such as in WHERE
clauses, as CHAR constants enclosed in single quotes.

The ODBC SQL type SQL_ROWID corresponds to the SQL type ROWID.

For parameters and result set columns, rowids are convertible to and from the C types
SQL_C_BINARY, SQL_C_WCHAR, and SQL_C_CHAR. SQL_C_CHAR is the default C type
for rowids. The size of a rowid is 12 bytes as SQL._C_BINARY, 18 bytes as
SQL_C_CHAR, and 36 bytes as SQL._C_WCHAR.

Note that TTClasses has always supported rowids as character strings; however, a
TTClasses application can now pass a rowid to a PL/SQL anonymous block as a
ROWID type instead of a string. This involves using the TTCmd: : registerParam()
method to register the rowid input parameter as SQL_ROWID type, as shown in
Example 2-13.

Example 2-13 Using a rowid

TTConnection conn;
TTCmd cmd;

cmd. Prepare (&conn, "begin delete from tl where rowid = :x; end;");
cmd.registerParam(1l, TTCmd::PARAM IN, SQL_ROWID);

cmd.setParam(1l, rowid_string);

cmd. Execute () ;

Understanding and Using TTClasses 2-15

Using TTClasses logging

Refer to "ROWID data type" and "ROWID specification" in Oracle TimesTen In-Memory
Database SQL Reference for additional information about rowids and the ROWID data
type, including usage and life.

Note: Oracle TimesTen In-Memory Database does not support the
PL/SQL type UROWID.

Setting a timeout or threshold for executing SQL statements

TimesTen offers two ways for you to limit the time for SQL statements or procedure
calls to execute, by setting either a timeout value or a threshold value. For the former,
if the timeout duration is reached, the statement stops executing and an error is
thrown. For the latter, if the threshold is reached, an SNMP trap is thrown but
execution continues.

The query timeout limit has effect only when a SQL statement is actively executing. A
timeout does not occur during commit or rollback.

Use the TTCmd methods setQueryTimeout () and setQueryThreshold() to
specify these settings. There is also a getQueryThreshold () method to read the
current threshold setting.

In TTClasses, these features can be operated only at the statement level, not the
connection level.

For related information, see "Setting a timeout or threshold for executing SQL
statements" in Oracle TimesTen In-Memory Database C Developer’s Guide.

Using TTClasses logging

TTClasses has a logging facility that allows applications to capture debugging
information. TTClasses logging is associated with processes. You can enable logging
for a specific process and produce a single output log stream for the process.

TTClasses supports different levels of logging information. See Example 2-15 on
page 2-18 for more information about what is printed at each log level.

Log level WARN is very useful while developing a TTClasses application. It can also be
appropriate for production applications because in this log level, database query plans
are generated.

Note that at the more verbose log levels (INFO and DEBUG), so much log data is
generated that application performance can be adversely affected. Do not use these log
levels in a production environment.

Although TTClasses logging can print to either stdout or stderr, the best approach
is to write directly to a TTClasses log file. Example 2-14 demonstrates how to print
TTClasses log information at log level WARN into the /tmp/ttclasses. log output
file.

Note: TTClasses logging is disabled by default.

Example 2-14 Printing TTClasses log information

ofstream output;
output.open("/tmp/ttclasses.log");
TTGlobal: :setLogStream (output) ;

TTGlobal: :setLogLevel (TTLog: : TTLOG_WARN) ;

2-16 Oracle TimesTen In-Memory Database TTClasses Guide

Using TTClasses XLA

First-time users of TTClasses should spend a little time experimenting with TTClasses
logging to see how errors are printed at log level ERROR and how much information is
generated at log levels INFO and DEBUG.

See "TTGlobal" on page 3-1 for more information about using the TTGlobal class for
logging.

Using TTClasses XLA

The Transaction Log API (XLA) is a set of functions that enable you to implement
applications that monitor TimesTen for changes to specified database tables and
receive real-time notification of these changes.

One of the purposes of XLA is to provide a high-performance, asynchronous
alternative to triggers.

XLA returns notification of changes to specific tables in the database and information
about the transaction boundaries for those database changes. This section shows how
to acknowledge updates only at transaction boundaries (a common requirement for
XLA applications), using one example that does not use and one example that does
use transaction boundaries.

This section covers the following topics:

= Acknowledging XLA updates without using transaction boundaries
= Acknowledging XLA updates at transaction boundaries

= Access control impact on XLA

For additional information about XLA, see "XLA and TimesTen Event Management" in
Oracle TimesTen In-Memory Database C Developer’s Guide. In addition, the TTClasses
Quick Start demos include XLA demos. See "About the TimesTen TTClasses demos"
on page 1-7.

Important: As noted in "Considerations when using an ODBC driver
manager (Windows)" on page 1-7, XLA functionality does not work
when you use an ODBC driver manager.

Acknowledging XLA updates without using transaction boundaries

Example 2-15 below shows basic usage of XLA, without using transaction boundaries.

Inside the HandleChange () method, depending on whether the record is an insert,
update, or delete, the appropriate method from among the following is called:
HandleInsert (), HandleUpdate (), or HandleDelete ().

It is inside HandleChange () that you can access the flag that indicates whether the
XLA record is the last record in a particular transaction. Thus there is no way in the
Example 2-15 loop for the HandleChange () method to pass the information about
the transaction boundary to the loop, so that this information can influence when to
call conn.ackUpdates ().

This is not an issue under typical circumstances of only a few records per transaction.
Usually only a few records are returned when you ask XLA to return at most 1000
records with a fetchUpdatesWait () call. XLA returns records as quickly as it can,
and even if huge numbers of transactions are occurring in the database, you usually
can pull the XLA records out quickly, a few at a time, and XLA usually makes sure that
the last record returned is on a transaction boundary. For example, if you ask for 1000

Understanding and Using TTClasses 2-17

Using TTClasses XLA

records from XLA but only 15 are returned, it is highly probable that the 15th record is

at the end of a transaction.

XLA guarantees one of the following:

= Abatch of records will end with a completed transaction (perhaps multiple

transactions in a single batch of XLA records).

Or:

= A batch of records will contain a partial transaction, with no completed
transactions in the same batch, and subsequent batches of XLA records will be
returned for that single transaction until its transaction boundary has been

reached.

Example 2-15 TTClasses XLA program

This example shows a typical main loop of a TTClasses XLA program.

TTXlaPersistConnection conn; // XLA connection
TTX1laTableList list(&conn); // tables being monitored
ttXlaUpdateDesc_t ** arry; // ptr to returned XLA recs
int records_fetched;

/...

loop {
// fetch the updates
conn. fetchUpdatesWait (&arry, MAX RECS_TO_FETCH, &records_fetched,

// Interpret the updates

for(j=0;j < records_fetched;j++) {
ttXlaUpdateDesc_t *p;
p = arry[jl;
list.HandleChange (p, NULL);

} // end for each record fetched

// periodically call ackUpdates()
if (/* some condition is reached */) {
conn.ackUpdates () ;
}
} // loop

Acknowledging XLA updates at transaction boundaries

XLA applications should verify whether the last record in a batch of XLA records has a

transaction boundary, and call ackUpdates () only on transaction boundaries. This
way, when the application or system or database fails, the XLA bookmark is at the
start of a transaction after the system recovers. This is especially important when

operations involve a large number of rows. If a bulk insert, update, or delete operation
has been performed on the database and the XLA application asks for 1000 records, it

may or may not receive all 1000 records. The last record returned through XLA will
probably not have the end-of-transaction flag. In fact, if the transaction has made
changes to 10,000 records, then clearly a minimum of 10 blocks of 1000 XLA records

must be fetched before reaching the transaction boundary.

Calling ackUpdates () for every transaction boundary is not recommended,
however, because ackUpdates () is a relatively expensive operation. Users need to
balance overall system throughput with recovery time and disk space requirements.
(Recall that a TimesTen transaction log file cannot be deleted by a checkpoint

operation if XLA has a bookmark that references that log file. See "ttLogHolds" in

2-18 Oracle TimesTen In-Memory Database TTClasses Guide

Using TTClasses XLA

Oracle TimesTen In-Memory Database Reference for related information.) Depending on
system throughput, recovery time, and disk space requirements, some applications
may find it appropriate to call ackUpdates () once or several times per minute, while
other applications may need only call it once or several times per hour.

The HandleChange () method has a second parameter to allow passing information
between HandleChange () and the main XLA loop. Compare Example 2-15 above
with Example 2-16, specifically the do_acknowledge setting and the
&do_acknowledge parameter of the HandleChange () call.

Example 2-16 TTClasses XLA program using transaction boundaries

In this example, ackUpdates () is called only when the do_acknowledge flag
indicates that this batch of XLA records is at a transaction boundary.

TTXlaPersistConnection conn; // XLA connection
TTX1laTableList list(&conn); // tables being monitored
ttXlaUpdateDesc_t ** arry; // ptr to returned XLA recs
int records_fetched;

int do_acknowledge;

int j;

/...
loop {
// fetch the updates
conn. fetchUpdatesWait (&arry, MAX_RECS_TO_FETCH, &records_fetched, ...);

do_acknowledge = FALSE;

// Interpret the updates
for(j=0;3j < records_fetched;j++) {
ttXlaUpdateDesc_t *p;
p = arry[jl;
list.HandleChange(p, &do_acknowledge) ;
} // end for each record fetched

// periodically call ackUpdates()
if (do_acknowledge == TRUE)
/* and some other conditions ... */) {
conn.ackUpdates () ;
}
} // loop

In addition to this change to the XLA main loop, the HandleChange () method must
be overloaded to have two parameters (ttXlaUpdateDesc_t*, void* pData).
See "HandleChange()" on page 3-52. Note that the Quick Start xlasubscriberl
demo shows the use of a pData parameter. (See "About the TimesTen TTClasses
demos" on page 1-7.)

Access control impact on XLA

"Considering TimesTen features for access control” on page 2-4 provides a brief
overview of how TimesTen access control affects operations in the database. Access
control includes impact on XLA.

Any XLA functionality requires the system privilege XLA. This includes connecting to
TimesTen as an XLA reader, executing XLA-related TimesTen C functions, and
executing XLA-related TimesTen built-in procedures.

Understanding and Using TTClasses 2-19

Using TTClasses XLA

You can refer to "Access control impact on XLA" in Oracle TimesTen In-Memory Database
C Developer’s Guide for additional details.

Note: A user with the XLA privilege can be notified of any DML
statement that executes in the database. As a result, the user with XLA
privilege can obtain information about database objects that he or she
has not otherwise been granted access to. In practical terms, the XLA
privilege is effectively the same as the SELECT ANY TABLE privilege.

2-20 Oracle TimesTen In-Memory Database TTClasses Guide

3

Class Descriptions

This reference chapter contains descriptions of TTClasses external classes and their
methods. It is divided into the following sections:

= Commonly used TTClasses
= System catalog classes

s XLA classes

Note: Most methods documented in this chapter also support a
signature with a TTStatus& parameter at the end of the parameter
list. This is for situations when you want to suppress exceptions for
the method call and instead process the TTStatus object manually
for errors. These signatures are not specifically documented, however,
because this is not a typical mode of use. For additional information
and an example, see the Usage section under "TTStatus" on page 3-3.

Commonly used TTClasses

TTGlobal

This section discusses the following classes:
= TTGlobal

s TTStatus

s TTConnection

m TTConnectionPool

n TTCmd

The TTGlobal class provides a logging facility within TTClasses.

Usage

The TTGlobal logging facility can be very useful for debugging problems inside a
TTClasses program. Note, however, that the most verbose logging levels

(TTLog: : TTLOG_INFO and TTLog: : TTLOG_DEBUG) can generate an extremely large
amount of output. Use these logging levels during development or when trying to
diagnose a bug instead of during production.

When logging from a multithreaded program, you may encounter a problem where
log output from different program threads is intermingled when written to disk. To
alleviate this problem, disable ostream buffering with the 1ios_base: :unitbuf I/O

Class Descriptions 3-1

Commonly used TTClasses

stream manipulator, as in the following example, which sends TTClasses logging to
the app_log. txt file at logging level TTLog: : TTLOG_ERR.

ofstream log_file("app_log.txt");
log_file << std::ios_base::unitbuf;
TTGlobal: :setLogStream(log_file);
TTGlobal: :setLogLevel (TTLog: : TTLOG_ERR) ;

See "Using TTClasses logging" on page 2-16 for more information about using
TTGlobal.

Public members
None.

Public methods

Method Description

disableLogging () Disables TTClasses logging.

setLogLevel () Specifies the verbosity level of TTClasses logging.
setLogStream() Specifies where TTClasses logging information should be sent.
sglhenv () Returns the underlying ODBC environment object (type SQLHENV).
disableLogging()

static void disableLogging()

This method disables all TTClasses logging. Note that the following two statements
are identical:

TTGlobal: :disableLogging () ;

TTGlobal: :setLogLevel (TTLog: : TTLOG_NIL) ;

setLogLevel()

static void setLogLevel (TTLog: :TTLOG_LEVEL Ievel)

This method specifies the verbosity level of TTClasses logging. Table 3-1 describes
TTClasses logging levels. The levels are cumulative.

Table 3—-1 TTClasses logging levels

Logging level Description

TTLog: : TTLOG_NIL No logging.

TTLog: : TTLOG_FATAL_ERR Logs fatal errors (serious misuse of TTClasses methods).

TTLog: : TTLOG_ERR Logs all errors, such as SQL._ERROR return codes.

TTLog : : TTLOG_WARN (Default) Also logs warnings and all calls to
TTCmd: : Prepare (), including the SQL string being
prepared. Prints all database optimizer query plans.

TTLog: : TTLOG_INFO Also logs informational messages, such as calls to most
methods on TTCmd and TTConnection objects, including
the SQL string where appropriate.

TTLog: : TTLOG_DEBUG Also logs debugging information, such as all bound
parameter values for each call to TTCmd: : Execute ().

3-2 Oracle TimesTen In-Memory Database TTClasses Guide

Commonly used TTClasses

TTStatus

To set the logging level to TTLog: : TTLOG_ERR, for example, add the following line to
your program:

TTGlobal: :setLogLevel (TTLog: : TTLOG_ERR) ;

setLogStream()

static void setLogStream(ostream& stream)

Specifies where TTClasses logging information should be sent. By default, if TTClasses
logging is enabled, logging is to stderr. Using this method, an application can
specify logging to a file (or any other ostreams), such as in the following example
that sets logging to app_log. txt:

ofstream log_file("app_log.txt");
TTGlobal: :setLogStream(log_file);

sqlhenv()

static SQLHENV sglhenv ()

Retrieves the underlying ODBC environment object.

The TTStatus class is used by other classes in the TTClasses library to catch error and
warning exceptions. You can think of TTStatus as a value-added C++ wrapper
around the SQLError ODBC function.

Usage
By default, TTStatus objects are thrown as exceptions whenever an error occurs. This

allows C++ applications to use {try/catch} blocks to detect and recover from
database errors.

Example 3-1 shows typical use of TTStatus.

Example 3—-1 Exception handling
TTCmd myCmd;

try {
myCmd.ExecuteImmediate (&conn, "create table dummy (cl int)");

}

catch (TTStatus st) {
cerr << "Error creating table: " << st << endl;
// Rollback, exit(), throw -- whatever is appropriate

}

Another supported (but not typical) mode of use for TTStatus is to selectively
suppress exceptions and allow the application to manually check a TTStatus object
for error conditions. You can use this mode for a particular method call by initializing
a TTStatus object with the value TTStatus: : DO_NOT_THROW, then passing that
object as the last parameter of a method call. Most TTClasses methods documented in
this chapter also support a signature with this TTStatusé& parameter as the last
parameter in the calling sequence.

Example 3-2 that follows shows this usage.

Class Descriptions 3-3

Commonly used TTClasses

Example 3-2 Suppressing exceptions

TTCmd myCmd ;
TTStatus myStat (TTStatus: :DO_NOT_THROW) ;

myCmd.ExecuteImmediate (&conn, "create table dummy (cl int)", myStat);
if (myStat.rc == SQL_ERROR)
{

// handle the error

}

Subclasses
TTStatus has the following subclasses:

n TTError

s TTWarning

TTError

TTError is a subclass of TTStatus and is used to encapsulate ODBC errors (return
codes SQL_ERROR and SQL_INVALID_HANDLE).

TTWarning

TTWarning is a subclass of TTStatus and is used to encapsulate ODBC warnings
(return code SQL_SUCCESS_WITH_INFO).

ODBC warnings are usually not as serious as ODBC errors and should be handled
with different logic. Simply logging ODBC warnings is usually appropriate, but ODBC
errors should typically be handled programmatically.

Example 3-3 shows usage of the TTError and TTWarning subclasses.

Example 3-3 Exception handling, distinguishing between errors and warnings

This example shows the use of TTError and TTWarning. TTError objects are
thrown for ODBC errors. TTWarning objects are thrown for ODBC warnings.

// catching TTError & TTWarning exceptions
try {
// some TTClasses method calls
}
catch (TTWarning warn) {
cerr << "Warning encountered: " << warn << endl;
}
catch (TTError err) {
// handle the error; this could be a serious problem

}

Public members

Member Description

rc Return code from the failing ODBC call. Possible values for this field
are SQL_ SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR,
SQL_NO_DATA_FOUND, and SQL_INVALID_HANDLE.

native_error TimesTen native error number (if any) for the failing ODBC call.

3-4 Oracle TimesTen In-Memory Database TTClasses Guide

Commonly used TTClasses

Member Description

odbc_error ODBC error state for the failing ODBC call.

err_msg ASCII printable error message for the failing ODBC call.

TTSTATUS_ENUM Use the value TTStatus: : DO_NOT_THROW to initialize a TTStatus
object to suppress exceptions for a method call. See Example 3-2 on
page 3-4.

Public methods

Method Description

isConnectionInvalid() Indicates whether the database connection is invalid.

ostream() Prints errors to a stream.
resetErrors () Resets the TTStatus object or just the rc value, as specified.
throwError () Throws an error from the TTStatus object (not typical use).

isConnectionlnvalid()

bool isConnectionInvalid() const

Returns TRUE if the database connection is invalid, or FALSE if it is valid. Specifically,
"invalid" refers to situations when a TimesTen error 846 or 994 is encountered. See
"Errors 0 - 999" in Oracle TimesTen In-Memory Database Error Messages and SNMP Traps
for information about those errors.

ostream()

friend ostream& operator<<(ostream&, TTStatus& stat)
This method prints the error to a stream.

resetErrors()

void resetErrors (bool reset_all=false)

Use this method to reset a TTStatus object (relevant only when using method calls
with TTStatus parameters). Use a value of TRUE to completely reset the TTStatus
object, or FALSE (default) to reset only the rc value.

throwError()

void throwError ()

Assuming exceptions are enabled (see "Usage" on page 3-3), this is an alternative, but
not typical, way to throw an exception. In most cases the following two blocks of code
are equivalent, but the former is more typical:

try {
/...
if (/* something has gone wrong */)
throw stat;
}
catch (TTStatus st) {
cerr << "Caught exception: " << st << endl;

}

Class Descriptions 3-5

Commonly used TTClasses

Or:

try {
/] ...
if (/* something has gone wrong */)
stat.throwError() ;
}
catch (TTStatus st) {
cerr << "Caught exception: " << st << endl;

}

TTConnection

The TTConnection class encapsulates the concept of a connection to a database. You
can think of TTConnection as a value-added C++ wrapper around the ODBC
connection (HDBC) handle.

Usage
All applications that use TimesTen must create at least one TTConnection object.

Multithreaded applications that use TimesTen from multiple threads simultaneously
must create multiple TTConnection objects. Use one of the following strategies:

» Create one TTConnection object for each thread when the thread is created.

s Create a pool of TTConnection objects when the application process starts. They
are shared by the threads in the process. See "TTConnectionPool" on page 3-11 for
additional information about this option.

A TimesTen connection cannot be inherited from a parent process. If a process opens a
database connection before creating a child process, the child cannot use the same
connection. Any attempt by a child to use a database connection of a parent will likely
cause application failure or a core dump.

Applications should not frequently make and then drop database connections, because
connecting and disconnecting are both relatively expensive operations. In addition,
short-lived connections eliminate the benefits of prepared statements. (See "Using
TTCmd, TTConnection, and TTConnectionPool" on page 2-1 for information about
preparing statements.) Instead, establish database connections at the beginning of the
application process and reuse them for the life of the process.

Note: If you have reason to manipulate the underlying ODBC
connection object directly, use the TTConnection: : getHdbc ()
method.

Note that privilege to connect to a database must be granted to users through the
CREATE SESSION privilege, either directly or through the PUBLIC role. See "Access
control for connections” on page 2-6.

3-6 Oracle TimesTen In-Memory Database TTClasses Guide

Commonly used TTClasses

Public members

Member

Description

DRIVER_COMPLETION_ENUM

This is to specify whether there will be a prompt for the
database to connect to (also depending on whether a database
is specified in the connect string).

Valid values are TTConnection: : DRIVER_NOPROMPT,
TTConnection: :DRIVER_COMPLETE,

TTConnection: : DRIVER_PROMPT, and

TTConnection: :DRIVER_COMPLETE_REQUIRED. These
correspond to the values SQL._DRIVER_NOPROMPT,
SQIL_DRIVER_COMPLETE, SQL_DRIVER_PROMPT, and
SQL_DRIVER_COMPLETE_REQUIRED for the standard ODBC
SQLDriverConnection function.

Public methods

Method Description

Commit () Commits a transaction to the database.

CompactDataStore () Compacts the database by calling the t tCompact or
ttCompactTs TimesTen built-in procedure, as specified.

Connect () Opens a new database connection.

Disconnect () Closes a database connection.

DurableCommit () Performs a durable commit operation on the database.

getHdbc () Returns the ODBC connection handle (type HDBC) associated
with this connection.

GetTTContext () Returns the connection context value.

isConnected() Returns TRUE if the object is connected to TimesTen.

Rollback () Rolls back changes made to the database through this connection
since the last call to Commit () or Rollback().

SetAutocommitOff () Disables autocommit for the connection.

SetAutoCommitOn () Enables autocommit for the connection.

SetIsoReadCommitted() Sets the transaction isolation level of the connection to be

TXN_READ_COMMITTED.

SetIsoSerializable()

Sets the transaction isolation level of the connection to be
TXN_SERIALIZABLE.

SetLockWait () Sets the lock timeout interval for the connection by calling the
ttLockWait TimesTen built-in procedure.

SetPrefetchCloseOff () Turns off the TT_PREFETCH_CLOSE connection option.

SetPrefetchCloseOn() Turns onthe TT_PREFETCH_CLOSE connection option. This is
useful for optimizing SELECT query performance for
client/server connections to TimesTen.

SetPrefetchCount () Allows a user application to tune the number of rows that the
TimesTen ODBC driver SQLFetch call will prefetch for a
SELECT statement.

Commit()

void Commit ()

Class Descriptions 3-7

Commonly used TTClasses

Commits a transaction to the database. All other operations performed on this
connection since the last call to the Commit () or Rollback () method will be
committed. A TTStatus object is thrown as an exception if an error occurs. Also see
Rollback ().

CompactDataStore()

void CompactDataStore(int blocks)

Compacts the database, as specified:

» For a blocks value less than or equal to zero, it compacts the permanent and
temporary data partitions in their entirety by calling the t tCompact TimesTen
built-in procedure.

» For a blocks value greater than zero, it compacts a portion of the database,
according to the number of blocks specified, by calling the ttCompactTs built-in
procedure.

Note: This method is supported for backward compatibility. New
applications should not call it.

Connect()

virtual void Connect (const char* connStr)
virtual void Connect (const char* connStr, const char* username,
const char* password)
virtual void Connect (const char* connStr, DRIVER_COMPLETION_ENUM driverCompletion)

Opens a new database connection. The connection string specified in the connStr
parameter is used to create the connection. Specify a user and password, either as part
of the connect string or as separate parameters, or a DRIVER_COMPLETION_ENUM
value (refer to "Public members" on page 3-7). Also see Disconnect ().

Note that privilege to connect to a database must be granted to users through the
CREATE SESSION privilege, either directly or through the PUBLIC role. See "Access
control for connections” on page 2-6.

Example 3-4 Using the Connect() method and checking for errors

A TTStatus object is thrown as an exception if an error occurs. Any exception
warnings are usually informational and can often be safely ignored. The following
logic is preferred for use of the Connect () method.

Note that TTWarning and TTError are subclasses of TTStatus.

TTConnection conn;

try {
conn.Connect ("DSN=mydsn", "myuser", "mypassword");
}
catch (TTWarning warn) {
// warnings from Connect() are usually informational
cerr << ''Warning while connecting to TimesTen: '' << warn << endl;
}
catch (TTError err) {
// handle the error; this could be a serious problem

}

3-8 Oracle TimesTen In-Memory Database TTClasses Guide

Commonly used TTClasses

Disconnect()

void Disconnect ()

Closes a database connection. A TTStatus object is thrown as an exception if an error
occurs. Also see Connect ().
DurableCommit()

void DurableCommit ()

Performs a durable commit operation on the database. A durable commit operation
flushes the in-memory transaction log buffer to disk. It calls the t tDurableCommit
TimesTen built-in procedure.

See "ttDurableCommit" in Oracle TimesTen In-Memory Database Reference.

getHdbc()

HDBC getHdbc ()
Returns the ODBC connection handle associated with this connection.

GetTTContext()

void GetTTContext (char* output)

Returns the context value of the connection, a value that is unique for each database
connection. The context of a connection can be used to correlate TimesTen connections
with PIDs (process IDs) using the ttStatus TimesTen utility, for example.

The context value is returned through the output parameter, which requires an array
of CHAR[17] or larger.

This method calls the t tContext TimesTen built-in procedure. See "ttContext" in
Oracle TimesTen In-Memory Database Reference.

isConnected()

bool isConnected()

Returns TRUE if the object is connected to TimesTen using the Connect () method or
FALSE if not.

Rollback()

void Rollback ()

Rolls back (cancels) a transaction. Any changes made to the database through this
connection since the last call to Commit () or Rollback () will be undone. A
TTStatus object is thrown as an exception if an error occurs. Also see Commit ().

SetAutocommitOff()

void SetAutoCommitOff ()

Disables autocommit for the connection. Also see SetAutoCommitOn ().

This method is automatically called by TTConnection: : Connect (), because
TimesTen runs with optimal performance only with autocommit disabled.

Class Descriptions 3-9

Commonly used TTClasses

Note that when autocommit is disabled, committing SELECT statements requires
explicit calls to TTCmd: : Close ().

SetAutoCommitOn()

void SetAutoCommitOn()

Enables autocommit for the connection, which means that every SQL statement occurs
in its own transaction. Also see SetAutocommitO£f£ ().

SetAutoCommitOn () is generally not advisable, because TimesTen runs much faster
with autocommit disabled.

SetlsoReadCommitted()

void SetIsoReadCommitted ()

Sets the transaction isolation level of the connection to be TXN_READ_COMMITTED.
The Read Committed isolation level offers the best combination of single-transaction
performance and good multiconnection concurrency. Also see
SetIsoSerializable().

SetlsoSerializable()

void SetIsoSerializable()

Sets the transaction isolation level of the connection to be TXN_SERIALIZABLE. In
general, Serializable isolation level offers fair individual transaction performance but
extremely poor concurrency. Read Committed isolation level is preferable over
Serializable isolation level in almost all situations. Also see

SetIsoReadCommitted ().

SetLockWait()

void SetLockWait (int secs)

Sets the lock timeout interval for the connection by calling the ttLockWait TimesTen
built-in procedure with the secs parameter. In general, a two-second or three-second

lock timeout is sufficient for most applications. The default lock timeout interval is 10
seconds.

See "ttLockWait" in Oracle TimesTen In-Memory Database Reference.

SetPrefetchCloseOff()

void SetPrefetchCloseOff ()

Turns off the TT_PREFETCH_CLOSE connection option. Also see
SetPrefetchCloseOn().

SetPrefetchCloseOn()

void SetPrefetchCloseOn()

Turns on the TT_PREFETCH_CLOSE connection option, which is useful for optimizing
SELECT query performance for client/server connections to TimesTen. Note that this

method provides no benefit for an application using a direct connection to TimesTen.
Also see SetPrefetchCloseOff ().

See "Bulk fetch rows of TimesTen data" in Oracle TimesTen In-Memory Database C
Developer’s Guide for more information about TT_PREFETCH_CLOSE.

3-10 Oracle TimesTen In-Memory Database TTClasses Guide

Commonly used TTClasses

SetPrefetchCount()

void SetPrefetchCount (int numrows)
Allows a user application to tune the number of rows that the TimesTen ODBC driver

internally fetches at a time for a SELECT statement. The value of numrows must be
between 1 and 128, inclusive.

Note: This method is not equivalent to executing

TTCmd: : FetchNext () multiple times. Instead, proper use of this
parameter reduces the amount of time for each call to

TTCmd: : FetchNext ().

See "Bulk fetch rows of TimesTen data" in Oracle TimesTen In-Memory Database C
Developer’s Guide for more information about TT_PREFETCH_COUNT.

TTConnectionPool

The TTConnectionPool class is used by multithreaded applications to manage a
pool of connections.

In general, multithreaded applications can be written using one of two basic strategies:

s If there is a relatively small number of threads and the threads are long-lived, each
thread can be assigned to a different connection, which is used for the duration of
the application. In this scenario, the TTConnectionPool class is not necessary.

» If there is a large number of threads in the process, or if the threads are short-lived,
a pool of idle connections can be established. These connections are used for the
duration of the application. When a thread must perform a database transaction, it
checks out an idle connection from the pool, performs its transaction, then returns
the connection to the pool. This is the scenario that the TTConnectionPool class
assists with.

Note: For best overall performance, TimesTen recommends having
one or two concurrent direct connections to the database for each CPU
of the database server. For no reason should your number of
concurrent direct connections (the size of your connection pool) be
more than twice the number of CPUs on the database server. In
client/server mode, however, TimesTen supports many more
connections per CPU efficiently.

Usage

To use the TTConnectionPool class, an application creates a single instance of the
class. It then creates several TTConnection objects, instances of either the
TTConnection class or a user class that extends it, but does not call their Connect ()
methods directly. Instead, the application uses the

TTConnectionPool: :AddConnectionToPool () method to place connection
objects into the pool, then calls TTConnectionPool: : ConnectAll () to establish all
the connections to TimesTen. In the background, ConnectAl1l () loops through all the
TTConnection objects to call their Connect () methods.

Threads for TimesTen applications use the getConnection () and
freeConnection () methods to get and return idle connections.

Class Descriptions 3-11

Commonly used TTClasses

Important: If you want to use TTConnectionPool and extend
TTConnection, do not override the TTConnection: : Connect ()
method that has driverCompletionin the calling sequence,
because there is no corresponding

TTConnectionPool: :ConnectAll () method. Instead, override
either of the following Connect () methods:

virtual void Connect (const char* connStr)
virtual void Connect (const char* connStr, const char* username,
const char* password)

Then use the appropriate corresponding ConnectAll () method.

Note that privilege to connect to a database must be granted to users through the
CREATE SESSION privilege, either directly or through the PUBLIC role. See "Access
control for connections” on page 2-6.

Public members
None.

Public methods

Method Description

AddConnectionToPool () Addsa TTConnection object (possibly an object of a class
derived from TTConnection) to the connection pool.

ConnectAll () Connects all the TTConnection objects to TimesTen
simultaneously.

DisconnectAll () Disconnects all connections in the connection pool from TimesTen.

freeConnection () Returns a connection to the pool for reassignment to another
thread.

getConnection() Checks out an idle connection from the connection pool for a
thread.

getStats () Queries the TTConnectionPool object for status information.

AddConnectionToPool()

int AddConnectionToPool (TTConnection* connP)

This method is used to add a TTConnection object (possibly an object of a class
derived from TTConnection) to the connection pool. It returns -1 if there is an error.
Also see freeConnection ().

ConnectAll()

void ConnectAll (const char* connStr)
void ConnectAll (const char* connStr, const char* username, const char* password)

After TTConnection objects have been added to the connection pool by
AddConnectionToPool (), the ConnectAll () method can be used to connect all of
the TTConnection objects to TimesTen simultaneously. The connection string
specified in the connStr parameter is used to create the connection. Specify a user

3-12 Oracle TimesTen In-Memory Database TTClasses Guide

Commonly used TTClasses

and password, either as part of the connect string or as separate parameters. Also see
DisconnectAll ()

A TTStatus object is thrown as an exception if an error occurs.

Note that privilege to connect to a database must be granted to users through the
CREATE SESSION privilege, either directly or through the PUBLIC role. See "Access
control for connections” on page 2-6.

DisconnectAll()

void DisconnectAll ()

Disconnects all connections in the connection pool from TimesTen. Also see
ConnectAll ().

Applications must call Disconnectall () before termination to avoid overhead
associated with process failure analysis and recovery. A TTStatus object is thrown as
an exception if an error occurs.

freeConnection()

void freeConnection (TTConnection* connP)

Returns a connection to the pool for reassignment to another thread. Applications
should not free connections that are in the middle of a transaction.

TTConnection: :Commit () or Rollback () should be called immediately before
freeConnection (). Also see AddConnectionToPool ().

getConnection()

TTConnection* getConnection (int timeout_millis=0)

Checks out an idle connection from the connection pool for use by a thread. A pointer
to an idle TTConnection object is returned. The thread should then perform a

transaction, ending with either Commit () or Rollback (), and then should return
the connection to the pool using the freeConnection () method.

If no idle connections are in the pool, the thread calling getConnection () will block
until a connection is returned to the pool by a call to freeConnection (). An
optional timeout, in milliseconds, can be provided. If this is provided,
getConnection () waits for a free connection for no more than timeout_millis
milliseconds. If no connection is available in that time then getConnection ()
returns NULL to the caller.
getStats()
void getStats(int* nGets, int* nFrees, int* nWaits, int* nTimeouts,

int* maxInUse, int* nForcedCommits)
Queries the TTConnectionPool for status information. The following data are
returned:
s nGets: Number of calls to getConnection().

m nFrees: Number of calls to freeConnection ().

» nWaits: Number of times a call to getConnection () had to wait before
returning a connection.

m nTimeouts: Number of calls to getConnection () that timed out.

Class Descriptions 3-13

Commonly used TTClasses

TTCmd

» maxInUse: High point for the most number of connections in use simultaneously.

s nForcedCommits: Number of times that freeConnection () had to call
Commit () on a connection before checking it into the pool. If this counter is
nonzero, the user application is not calling TTConnection: :Commit () or
Rollback () before returning a connection to the pool.

A TTCmd object encapsulates a single SQL statement that will be used multiple times
in an application program. You can think of TTCmd as a value-added C++ wrapper
around the ODBC statement (HSTMT) handle.

TTCmd has three categories of public methods:
s Public methods for general use and non-batch operations
» Public methods for obtaining TTCmd object properties

» Public methods for batch operations

Important: Several TTCmd methods return an error when you use an
ODBC driver manager. See "Considerations when using an ODBC
driver manager (Windows)" on page 1-7 for information.

Usage

Each SQL statement executed multiple times in a program should have its own TTCmd
object. Each of these TTCmd objects should be prepared once during program
initialization, then executed with the Execute () method multiple times as the
program runs.

Only database operations that are to be executed a small number of times should use
the ExecuteImmediate () method. Note that ExecuteImmediate () is not
compatible with any type of SELECT statement. All queries must use Prepare () plus
Execute () instead. ExecuteImmediate () is also incompatible with INSERT,
UPDATE, or DELETE statements that are subsequently polled using getRowcount ()
to see how many rows were inserted, updated or deleted. These limitations have been
placed on ExecuteImmediate () to discourage its use except in a few particular
situations (for example, for creating or dropping a table).

Note: If you have reason to manipulate the underlying ODBC
statement object directly, use the TTCmd: : getHandle () method.

Note that TimesTen has features to control database access with object-level resolution
for database objects such as tables, views, materialized views, sequences, and
synonyms. See "Considering TimesTen features for access control" on page 2-4.

Public members

Member Description

TTCMD_PARAM_INPUTOUTPUT_TYPE This is used to specify whether a parameter is IN,
OUT, or IN OUT when registering the parameter.
Supported values are PARAM_IN, PARAM_INOUT, and
PARAM_OUT. See "Registering parameters" on
page 2-9.

3-14 Oracle TimesTen In-Memory Database TTClasses Guide

Commonly used TTClasses

Public methods for general use and non-batch operations

Method Description

Close() Closes the result set when the application has finished fetching
rOws.

Drop () Frees a prepared SQL statement and all resources associated
with it.

Execute () Invokes a SQL statement that has been prepared for execution.

ExecuteImmediate () Invokes a SQL statement that has not been previously
prepared.

FetchNext () Fetches rows from the result set, one at a time. It returns 0

when a row was successfully fetched or 1 when no more rows
are available.

getColumn ()

Retrieves the value in the specified column of the current row
of the result set.

getColumnLength ()

Returns the length of the specified column, in bytes.

getColumnNullable ()

Retrieves the value in the specified column of the current row
of the result set and returns a boolean to indicate whether the
value is NULL.

getHandle ()

Retrieves the underlying ODBC statement handle.

getMaxRows () Returns the current limit on the number of rows returned by a
SELECT statement.
getNextColumn () Retrieves the value in the next column of the current row of

the result set.

getNextColumnNullable ()

Retrieves the value in the next column of the current row of
the result set and returns a boolean to indicate whether the
value is NULL.

getParam /()

Each call gets the output value of a specified OUT or IN OUT
parameter after executing a prepared SQL statement.

getQueryThreshold()

Retrieves the query threshold value.

getRowCount ()

Returns the number of rows that were affected by the recently
executed SQL operation.

isColumnNull () Indicates whether the value in the specified column of the
current row is NULL.
Prepare () Associates a SQL statement with the TTCmd object.

printColumn ()

Prints the value in the specified column of the current row to
an output stream.

registerParam/()

Registers a parameter for binding. This is required for OUT or
IN OUT parameters.

RePrepare ()

Allows a statement to be re-prepared.

setMaxRows ()

Sets a limit on the number of rows returned by a SELECT
statement.

setParam/()

Each call sets the value of a specified parameter before
executing a prepared SQL statement.

setParamLength ()

Sets the length, in bytes, of the specified input parameter.

setParamNull ()

Sets the value of a parameter to NULL before executing a
prepared SQL statement.

Class Descriptions 3-15

Commonly used TTClasses

Method Description

setQueryThreshold () Sets a threshold time limit for execution of each SQL
statement. If it is exceeded, a warning is written to the support
log and an SNMP trap is thrown.

setQueryTimeout () Sets a timeout value for SQL statements.

Close()
void Close()
If a SQL SELECT statement is executed using the Execute () method, a cursor is

opened which may be used to fetch rows from the result set. When the application is
finished fetching rows from the result set, it must be closed with the Close () method.

Failure to close the result set may result in locks being held on rows for too long,
causing concurrency problems, memory leaks, and other errors.

A TTStatus object is thrown as an exception if an error occurs.

Drop()
void Drop()
If a prepared SQL statement will not be used in the future, the statement and resources

associated with it can be freed by a call to the Drop () method. The TTCmd object may
be reused for another statement if Prepare () is called again.

It is more efficient to use multiple TTCmd objects to execute multiple SQL statements.
Use the Drop () method only if it is certain that a particular SQL statement will not be
used again.

A TTStatus object is thrown as an exception if an error occurs.

Execute()

void Execute()

This method invokes a SQL statement that has been prepared for execution with the
Prepare () method, after any necessary parameter values are defined using
setParam() calls.

If the SQL statement is a SELECT statement, this method executes the query but does
not return any rows from the result set. Use the FetchNext () method to fetch rows
from the result set one at a time. Use the Close () method to close the result set when
all appropriate rows have been fetched. For SQL statements other than SELECT, no
cursor is opened, and a call to the Close () method is not necessary.

A TTStatus object is thrown as an exception if an error occurs.

Note that TimesTen has features to control database access with object-level resolution
for database objects such as tables, views, materialized views, sequences, and
synonyms. Access control privileges are checked both when SQL is prepared and
when it is executed in the database, with most of the performance cost coming at
prepare time. See "Considering TimesTen features for access control" on page 2-4.
Executelmmediate()

int ExecuteImmediate (TTConnection* cP, const char* sqglp)

This method invokes a SQL statement that has not been previously prepared.

3-16 Oracle TimesTen In-Memory Database TTClasses Guide

Commonly used TTClasses

ExecuteImmediate () is a convenient alternative to using Prepare () and
Execute () when a SQL statement is to be executed only a small number of times.
Use ExecuteImmediate () for DDL statements such as CREATE TABLE and DROP
TABLE, and infrequently used DML statements that do not return a result set (for
example, DELETE FROM table_name).

ExecuteImmediate () is incompatible with SQL statements that return a result set.
In addition, statements executed through ExecuteImmediate () cannot
subsequently be queried by getRowCount () to get the number of rows affected by a
DML operation. Because of this, ExecuteImmediate () calls getRowCount ()
automatically, and its value is the integer return value of this method.

A TTStatus object is thrown as an exception if an error occurs.

FetchNext()

int FetchNext ()

After executing a prepared SQL SELECT statement using the Execute () method, use
the FetchNext () method to fetch rows from the result set, one at a time.

After fetching a row of the result set, use the appropriate overloaded getColumn ()
method to fetch values from the current row.

If no more rows remain in the result set, FetchNext () returns 1. If a row is returned,
FetchNext () returns 0.

After executing a SELECT statement using the Execute () method, the result set must
be closed using the Close () method after all desired rows have been fetched. Note
that after the Close () method is called, the FetchNext () method cannot be used to
fetch additional rows from the result set.

A TTStatus object is thrown as an exception if an error occurs.

getColumn()

void getColumn (int cno, TYPE* valueP)
void getColumn (int cno, TYPE* valueP, int* byteLenP)

The getColumn () method, as well as the getColumnNullable () method, fetches
the values for columns of the current row of the result set. Before getColumn () or
getColumnNullable () can be called, the FetchNext () method must be called to
fetch the next (or first) row from the result set of a SELECT statement. SQL statements
are executed using the Execute () method.

Each getColumn () call retrieves the value associated with a particular column.
Columns are referred to by ordinal number, with "1" indicating the first column
specified in the SELECT statement. In all cases the first argument passed to the
getColumn () method, cno, is the ordinal number of the column whose value is to be
fetched. The second argument, valueP, is a pointer to a variable which is to receive
the value of the specified column. The type of this argument varies depending on the
type of the column being returned. For NCHAR, NVARCHAR, and binary types, as shown
in the table, the method call also includes bytelLenP, a pointer to an integer value for
the number of bytes.

The TTClasses library does not support a large set of data type conversions. The
appropriate version of getColumn () must be called for each output column in the
prepared SQL. Calling the wrong version (attempting to fetch an integer column into a
char* value, for example) may result in program failure.

Class Descriptions 3-17

Commonly used TTClasses

Integer type methods include one of the following functions: SQLTINYINT,
SQLSMALLINT, SQLINTEGER, or SQLBIGINT. They are appropriate only for columns
with the scale parameter set to zero, such as NUMBER (p) or NUMBER (p, 0). The
functions have the following range of precision.

Function Precision Range
SQLTINYINT O<=p<=2
SQLSMALLINT O<=p<=4
SQLINTEGER 0<=p<=9
SQLBIGINT 0<=p<=18

To ensure that all values in the column will fit into the variable that the application
uses to retrieve information from the database, you can use SQLBIGINT for all table
columns of data type NUMBER (p), where 0 <= p <=18. For example:

getColumn(int cno, SQLBIGINT* iP)

Table 3-2 shows the supported SQL data types and the appropriate versions of
getColumn () and getColumnNullable () to use for each parameter type.

Table 3-2 getColumn() variants for supported data types

Data type

getColumn() variants supported

TT_TINYINT

getColumn (cno,

SQLTINYINT* iP)

TT_SMALLINT

getColumn (cno,

SQLSMALLINT* 1iP)

TT_INTEGER

getColumn (cno,

SQLINTEGER* 1iP)

TT_BIGINT getColumn (cno, SQLBIGINT* 1iP)
BINARY_FLOAT getColumn (cno, float* fP)
BINARY DOUBLE getColumn (cno, double* dP)

NUMBER
TT_DECIMAL

getColumn (cno,
getColumn (cno,
getColumn (cno,
getColumn (cno,
getColumn (cno,
getColumn (cno,

char** cPpP)
char* cP)
SQLTINYINT* 1iP)
SQLSMALLINT* 1iP)
SQLINTEGER* 1P)
SQLBIGINT* iP)

Note: The char* version allows TTClasses to pass in an array of
preallocated storage, and TTClasses will copy the char output fetched
from the database into this array. The integer type methods are

appropriate only for columns declared with the scale parameter set to

zero.

TT_CHAR
CHAR
TT_VARCHAR
VARCHAR2

getColumn (cno, char** cPP)
getColumn (cno, char* cP)

Note: The char* version allows preallocation of storage for passing in

arrays.

TT_NCHAR
NCHAR
TT_NVARCHAR
NVARCHAR2

getColumn (cno, SQLWCHAR** wcPP)
getColumn (cno, SQLWCHAR** wcPP, byteLenP)

Note: Optionally include the byteLenpP parameter for the number of

bytes returned.

3-18 Oracle TimesTen In-Memory Database TTClasses Guide

Commonly used TTClasses

Table 3-2 (Cont.) getColumn() variants for supported data types

Data type getColumn() variants supported
BINARY getColumn (cno, void** binPP, byteLenP)
VARBINARY getColumn (cno, void* binP, byteLenP)

Note: The void* version allows TTClasses to pass in an array of
preallocated storage, and TTClasses will copy the output fetched from
the database into this array.

DATE getColumn (cno, TIMESTAMP_STRUCT* tsP)
TT_TIMESTAMP

TIMESTAMP
TT_DATE getColumn (cno, DATE_STRUCT* dP)
TT_TIME getColumn (cno, TIME_STRUCT* tP)

Other SQL data types are not supported in this release of the TTClasses library.

getColumnLength()

int getColumnLength (int cno)

Returns the length, in bytes, of the value in column number cno of the current row,
not counting the NULL terminator. Or it returns SQL_NULL_DATA if the value is NULL.
(For those familiar with ODBC, this is the value stored by ODBC in the last parameter,
pcbValue, from SQLBindCol after a call to SQLFetch.) When there is a non-null
value, the length returned is between 0 and the column precision, inclusive. See
getColumnPrecision().

For example, assume a VARCHAR2 (25) column. If the value is null, the length
returned is -1. If the value is 'abcde’, the length returned is 5.

This method is generally useful only when accessing columns of type CHAR,
VARCHAR2, NCHAR, NVARCHAR2, BINARY, and VARBINARY.

getColumnNullable()

bool getColumnNullable(int cno, TYPE* valueP)
bool getColumnNullable(int cno, TYPE* valueP, int* byteLenP)

The getColumnNullable () method is similar to the getColumn () method and
supports the same data types and signatures as documented in Table 3-2 above.
However, in addition to the behavior of getColumn (), the getColumnNullable ()
method also returns a boolean indicating whether the value is the SQL NULL
pseudo-value. If the value is NULL, the second parameter is set to a distinctive value
(for example, -9999) and the return value from the method is TRUE. If the value is not
NULL, it is returned through the variable pointed to by the second parameter and the
getColumnNullable () method returns FALSE.

getHandle()

SQLHSTMT getHandle ()

If you must manipulate the underlying ODBC statement object, use this method to
retrieve the statement handle.

getMaxRows()

int getMaxRows ()

Class Descriptions 3-19

Commonly used TTClasses

This method returns the current limit of the number of rows returned by a SELECT
statement from this TTCmd object. A return value of 0 means all rows are returned.
Also see setMaxRows ().

getNextColumn()

void getNextColumn (TYPE* valueP)
void getNextColumn (TYPE* valueP, int* byteLenP)

The getNextColumn () method, as well as the getNextColumnNullable ()
method, fetches the value of the next column of the current row of the result set. Before
getNextColumn () or getNextColumnNullable () can be called, the

FetchNext () method must be called to fetch the next (or first) row from the result set
of a SELECT statement. When you use getNextColumn (), the columns are fetched in
order. You cannot change the fetch order.

See Table 3-2 on page 3-18 for the supported SQL data types and the appropriate
method version to use for each data type. This information can be used for
getNextColumn (), except there is no column number parameter for
getNextColumn ().

getNextColumnNullable()

bool getNextColumnNullable (TYPE* valueP)
bool getNextColumnNullable (TYPE* valueP, int* byteLenP)

The getNextColumnNullable () method is similar to the getNextColumn ()
method. However, in addition to the behavior of getNextColumn (), the
getNextColumnNullable () method returns a boolean indicating whether the value
is the SQL NULL pseudo-value. If the value is NULL, the second parameter is set to a
distinctive value (for example, -9999) and the return value from the method is TRUE. If
the value is not NULL, it is returned through the variable pointed to by the second
parameter, and the method returns FALSE. When you use
getNextColumnNullable (), the columns are fetched in order. You cannot change
the fetch order.

See Table 3-2 on page 3-18 for the supported SQL data types and the appropriate
method versions to use for each data type. This information can be used for
getNextColumnNullable (), except there is no column number parameter for
getNextColumnNullable ().

getParam()

bool getParam(int pno, TYPE* valueP)
bool getParam(int pno, TYPE* valueP, int* byteLenP)

Each getParam() version is used to retrieve the value of an OUT or IN OUT
parameter, specified by parameter number, after executing a prepared SQL statement.
SQL statements are prepared before use with the Prepare () method and are
executed with the Execute () method. The getParam () method is used to provide a
variable of appropriate data type for the value for each output parameter after
executing the statement.

The first argument passed to getParam () is the position of the parameter for the
output value. The first parameter in a SQL statement is parameter 1. The second
argument passed to getParam () is a variable for the output value. Overloaded
versions of getParam () take different data types for the second argument.

3-20 Oracle TimesTen In-Memory Database TTClasses Guide

Commonly used TTClasses

The getParam () method supports the same data types documented for

getColumn () in Table 3-2 on page 3-18. For NCHAR, NVARCHAR, and binary types, as
shown in that table, the method call includes byteLenp, a pointer to an integer value
for the number of bytes.

The getParam() returnis a boolean that is TRUE if the parameter value is NULL or
FALSE otherwise.

The TTClasses library does not support a large set of data type conversions. The
appropriate overloaded version of getParam () must be called for each output
parameter in the prepared SQL. Calling the wrong version (attempting to use an
integer parameter for a char* value, for example) may result in program failure.

See "Binding OUT or IN OUT parameters” on page 2-10 for examples using
getParam().

For REF CURSORSs, the following signature is supported to use a TTCmd object as a
statement handle for the REF CURSOR (data type SQL_REFCURSOR). See "Working
with REF CURSORs" on page 2-13 for information and an example.

bool getParam(int pno, TTCmd** rcCmd)

getQueryThreshold()

int getQueryThreshold()

Returns the query threshold value, as described for setQueryThreshold().

If no value has been set with setQueryThreshold (), this method returns the value
of the ODBC connection option TT_QUERY_THRESHOLD (if set) or of the TimesTen
general connection attribute QueryThreshold.

getRowCount()

int getRowCount ()

This method can be called immediately after Execute () to return the number of rows
that were affected by the executed SQL operation. For example, after execution of a
DELETE statement that deletes 10 rows, getRowCount () returns 10.

isColumnNull()

bool isColumnNull (int cno)

This method provides another way to determine whether the value in column number
cno of the current row is NULL, returning TRUE if so or FALSE otherwise.

Also see information about the getColumnNullable () method.

Prepare()

void Prepare (TTConnection* cP, const char* sqglp)

This method associates a SQL statement with the TTCmd object. It takes two
parameters:

= A pointer to a TTConnection object, which should be connected to the database
by a call to TTConnection: :Connect ().

= A const char* parameter for the SQL statement being prepared.

Note that TimesTen has features to control database access with object-level resolution
for database objects such as tables, views, materialized views, sequences, and

Class Descriptions 3-21

Commonly used TTClasses

synonyms. Access control privileges are checked both when SQL is prepared and
when it is executed in the database, with most of the performance cost coming at
prepare time. See "Considering TimesTen features for access control" on page 2-4.

Also see RePrepare ().

Note: To avoid unwanted round trips between client and server
when in client/server mode, the Prepare () method performs what
is referred to as a "deferred prepare", where the request is not sent to
the server until required. See "TimesTen deferred prepare" in Oracle
TimesTen In-Memory Database C Developer’s Guide for more information.

printColumn()

void printColumn(int cno, STDOSTREAM& os, const char* nullString) const

This method prints the value in column number cno of the current row to the output
stream os. Use this method for debugging or for demo programs. Use nullString to

specify what should be printed if the column value is NULL (for example, "NULL" or
H?”)'

registerParam()

void registerParam(int pno, TTCMD_PARAM_INPUTOUTPUT_TYPE inputOutputType,
int sqgltype)

void registerParam(int pno, TTCMD_PARAM_INPUTOUTPUT_TYPE inputOutputType,
int sqgltype, int precision)

void registerParam(int pno, TTCMD_PARAM_INPUTOUTPUT_TYPE inputOutputType,
int sqgltype, int precision, int scale)

Use this method to register a parameter for binding. This is required for OUT and IN
OUT parameters and can also be used as appropriate to specify SQL type, precision
(maximum number of digits that are used by the data type, where applicable), and
scale (maximum number of digits to the right of the decimal point, where applicable).
See "Registering parameters” on page 2-9.

RePrepare()

void RePrepare (TTConnection* cP)

This method allows a statement to be re-prepared. It is useful only when a statement
handle in a prepared statement has been invalidated. Also see Prepare ().
setMaxRows()

void setMaxRows (const int nMaxRows)

This method sets a limit on the number of rows returned by a SELECT statement. If the
number of rows in the result set exceeds the set limit, the TTCmd: : FetchNext ()

method will return 1 if it fetches beyond the maximum number of rows. Also see
getMaxRows ().

The default is to return all rows. To reset a limit to again return all rows, call
setMaxRows () with nMaxRows set to 0. The limit is only meaningful for SELECT
statements.

setParam()

void setParam(int pno, TYPE value)

3-22 Oracle TimesTen In-Memory Database TTClasses Guide

Commonly used TTClasses

void setParam(int pno, TYPE* valueP)
void setParam(int pno, TYPE* valueP, int byteLen)

All overloaded setParam () versions are described in this section.

Each setParam () version is used to set the value of a parameter, specified by
parameter number, before executing a prepared SQL statement. SQL statements are
prepared before use with the Prepare () method and are executed with the

Execute () method. If the SQL statement contains any parameter markers (the "?"
character used where a literal constant would be legal), values must be assigned to
these parameters before the SQL statement can be executed. The setParam () method
is used to define a value for each parameter before executing the statement. See
"Dynamic parameters" in Oracle TimesTen In-Memory Database SQL Reference.

The first argument passed to setParam () is the position of the parameter to be set.
The first parameter in a SQL statement is parameter 1. The second argument passed to
setParam() is the value of the parameter. Overloaded versions of setParam() take
different data types for the second argument.

The TTClasses library does not support a large set of data type conversions. The
appropriate overloaded version of setParam () must be called for each parameter in
the prepared SQL. Calling the wrong version (attempting to set an integer parameter
to a char* value, for example) may result in program failure.

Values passed to setParam () are copied into internal buffers maintained by the
TTCmd object. These buffers are statically allocated and bound by the Prepare ()
method. The parameter value is the value passed into setParam() at the time of the
setParam() call, not the value at the time of a subsequent Execute () method call.

Table 3-3 shows the supported SQL data types and the appropriate versions of
setParam() to use for each type. Note that SQL data types not mentioned are not
supported in this version of TTClasses. For NCHAR, NVARCHAR, and binary types, as
shown in the table, the method call includes by teLen, an integer value for the
number of bytes.

See "Binding IN parameters" on page 2-8 and "Binding OUT or IN OUT parameters"
on page 2-10 for examples using setParam().

Notes:

= To set the length of the value for a bound parameter, see
setParamLength ().

= To set a value of NULL for a bound parameter, see
setParamNull ().

Table 3-3 setParam() variants for supported data types

Data type setParam() variants supported

TT_TINYINT

setParam(pno,

SQLTINYINT value)

TT_SMALLINT

setParam(pno,

SQLSMALLINT value)

TT_INTEGER

setParam(pno,

SQLINTEGER value)

TT_BIGINT

setParam(pno,

SQLBIGINT value)

BINARY_FLOAT
REAL

setParam(pno,

float value)

Class Descriptions 3-23

Commonly used TTClasses

Table 3-3 (Cont.) setParam() variants for supported data types

Data type setParam() variants supported

BINARY DOUBLE setParam(pno, double value)

DOUBLE

NUMBER setParam(pno, char* valueP)

TT DECIMAL setParam(pno, const char* valueP)
setParam(pno, SQLCHAR* valueP)
setParam(pno, SQLTINYINT value)
setParam(pno, SQLSMALLINT value)
setParam(pno, SQLINTEGER value)
setParam(pno, SQLBIGINT value)

Note: The integer versions are appropriate only for columns
declared with the scale parameter set to zero, such as NUMBER (8)
or NUMBER (8, 0).
TT_CHAR setParam(pno, char* valueP)
*

CHAR setParam(pno, const char* valueP)
setParam(pno, SQLCHAR* valueP)

TT_VARCHAR

VARCHAR2

TT_NCHAR setParam(pno, SQLWCHAR* valueP, byteLen)

NCHAR

TT_NVARCHAR

NVARCHAR?2

BINARY setParam(pno, const void* valueP, byteLen)
VARBINARY

DATE setParam(pno, TIMESTAMP_STRUCT* valueP)

TT_TIMESTAMP

TIMESTAMP

TT_DATE setParam(pno, DATE_STRUCT* valueP)
TT_TIME setParam(pno, TIME_STRUCT* valueP)
setParamLength()

(Version for non-batch operations.)

void setParamLength(int pno,

int byteLen)

Sets the length, in bytes, of the bound value for an input parameter specified by
parameter number, before execution of the prepared statement.

Note:

There is also a batch version of this method. See

"setParamLength()" on page 3-32.

setParamNull()
(Version for non-batch operations.)

void setParamNull (int pno)

Sets a value of SQL NULL for a bound input parameter specified by parameter number.

3-24 Oracle TimesTen In-Memory Database TTClasses Guide

Commonly used TTClasses

Note: There is also a batch version of this method. See
"setParamNull()" on page 3-33.

setQueryThreshold()

void setQueryThreshold(const int nSecs)

Use this method to specify a threshold time limit, in seconds, for SQL statements (not
just queries). If the execution time of a statement exceeds the threshold, a warning is

written to the support log and an SNMP trap is thrown. Execution continues and is not
affected by the threshold. Also see getQueryThreshold ().

The setQueryThreshold () method has the same effect as using
SQLSetStmtOption to set TT_QUERY_THRESHOLD or setting the TimesTen general
connection attribute QueryThreshold.

See "Setting a timeout or threshold for executing SQL statements" on page 2-16.

setQueryTimeout()

void setQueryTimeout (const int nSecs)

Use this method to specify how long, in seconds, any SQL statement (not just a query)
will execute before timing out. By default there is no timeout.

This has the same effect as using SQLSetStmtOption to set SQL._QUERY_TIMEOUT
or setting the TimesTen general connection attribute SglQueryTimeout.

See "Setting a timeout or threshold for executing SQL statements" on page 2-16.

Public methods for obtaining TTCmd object properties

There are several useful methods for asking questions about properties of the bound
input parameters and output columns of a prepared TTCmd object. These methods
generally provide meaningful results only when a statement has previously been
prepared.

Method Description

getColumnName () Returns the name of the specified column.

getColumnNullability () Indicates whether data in the specified column can have the
value NULL.

getColumnPrecision () Returns the precision of the specified column.

getColumnScale () Returns the scale of the specified column.

getColumnType () Returns the ODBC data type of the specified column.

getNColumns () Returns the number of output columns.

getNParameters () Returns the number of input parameters.

getParamNullability () Indicates whether the value of the specified parameter can be
NULL.

getParamPrecision () Returns the precision of the specified parameter in a prepared
statement.

getParamScale () Returns the scale of the specified parameter in a prepared
statement.

getParamType () Returns the ODBC data type of the specified parameter.

Class Descriptions 3-25

Commonly used TTClasses

Method Description

isBeingExecuted Indicates whether the statement represented by the TTCmd
object is being executed.

getColumnName()

const char* getColumnName (int cno)
Returns the name of column number cno.

getColumnNullability()

int getColumnNullability(int cno)

Indicates whether column number cno can NULL data. It returns SQL_NO_NULLS,
SQL_NULLABLE, or SQLNULLABLE_UNKNOWN.

getColumnPrecision()

int getColumnPrecision(int cno)

Returns the precision of data in column number cno, referring to the size of the
column in the database. For example, for a VARCHAR2 (25) column, the precision
returned would be 25.

This value is generally interesting only when generating output from table columns of
type CHAR, VARCHAR2, NCHAR, NVARCHAR2, BINARY, and VARBINARY.

getColumnScale()

int getColumnScale(int cno)

Returns the scale of data in column number cno, referring to the maximum number of
digits to the right of the decimal point.

getColumnType()

int getColumnType (int cno)

Returns the data type of column number cno. The value returned is the ODBC type of
the parameter (for example, SQL_INTEGER, SQL_REAL, SQL_BINARY, SQL_CHAR) as
found in sql.h. Additional TimesTen types (SQL_WCHAR, SQL_WVARCHAR) can be
found in the TimesTen header file timesten.h.

getNColumns()

int getNColumns ()

Returns the number of output columns.

getNParameters()

int getNParameters()

Returns the number of input parameters for the SQL statement.

getParamNullability()

int getParamNullability(int pno)

3-26 Oracle TimesTen In-Memory Database TTClasses Guide

Commonly used TTClasses

Indicates whether parameter number pno can have the value NULL. It returns
SQL_NO_NULLS, SQL_NULLABLE, or SQLNULLABLE_UNKNOWN.

Note: In earlier releases this method returned bool instead of int.

getParamPrecision()

int getParamPrecision(int pno)

Returns the precision of parameter number pno, referring to the maximum number of
digits that are used by the data type. Also see information for
getColumnPrecision().

getParamScale()

int getParamScale(int pno)

Returns the scale of parameter number pno, referring to the maximum number of
digits to the right of the decimal point.

getParamType()
int getParamType (int pno)

Returns the data type of parameter number pno. The value returned is the ODBC type
(for example, SQL_INTEGER, SQL_REAL, SQL_BINARY, SQL_CHAR) as found in
sqgl.h. Additional TimesTen types (SQL_WCHAR, SQL_WVARCHAR) can be found in the
TimesTen header file timesten.h.

isBeingExecuted

bool isBeingExecuted()

Indicates whether the statement represented by the TTCmd object is being executed.

Note: This method was formerly named queryBeingExecuted ().
That name is still supported for backward compatibility.

Public methods for batch operations

TimesTen supports the ODBC function SQLBindParams for batch insert, update and
delete operations. TTClasses provides an interface to the ODBC function
SQLBindParams.

Performing batch operations with TTClasses is similar to performing non-batch
operations. SQL statements are first compiled using PrepareBatch (). Then each
parameter in that statement is bound to an array of values using BindParameter ().
Finally, the statement is executed using ExecuteBatch ().

See the TTClasses bulktest sample program in the TimesTen Quick Start for an
example of using a batch operation. Refer to "About the TimesTen TTClasses demos"
on page 1-7.

This section describes the TTCmd methods that expose the batch INSERT, UPDATE, and
DELETE functionality to TTClasses users.

Class Descriptions 3-27

Commonly used TTClasses

Method Description

batchSize () Returns the number of statements in the batch.

BindParameter () Binds an array of values for one parameter of a statement prepared
using PrepareBatch ().

ExecuteBatch () Invokes a SQL statement that has been prepared for execution by
PrepareBatch (). It returns the number of rows in the batch that were
updated.

PrepareBatch () Prepares batch INSERT, UPDATE, and DELETE statements.

setParamLength () Sets the length, in bytes, of the value of the specified bound parameter
before execution of the prepared statement.

setParamNull () Sets the specified bound parameter to NULL before execution of the
prepared statement.

batchSize()

u_short batchSize()
Returns the number of statements in the batch.

BindParameter()

void BindParameter (int pno, unsigned short batSz, TYPE* valueP)
void BindParameter (int pno, unsigned short batSz, TYPE* valueP, size_t maxByteLen)
void BindParameter (int pno, unsigned short batSz, TYPE* valueP,

SQLLEN* userByteLenP, size_t maxByteLen)

The overloaded BindParameter () method is used to bind an array of values for a
specified parameter in a SQL statement compiled using PrepareBatch (). This is to
iterate through a batch of repeated executions of the statement with different values.
The pno parameter indicates the position in the statement of the parameter to be
bound, starting from the left, where the first parameter is 1, the next is 2, and so on.

The batSz (batch size) value of this call must match the batSz value specified in
PrepareBatch (), and the bound arrays should contain at least the ba t Sz number of
values. You must determine the correct data type for each parameter. Note that if an
inappropriate type is specified, a runtime error will be written to the TTClasses global
logging facility at the TTLog: : TTLOG_ERR logging level.

Table 3—4 below shows the supported SQL data types and the appropriate versions of
BindParameter () to use for each parameter type.

Before each invocation of ExecuteBatch (), the application should fill the arrays
with valid parameter values. Note that you can use the setParamNull () method to
set null values, as described in "setParamNull()" on page 3-33.

For the SQL types TT_CHAR, CHAR, TT_VARCHAR, and VARCHAR2, an additional
maximum length parameter is required in the BindParameter () call:

» maxByteLen of type size_t is for the maximum length, in bytes, of any value
for this parameter position.

For the SQL types TT_NCHAR, NCHAR, TT_NVARCHAR, NVARCHAR2, BINARY, and
VARBINARY, two additional parameters are required in the BindParameter () call,
an array of parameter lengths and a maximum length:

» userByteLenPis an array of SQLLEN parameter lengths, in bytes, to specify the
length of each value in the batch for this parameter position in the SQL statement.

3-28 Oracle TimesTen In-Memory Database TTClasses Guide

Commonly used TTClasses

This array must be at least batSz in length and filled with valid length values
before ExecuteBatch () is called. (You can store SQL_NULL_DATA in the array of
parameter lengths for a null value, which is equivalent to using the
setParamNull () batch method.)

s maxByteLenis as described above. This indicates the maximum length value that
can be specified in any element of the userByteLenP array.

For data types where userByteLenPis not available (or as an alternative where it is
available), you can optionally use the set ParamLength () batch method to set data
lengths, as described in "setParamLength()" on page 3-32, and use the

setParamNull () batch method to set null values, as described in "setParamNull()"

on page 3-33.

See Example 3-5 in "ExecuteBatch()" below for examples of BindParameter () use.

Table 3—-4 BindParameter() variants for supported data types

SQL data type BindParameter() variants supported

TT_TINYINT BindParameter (pno, batSz, SQLTINYINT* user_tiP)

TT_ SMALLINT BindParameter (pno, batSz, SQLSMALLINT* user_siP)
TT_INTEGER BindParameter (pno, batSz, SQLINTEGER* user. iP)
TT_BIGINT BindParameter (pno, batSz, SQLBIGINT* user. biP)
BINARY_FLOAT BindParameter (pno, batSz, float* user_ fP)
BINARY_DOUBLE BindParameter (pno, batSz, double* user_dP)

NUMBER BindParameter (pno, batSz, char** user cPP, maxByteLen)
TT_DECIMAL

TT_CHAR BindParameter (pno, batSz, char** user. cPP, maxByteLen)
CHAR

TT_VARCHAR

VARCHAR?2

TT_NCHAR BindParameter (pno, batSz, SQLWCHAR** user wcPP, userByteLenP,
NCHAR maxByteLen)

TT_NVARCHAR

NVARCHAR2

BINARY BindParameter (pno, batSz, const void** user_binPP, userByteLenP,
VARBINARY maxByteLen)

DATE BindParameter (pno, batSz, TIMESTAMP_STRUCT* user_tssP)
TT_TIMESTAMP

TIMESTAMP

TT_DATE BindParameter (pno, batSz, DATE_STRUCT* user_dsP)
TT_TIME BindParameter (pno, batSz, TIME_STRUCT* user_tsP)
ExecuteBatch()

int ExecuteBatch(unsigned short numRows)

After preparing a SQL statement with PrepareBatch () and calling
BindParameter () for each parameter in the SQL statement, use ExecuteBatch ()
to execute the statement numRows times. The value of numRows must be no more than

Class Descriptions 3-29

Commonly used TTClasses

the bat Sz (batch size) value specified in the PrepareBatch () and
BindParameter () calls, and can be less than bat Sz as required by application logic.

This method returns the number of rows that were updated, with possible values in
the range 0 to batSz, inclusive. (For those familiar with ODBC, this is the third
parameter, *pirow, of an ODBC SsQLParamOptions call. Refer to ODBC API
reference documentation for information about SQL.ParamOptions.)

Before calling ExecuteBatch (), the application should fill the arrays of parameters
to be bound by BindParameter () with valid values.

A TTStatus object is thrown as an exception if an error occurs (often due to violation
of a uniqueness constraint). In this event, the return value is not valid and the batch is
incomplete and should generally be rolled back.

Example 3-5 shows how to use the ExecuteBatch () method. The bulktest Quick
Start demo also shows usage of this method. (See "About the TimesTen TTClasses
demos" on page 1-7.)

Example 3-5 Using the ExecuteBatch() method

First, create a table with two columns:

CREATE TABLE batch_table (a TT_INTEGER, b VARCHAR2(100));

Here is the sample code. Populate the rows of the table in batches of 50:

#define BATCH_SIZE 50
#define VARCHAR_SIZE 100

int int_array[BATCH_SIZE];
char char_array[BATCH_SIZE] [VARCHAR_SIZE];

// Prepare the statement

TTCmd insert;
TTConnection connection;

// (assume a connection has been established)
try {

insert.PrepareBatch (&connection,
(const char*)"insert into batch_table values (?,?)",
BATCH_SIZE) ;

// Commit the prepared statement
connection.Commit () ;

// Bind the arrays of parameters
insert.BindParameter (1, BATCH_SIZE, int_array);
insert.BindParameter (2, BATCH_SIZE, (char **)char_array, VARCHAR_SIZE);

// Execute 5 batches, inserting 5 * BATCH_SIZE rows into
// the database
for (int iter = 0; iter < 5; iter++)
{
// Populate the value arrays with values.
// (A better way of putting meaningful data into
// the database is to read values from a file,
// rather than generating them arbitrarily.)

3-30 Oracle TimesTen In-Memory Database TTClasses Guide

Commonly used TTClasses

for (int 1 = 0; 1 < BATCH_SIZE; 1i++)
{

int_array[i] = 1 * iter + 1i;
sprintf (char_array[i], "varchar value # %d", i*iter+ 1i);

// Execute the batch insert statement,

// which inserts the entire contents of the

// integer and char arrays in one operation.
int num_ins = insert.ExecuteBatch (BATCH_SIZE);

cerr << "Inserted " << num_ins << " rows." << endl;
connection.Commit () ;
} // for iter

} catch (TTError erl) {
cerr << erl << endl;

The number of rows updated (num_ins in the example) can be less than BATCH_SIZE
if, for example, there is a violation of a uniqueness constraint on a column. You can use
code similar to that in Example 3-6 to check for this situation and roll back the
transaction as necessary.

Note that TimesTen has features to control database access with object-level resolution
for database objects such as tables, views, materialized views, sequences, and
synonyms. Access control privileges are checked both when SQL is prepared and
when it is executed in the database, with most of the performance cost coming at
prepare time. See "Considering TimesTen features for access control" on page 2-4.

Example 3—-6 Using ExecuteBatch() and checking against BATCH_SIZE

for (int iter = 0; iter < 5; iter++)

{

// Populate the value arrays with values.

// (A better way of putting meaningful data into
// the database is to read values from a file,
// rather than generating them arbitrarily.)

for (int 1 = 0; 1 < BATCH_SIZE; i++)
{
int_array[i] = 1 * iter + 1i;
sprintf (char_array[i], "varchar value # %d", i*iter+i);

// now we execute the batch insert statement,

// which does the work of inserting the entire
// contents of the integer and char arrays in

// one operation

int num_ins = insert.ExecuteBatch (BATCH_SIZE);

cerr << "Inserted " << num_ins << " rows (expected "
<< BATCH_SIZE << " rows)." << endl;

if (num_ins == BATCH_SIZE) {
cerr << "Committing batch" << endl;

Class Descriptions 3-31

Commonly used TTClasses

connection.Commit () ;
}
else {
cerr << "Some rows were not inserted as expected, rolling back "
<< "transaction." << endl;
connection.Rollback();
break; // jump out of batch insert loop
}

} // for iter

PrepareBatch()

void PrepareBatch(TTConnection* cP, const char* sqglp, unsigned short batSz)

PrepareBatch () is comparable to the Prepare () method but for batch INSERT,
UPDATE, or DELETE statements. The cPand sqglp parameters are used as for
Prepare (). See "Prepare()" on page 3-21.

The batsSz (batch size) parameter specifies the maximum number of insert, update, or
delete operations that will be performed using subsequent calls to ExecuteBatch ().

A TTStatus object is thrown as an exception if an error occurs.

Note that TimesTen has features to control database access with object-level resolution
for database objects such as tables, views, materialized views, sequences, and
synonyms. Access control privileges are checked both when SQL is prepared and
when it is executed in the database, with most of the performance cost coming at
prepare time. See "Considering TimesTen features for access control" on page 2-4.

Note: To avoid unwanted round trips between client and server
when in client/server mode, the PrepareBatch () method performs
what is referred to as a "deferred prepare"”, where the request is not
sent to the server until required. See "TimesTen deferred prepare” in
Oracle TimesTen In-Memory Database C Developer’s Guide for more
information.

setParamLength()
(Version for batch operations.)

void setParamLength(int pno, unsigned short rowno, int byteLen)

This method sets the length of a bound parameter value before a call to
ExecuteBatch (). The pno argument specifies the parameter number in the SQL
statement (where the first parameter is number 1). The rowno argument specifies the
row number in the array of parameters being bound (where the first row is row
number 1). The byteLen parameter specifies the desired length, in bytes, not counting
the NULL terminator. Alternatively, byteLen can be set to SQL_NTS for a
null-terminated string. (It can also be set to SQL._NULL_DATA, which is equivalent to
using the setParamNull () batch method, described next.)

3-32 Oracle TimesTen In-Memory Database TTClasses Guide

System catalog classes

Notes:

s For binary and NCHAR types, as shown in Table 34 on page 3-29,
it is more typical to use the BindParameter () userByteLenP
array to set parameter lengths. Be aware that row numbering in
the array of parameters being bound starts with 0 in the
userByteLenP array but with 1 when you use
setParamLength ().

s There is also a non-batch version of this method. See
"setParamLength()" on page 3-24.

setParamNull()

(Version for batch operations.)

void setParamNull (int pno, unsigned short rowno)

This method sets a bound parameter value to NULL before a call to ExecuteBatch ().
The pno argument specifies the parameter number in the SQL statement (where the

first parameter is number 1). The rowno argument specifies the row number in the
array of parameters being bound (where the first row is row number 1).

Notes:

s For binary and nchar types, as shown in Table 34 on page 3-29,
there is a BindParameter () userByteLenP array. For these
types, you can have a null value by specifying SQL._NULL_DATA
in this array, which is equivalent to using setParamNull (). Be
aware that row numbering in the array of parameters being
bound starts with 0 in the userByteLenP array but with 1 when
you use setParamNull ().

s There is also a non-batch version of this method. See
"setParamNull()" on page 3-24.

System catalog classes
These classes allow you to work with the TimesTen system catalog.

You can use the TTCatalog class to facilitate reading metadata from the system
catalog. A TTCatalog object contains easily accessible data structures with the
information that was read.

Each TTCatalog object internally contains an array of TTCatalogTable objects.
Each TTCatalogTable object contains an array of TTCatalogColumn objects and an
array of TTCatalogIndex objects.

The following ODBC functions are used inside TTCatalog:
m SQLTables ()

s SQLColumns ()

s SQLSpecialColumns ()

s SQLStatistics()

This section discusses the following classes.

Class Descriptions 3-33

System catalog classes

TTCatalog

s TTCatalog

s TTCatalogTable
s TTCatalogColumn
s TTCatalogIndex

s TTCatalogSpecialColumn

The TTCatalog class is the top-level class used for programmatically accessing
metadata information about tables in a database. A TTCatalog object contains an
internal array of TTCatalogTable objects. Apart from the constructor, all public
methods of TTCatalog are used to gain read-only access to that TTCatalogTable
array.

The TTCatalog constructor caches the conn parameter and initializes all the internal
data structures appropriately.

TTCatalog (TTConnection* conn)

To use the TTCatalog object, call its fetchCatalogData () method, described
shortly. Note that after fetchCatalogData () is called, use of the other TTCatalog
methods does not use a database connection.

Public members
None.

Public methods

Method Description

fetchCatalogData () Reads the catalogs in the database for information about tables and
indexes and stores this information into TTCatalog internal data
structures.

getNumSysTables () Returns the number of system tables in the database.

getNumTables () Returns the total number of tables (user tables plus system tables) in
the database.

getNumUserTables () Returns the number of user tables in the database.

getTable () Returns a constant reference to the TTCatalogTable object for the
specified table.

getTableIndex () Returns the index in the TTCatalog object for the specified table.

getUserTable () Returns a constant reference to the TTCatalogTable object
corresponding to the nth user table in the system (where n is
specified).

fetchCatalogData()

void fetchCatalogData()

This is the only TTCatalog method that interacts with the database. It reads the
catalogs in the database for information about tables and indexes, storing the
information into TTCatalog internal data structures.

3-34 Oracle TimesTen In-Memory Database TTClasses Guide

System catalog classes

Subsequent use of the constructed TTCatalog object is completely offline after it is
constructed. It is no longer connected to the database.

You must call this method before you use any of the TTCatalog accessor methods.

This example demonstrates the use of TTCatalog.

Example 3-7 Fetching catalog data

TTConnection conn;
conn.Connect (DSN=TptbmData37) ;
TTCatalog cat (&conn);
cat.fetchCatalogDatal() ;

// TTCatalog cat is no longer connected to the database;
// you can now query it through its read-only methods.
cerr << "There are " << cat.getNumTables() << " tables in this database:" << endl;
for (int i=0; i < cat.getNumTables(); i++)
cerr << cat.getTable(i).getTableOwner() << "."
<< cat.getTable(i).getTableName () << endl;

getNumSysTables()

int getNumSysTables ()

Returns the number of system tables in the database. Also see getNumTables () and
getNumUserTables ().
getNumTables()

int getNumTables ()

Returns the total number of tables in the database (user plus system tables). Also see
getNumSysTables () and getNumUserTables ().
getNumUserTables()

int getNumUserTables ()

Returns the number of user tables in the database. Also see getNumSysTables ()
and getNumTables ().
getTable()

const TTCatalogTable& getTable(const char* owner, const char* tblname)
const TTCatalogTable& getTable(int tno)

Returns a constant reference to the TTCatalogTable object for the specified table.
Also see getUserTable ().

For the first signature, this is for the table named tbIname and owned by owner.

For the second signature, this is for the table corresponding to table number tno in the
system. This is intended to facilitate iteration through all the tables in the system. The
order of the tables in this array is arbitrary. Note that the following relationship is
asserted to hold:

0 <= tno <= getNumTables ()
Also see "TTCatalogTable" on page 3-36.

getTablelndex()

Class Descriptions 3-35

System catalog classes

int getTableIndex(const char* owner, const char* tblname) const

This method fetches the index in the TTCatalog object for the specified
owner . tblname object. It returns -2 if owner. tbIname does not exist. It returns -1 if
fetchCatalogData () was not called first.

Example 3-8 retrieves information about the TTUSER . MYDATA table from a
TTCatalog object. You can then call methods of TTCatalogTable, described next, to
get information about this table.

Example 3-8 Retrieving table information from a catalog

TTConnection conn;
conn.Connect(...);
TTCatalog cat (&conn);
cat.fetchCatalogDatal() ;

int idx = cat.getTableIndex("TTUSER", "MYDATA");

if (idx < 0) {
cerr << "Table TTUSER.MYDATA does not exist." << endl;
return;

}

TTCatalogTable &table = cat.getTable(idx);

getUserTable()

const TTCatalogTable& getUserTable(int tno)

Returns a constant reference to the TTCatalogTable object corresponding to user
table number tno in the system. This method is intended to facilitate iteration through

all of the user tables in the system. The order of the user tables in this array is arbitrary.
Also see getTable ().

Note that the following relationship is asserted to hold:

0 <= tno <= getNumUserTables ()

Note: There is no equivalent method for system tables.

TTCatalogTable

A TTCatalogTable object is retrieved through the TTCatalog: :getTable ()
method and stores all metadata information about the columns and indexes of a table.

Public members
None.

Public methods

Method Description

getColumn () Returns a constant reference to the TTCatalogColumn
corresponding to the ith column in the table.

getIndex () Returns a constant reference to the TTCatalogIndex object
corresponding to the nth index in the table, where n is specified.

getNumColumns () Returns the number of columns in the table.

3-36 Oracle TimesTen In-Memory Database TTClasses Guide

System catalog classes

Method Description

getNumIndexes () Returns the number of indexes on the table.

getNumSpecialColumns () Returns the number of special columns in this table. See
"TTCatalogSpecialColumn" on page 3-41.

getSpecialColumn () Returns a special column (TTCatalogSpecialColumn object)
from this table, according to the specified column number.

getTableName () Returns the name of the table.

getTableOwner () Returns the owner of the table.

getTableType () Returns the table type as from an ODBC sQLTables call.

isSystemTable () Returns TRUE if the table is a system table.

isUserTable () Returns TRUE if the table is a user table.

getColumn()

const TTCatalogColumn& getColumn (int cno)

Returns a constant reference to the TTCatalogColumn object corresponding to
column number cno in the table. This method is intended to facilitate iteration
through all the columns in the table.

Note that the following relationship is asserted to hold:

0 <= cno <= getNumColumns ()

getindex()

const TTCatalogIndex& getIndex(int num)

Returns a constant reference to the TTCatalogIndex object corresponding to index
number num in the table. This method is intended to facilitate iteration through all the
indexes of the table. The order of the indexes of a table in this array is arbitrary.

Note that the following relationship is asserted to hold:

0 <= num <= getNumIndexes ()

getNumColumns()

int getNumColumns ()

Returns the number of columns in the table.

getNumindexes()

int getNumIndexes ()

Returns the number of indexes on the table.

getNumSpecialColumns()

int getNumSpecialColumns ()

Returns the number of special columns in this TTCatalogTable object. Because
TimesTen supports only rowid special columns, this always returns 1.

Also see "TTCatalogSpecial Column" on page 3-41.

Class Descriptions 3-37

System catalog classes

getSpecialColumn()
const TTCatalogSpecialColumn& getSpecialColumn (int num) const
Returns a special column (TTCatalogSpecialColumn object) from this

TTCatalogTable object, according to the specified column number. In TimesTen this
can only be a rowid pseudocolumn.

Also see "TTCatalogSpecialColumn" on page 3-41.

getTableName()

const char* getTableName ()

Returns the name of the table.

getTableOwner()

const char* getTableOwner ()
Returns the owner of the table.

getTableType()
const char* getTableType() const

Returns the table type of this TTCatalogTable object, as from an ODBC SQLTables
call. In TimesTen this may be TABLE, SYSTEM TABLE, VIEW, or SYNONYM.

isSystemTable()

bool isSystemTable()

Returns TRUE if the table is a system table (owned by SYS or TTREP) or FALSE
otherwise.

The isSystemTable () method and isUserTable () method (described next) are
useful for applications that iterate over all tables in a database after a call to
TTCatalog::fetchCatalogData (), so that you can filter or annotate tables to
differentiate the system and user tables. The TTClasses demo program catalog
provides an example of how this can be done. (See "About the TimesTen TTClasses
demos" on page 1-7.)

isUserTable()

bool isUserTable()

Returns TRUE if this is a user table, which is to say it is not a system table, or FALSE
otherwise. Note that isUserTable () returns the opposite of isSystemTable () for
any table. The description of isSystemTable (), immediately preceding, discusses
the usage and usefulness of these methods.

TTCatalogColumn

The TTCatalogColumn class is used to store all metadata information about a single
column of a table. This table is represented by the TTCatalogTable object from
which the column was retrieved through a TTCatalogTable: :getColumn () call.

Public members
None.

3-38 Oracle TimesTen In-Memory Database TTClasses Guide

System catalog classes

Public methods

Method Description

getColumnName () Return the name of the column

getDataType () Returns an integer representing the ODBC SQL data type of the
column.

getLength () Returns the length of the column, in bytes.

getNullable () Indicates whether the column can contain NULL values.

getPrecision() Returns the precision of the column.

getRadix () Returns the radix of the column.

getScale () Returns the scale of the column.

getTypeName ()

Returns the database-dependent name of the type returned by
getDataType ().

getColumnName()

const char* getColumnName ()

Returns the name of the column.

getDataType()

int getDataType ()

Returns an integer representing the data type of the column. This is the standard

ODBC SQL Type.

getLength()

int getLength()

Returns the length of data in the column, in bytes.

getNullable()

int getNullable()

Indicates whether the column can contain NULL values. It returns SQL_NO_NULLS,
SQL_NULLABLE, or SQL_NULLABLE_UNKNOWN.

getPrecision()

int getPrecision()

Returns the precision of data in the column, referring to the maximum number of
digits that are used by the data type.

getRadix()

int getRadix()

Returns the radix of the column, according to ODBC SQLColumns functionality.

getScale()

int getScale()

Class Descriptions 3-39

System catalog classes

Returns the scale of data in the column, referring to the maximum number of digits to
the right of the decimal point.

getTypeName()

const char* getTypeName ()

Returns the database-dependent name of the type returned by getDataType ().

TTCatalogindex

The TTCatalogIndex class is used to store all metadata information about an index
of a table. This table is represented by the TTCatalogTable object from which the
index was retrieved through a TTCatalogTable: :getIndex () call

Public members
None.

Public methods

Method Description

getCollation() Returns the collation of the specified column in the index
getColumnName () Returns the name of the specified column in the index.
getIndexName () Returns the name of the index.

getIndexOwner () Returns the owner of the index.

getNumColumns () Returns the number of columns in the index.

getTableName () Returns the name of the table for which the index was created.
getType () Returns the type of the index

isUnique () Indicates whether the index is a unique index.

getCollation()

char getCollation (int num)

Returns the collation of column number num in the index. Values returned are "A" for
ascending order or "D" for descending order.

getColumnName()

const char* getColumnName (int num)
Returns the name of column number num in the index.

getindexName()

const char* getIndexName ()

Returns the name of the index.

getindexOwner()

const char* getIndexOwner ()

3-40 Oracle TimesTen In-Memory Database TTClasses Guide

System catalog classes

Returns the owner of the index.

getNumColumns()

int getNumColumns ()
Returns the number of columns in the index.

getTableName()

const char* getTableName ()

Returns the name of the table for which the index was created. This is the table
represented by the TTCatalogTable object from which the index was retrieved
through a TTCatalogTable: :getIndex () call.

getType()
int getType()

Returns the type of the index. For TimesTen, the allowable values are PRIMARY_KEY,
HASH_INDEX (the same as PRIMARY_KEY), and TTREE_INDEX.
isUnique()

bool isUnique()

Returns TRUE if the index is a unique index or FALSE otherwise.

TTCatalogSpecialColumn

This class is a wrapper for results from an ODBC sQLSpecialColumns call on a table
represented by a TTCatalogTable object. In TimesTen, a rowid pseudocolumn is the
only type of special column supported, so a TTCatalogSpecialColumn object can
only contain information about rowids.

Usage

Obtain a TTCatalogSpecialColumn object by calling the getSpecialColumn ()
method on the relevant TTCatalogTable object.

Public members
None.

Public methods

Method Description

getColumnName () Returns the name of the special column.

getDataType () Returns the data type of the special column, as an integer.

getLength () Returns the length of data in the special column, in bytes.

getPrecision/() Returns the precision of the special column.

getScale () Returns the scale of the special column.

getTypeName () Returns the data type of the special column, as a character
string.

Class Descriptions 3-41

XLA classes

getColumnName()

const char* getColumnName ()
Returns the name of the special column.

getDataType()

int getDataType()

Returns an integer representing the ODBC SQL data type of the special column. In
TimesTen this can be only SQL_ROWID.
getLength()

int getLength()
Returns the length of data in the special column, in bytes.

getPrecision()

int getPrecision()

Returns the precision for data in the special column, referring to the maximum
number of digits used by the data type.

getScale()

int getScale()

Returns the scale for data in the special column, referring to the maximum number of
digits to the right of the decimal point.

getTypeName()

const char* getTypeName ()

Returns the data type name that corresponds to the ODBC SQL data type value
returned by getDataType (). In TimesTen this can be only ROWID.

XLA classes

TTClasses provides a set of classes for applications to use with the TimesTen
Transaction Log API (XLA).

XLA is a set of C-callable functions that allow an application to monitor changes made
to one or more database tables. Whenever another application changes a monitored
table, the application using XLA is informed of the changes. For more information
about XLA, see "XLA and TimesTen Event Management" in Oracle TimesTen In-Memory
Database C Developer's Guide.

The XLA classes support as many XLA columns as the maximum number of columns
supported by TimesTen. For more information, see "System Limits" in Oracle TimesTen
In-Memory Database System Tables and Limits Reference.

Important: As noted in "Considerations when using an ODBC driver
manager (Windows)" on page 1-7, XLA functionality does not work in
TTClasses when you use an ODBC driver manager.

3-42 Oracle TimesTen In-Memory Database TTClasses Guide

XLA classes

This section discusses the following classes:
m TTXlaPersistConnection

s TTXlaRowViewer

s TTXlaTableHandler

s TTXlaTableList

s TTXlaTable

s TTXlaColumn

TTXlaPersistConnection

Use TTX1laPersistConnection to create an XLA connection to a database.

Usage

An XLA application can create multiple TTX1aPersistConnection objects if
needed. Each TTX1aPersistConnection object must be associated with its own
bookmark, which is specified at connect time and must be maintained through the
ackUpdates () and deleteBookmarkAndDisconnect () methods. Most
applications require only one or at most two XLA bookmarks.

After an XLA connection is established, the application should enter a loop in which
the fetchUpdatesWait () method is called repeatedly until application termination.
This loop should fetch updates from XLA as rapidly as possible to ensure that the
transaction log does not fill up available disk space.

Notes:

» The transaction log is in a file system location according to the
TimesTen LogDir attribute setting, if specified, or the DataStore
attribute setting. Refer to "Data store attributes" in Oracle TimesTen
In-Memory Database Reference.

s Each bookmark establishes its own log hold on the transaction
log. (See "ttLogHolds" in Oracle TimesTen In-Memory Database
Reference for related information.) If any bookmark is not moved
forward periodically, transaction logs cannot be purged by
checkpoint operations. This can fill up disk space over time.

After processing a batch of updates, the application should call ackUpdates () to
acknowledge those updates and get ready for the next call to fetchUpdatesWait ().
A batch of updates can be replayed using the setBookmarkIndex () and
getBookmarkIndex () methods. Also, if the XLA application disconnects after
fetchUpdatesWait () but before ackUpdates (), the next connection (with the
same bookmark name) that calls fetchUpdatesWait () will see that same batch of
updates.

Updates that occur while a TTX1aPersistConnection object is disconnected from
the database are not lost. They are stored in the transaction log until another
TTXlaPersistConnection object connects with the same bookmark name.

Note that privilege to connect to a database must be granted to users through the
CREATE SESSION privilege, either directly or through the PUBLIC role. See "Access
control for connections” on page 2-6. In addition, the XLA privilege is required to
create an XLA connection.

Class Descriptions 3-43

XLA classes

Public members
None.

Public methods

Method Description

ackUpdates () Advances the bookmark to the next set of updates.

Connect () Connects with the specified bookmark, or creates one
if it does not exist (depending on the method
signature).

deleteBookmarkAndDisconnect () Deletes the bookmark and disconnects from the
database.

Disconnect () Closes an XLA connection to a database.

fetchUpdatesWait () Fetches updates to the transaction log within the
specified wait period.

getBookmarkIndex () Gets the current transaction log position

setBookmarkIndex () Returns to the transaction log position that was

acquired by a getBookmarkIndex () call.

ackUpdates()

void ackUpdates()

Use this method to advance the bookmark to the next set of updates. After you have
acknowledged a set of updates, the updates cannot be viewed again by this bookmark.
Therefore, a setBookmarkIndex () call will not work after an ackUpdates () call.
(See the descriptions of getBookmarkIndex () and setBookmarkIndex () for
information about replaying a set of updates.)

Applications should acknowledge updates when a batch of XLA records have been
read and processed, so that the transaction log does not fill up available disk space;
however, do not call ackUpdates () too frequently, because it is a relatively expensive
operation.

If an application uses XLA to read a batch of records and then a failure occurs before
ackUpdates () is called, the records will be retrieved when the application
reestablishes an XLA connection.

Note: The transaction log is in a file system location according to the
TimesTen LogDir attribute setting, if specified, or the DataStore
attribute setting. Refer to "Data store attributes" in Oracle TimesTen
In-Memory Database Reference.

Connect()

virtual void Connect (const char* connStr, const char* bookmarkStr,
bool createBookmarkFlag)
virtual void Connect (const char* connStr, const char* username,
const char* password, const char* bookmarkStr,
bool createBookmarkFlag)
virtual void Connect (const char* connStr,
TTConnection: :DRIVER_COMPLETION_ENUM driverCompletion,
const char* bookmarkStr, bool createBookmarkFlag)

3-44 Oracle TimesTen In-Memory Database TTClasses Guide

XLA classes

virtual void Connect (const char* connStr, const char* bookmarkStr)

virtual void Connect (const char* connStr, const char* username,
const char* password, const char* bookmarkStr)

virtual void Connect (const char* connStr,
TTConnection: :DRIVER_COMPLETION_ENUM driverCompletion,
const char* bookmarkStr)

Each XLA connection has a bookmark name associated with it, so that after
disconnecting and reconnecting, the same place in the transaction log can be found.
The name for the bookmark of a connection is specified in the bookmarkStr
parameter.

For the first set of methods listed above, the createBookmarkFIlag boolean
parameter indicates whether the specified bookmark is new or was previously created.
If you indicate that a bookmark is new (createBookmarkFlag==true) and it
already exists, an error will be returned. Similarly, if you indicate that a bookmark
already exists (createBookmarkFlag==false) and it does not exist, an error will be
returned.

For the second set of methods listed, without createBookmarkFlag, TTClasses first
tries to connect reusing the supplied bookmark (behavior equivalent to
createBookmarkFlag==false). If that bookmark does not exist, TTClasses then
tries to connect and create a new bookmark with the name bookmarksStr (behavior
equivalent to createBookmarkFlag==true). These methods are provided as a
convenience, to simplify XLA connection logic if you would rather not concern
yourself with whether the XLA bookmark exists.

In either mode, with or without createBookmarkF1lag, specify a user name and
password either through the connection string or through the separate parameters, or
specify a DRIVER_COMPLETION_ENUM value. Refer to "TTConnection" on page 3-6 for
information about DRIVER_COMPLETION_ENUM.

Note that privilege to connect to a database must be granted to users through the
CREATE SESSION privilege, either directly or through the PUBLIC role. See "Access
control for connections" on page 2-6. In addition, the XLA privilege is required to create
an XLA connection.

Note: Only one XLA connection can connect with a given bookmark
name. An error will be returned if multiple connections try to connect
to the same bookmark.

deleteBookmarkAndDisconnect()

void deleteBookmarkAndDisconnect ()

This method first deletes the bookmark that is currently associated with the
connection, so that the database no longer keeps records relevant to that bookmark,
then disconnects from the database.

To disconnect without deleting the bookmark, use the Disconnect () method
instead.

Disconnect()

virtual void Disconnect ()

Class Descriptions 3-45

XLA classes

This method closes an XLA connection to a database. The XLA bookmark persists after
you call this method.

To delete the bookmark and disconnect from the database, use
deleteBookmarkAndDisconnect () instead.

fetchUpdatesWait()

void fetchUpdatesWait (ttXlaUpdateDesc_t*** arry, int maxrecs,
int* recsP, int seconds)

Use this method to fetch a set of records describing changes to a database. A list of
ttXlaUpdateDesc_t structures is returned. If there are no XLA updates to be
fetched, this method waits the specified number of seconds before returning.

Specify the number of seconds to wait, seconds, and the maximum number of
records to receive, maxrecs. The method returns the number of records actually
received, recsPp, and an array of pointers, arry, that point to structures defining the
changes.

The ttXlaUpdateDesc_t structures that are returned by this method are defined in
the XLA specification. No C++ object-oriented encapsulation of these methods is
provided. Typically, after calling fetchUpdatesWait (), an application processes
these ttXlaUpdateDesc_t structures in a sequence of calls to

TTXlaTableList: :HandleChange ().

See "ttXlaUpdateDesc_t" in Oracle TimesTen In-Memory Database C Developer’s Guide for
information about that data structure.

getBookmarkindex()

void getBookmarkIndex ()

This method gets the current bookmark location, storing it into a class private data
member where it is available for use by subsequent setBookmarkIndex () calls.
setBookmarkindex()

void setBookmarkIndex ()

This method returns to the saved transaction log index, restoring the bookmark to the

address previously acquired by a getBookmarkIndex () call. Use this method to
replay a batch of XLA records.

Note that ackUpdates () invalidates the stored transaction log placeholder. After
ackUpdates (), a call to setBookmarkIndex () returns an error because it is no
longer possible to go back to the previously acquired bookmark location.

TTXlaRowViewer

Use TTX1aRowViewer, which represents a row image from change notification
records, to examine XLA change notification record structures and old and new
column values.

Usage

Methods of this class are used to examine column values from row images contained
in change notification records. Also see related information about the TTX1aTable
class ("TTXlaTable" on page 3-54).

3-46 Oracle TimesTen In-Memory Database TTClasses Guide

XLA classes

Before a row can be examined, the TTX1aRowViewer object must be associated with a
row using the setTuple () method, which is invoked inside the
TTXlaTableHandler: :HandleInsert (), HandleUpdate (), or

HandleDelete () method, or by a user-written overloaded method. Columns can be
checked for null values using the isNull () method. Non-null column values can be
examined using the appropriate overloaded Get () method.

Public members
None.

Public methods

Method Description

columnPrec () Returns the precision of the specified column in the row image.
columnScale () Returns the scale of the specified column in the row image.
Get () Fetches the value of the specified column in the row image.
getColumn () Returns the specified column from the row image.

isColumnTTTimestamp () Indicates whether the specified column in the row image is a
TT_TIMESTAMP column.

isNull() Indicates whether the specified column in the row image has the
value NULL.

numUpdatedCols () Returns the number of columns in the row image that have been
updated.

setTuple () Associates the TTX1aRowViewer object with the specified row
image.

updatedCol () Returns the column number in the row image of a column that
has been updated, typically during iteration through all updated

columns.

columnPrec()

int columnPrec(int cno)

Returns the precision of data in column number cno of the row image, referring to the
maximum number of digits that are used by the data type.
columnScale()

int columnScale(int cno)

Returns the scale of data in column number cno of the row image, referring to the
maximum number of digits to the right of the decimal point.

Get()

void Get (int cno, TYPE* valueP)
void Get (int cno, TYPE* valueP, int* byteLenP)

Fetches the value of column number cno in the row image. These methods are very
similar to the TTCmd: : getColumn () methods.

Table 3-5 that follows shows the supported SQL data types and the appropriate
versions of Get () to use for each data type. Design the application according to the

Class Descriptions 3-47

XLA classes

types of data that are stored. For example, data of type NUMBER (9, 0) can be accessed

by the Get (int, int*) method without loss of information.

Table 3-5 Gel() variants for supported data types

XLA data type Database data type Get variant
TTXLA_CHAR_TT TT_CHAR Get (cno, char** cPP)
TTXLA_NCHAR_TT TT_NCHAR Get (cno, SQLWCHAR** wcPP, byteLenP)
TTXLA_VARCHAR_TT TT_VARCHAR Get (cno, char** cPP)
TTXLA_NVARCHAR_TT TT_NVARCHAR Get (cno, SQLWCHAR** wcPP, byteLenP)
TTXLA_TINYINT TT_TINYINT Get (cno, SQLTINYINT* 1iP)
TTXLA_SMALLINT TT_SMALLINT Get (cno, short* 1iP)
TTXLA_INTEGER TT_INTEGER Get (cno, int* 1iP)
TTXLA_BIGINT TT_BIGINT Get (cno, SQLBIGINT* biP)
TTXLA_BINARY_FLOAT BINARY_FLOAT Get (cno, float* fP)
TTXLA_BINARY_DOUBLE BINARY_DOUBLE Get (cno, double* dP)
TTXLA_DECIMAL_TT TT_DECIMAL Get (cno, char** cPP)
TTXLA_TIME TT_TIME Get (cno, TIME_STRUCT* tP)
TTXLA_DATE_TT TT_DATE Get (cno, DATE_STRUCT* dP)
TTXLA_TIMESTAMP_TT TT_TIMESTAMP Get (cno, TIMESTAMP_STRUCT* tsP)
TTXLA_BINARY BINARY Get (cno, const void** binPP
byteLenP)
TTXLA_VARBINARY VARBINARY Get (cno, const void** binPP,
byteLenP)

TTXLA_NUMBER NUMBER Get (cno, double* dP)

Get (cno, char** cPP)

Get (cno, short* 1iP)

Get (cno, int* 1iP)

Get (cno, SQLBIGINT* biP)
TTXLA_DATE DATE Get (cno, TIMESTAMP_STRUCT* tsP)
TTXLA_TIMESTAMP TIMESTAMP Get (cno, TIMESTAMP_STRUCT* tsP)
TTXLA_CHAR CHAR Get (cno, char** cPP)
TTXLA_NCHAR NCHAR Get (cno, SQLWCHAR** wcPP, byteLenP)
TTXLA_VARCHAR VARCHAR2 Get (cno, char** cPP)
TTXLA_NVARCHAR NVARCHAR2 Get (cno, SQLWCHAR** wcPP, byteLenP)
TTXLA_FLOAT FLOAT Get (cno, double* dpP)

Get (cno, char** cPP)

getColumn()

const TTXlaColumn* getColumn(u_int cno) const

Returns a TTX1aColumn object with metadata for column number cno in the row

image.

isColumnTTTimestamp()

3-48 Oracle TimesTen In-Memory Database TTClasses Guide

XLA classes

bool isColumnTTTimestamp (int cno)

Returns TRUE if column number cno in the row image is a TT_TIMESTAMP column or
FALSE otherwise.
isNull()

bool isNull (int cno)

Indicates whether the column number cno in the row image has the value NULL,
returning TRUE if so or FALSE if not.
numUpdatedCols()

SQLUSMALLINT numUpdatedCols ()
Returns the number of columns that have been updated in the row image.

setTuple()

void setTuple(ttXlaUpdateDesc_t* updateDescP, int whichTuple)

Before a row can be examined, this method must be called to associate the
TTX1laRowViewer object with a particular row image. It is invoked inside the
TTXlaTableHandler: :HandleInsert (), HandleUpdate (), or
HandleDelete () method, or by a user-written overloaded method. You would
typically call it when overloading the TTX1aTableHandler: : HandleChange ()

method. The Quick Start xlasubscriberl demo provides an example of its usage.
(See "About the TimesTen TTClasses demos" on page 1-7.)

The ttXlaUpdateDesc_t structures that are returned by
TTXlaPersistConnection: : fetchUpdatesWait () contain either zero, one, or
two rows. Note the following:

= Structures that define a row that was inserted into a table contain the row image of
the inserted row.

= Structures that define a row that was deleted from a table contain the row image of
the deleted row.

= Structures that define a row that was updated in a table contain the images of the
row before and after the update.

= Structures that define other changes to the table or the database contain no row
images. For example, structures reporting that an index was dropped contain no
row images.

The setTuple () method takes two arguments:

= A pointer to a particular ttXlaUpdateDesc_t structure defining a database
change.

= Aninteger specifying which type of row image in the update structure should be
examined. The following are valid values:

— INSERTED_TUP: Examine the inserted row.
— DELETED_TUP: Examine the deleted row.
- UPDATE_OLD_TUP: Examine the row before it was updated.

- UPDATE_NEW_TUP: Examine the row after it was updated.

Class Descriptions 3-49

XLA classes

updatedCol()

SQLUSMALLINT updatedCol (u_int cno)

Returns the column number of a column that has been updated. For the input
parameter you can iterate from 1 through n, where n is the number returned by
numUpdatedCols (). Example 3-9 shows a snippet from the TimesTen Quick Start
demo xlasubscriberl, where updatedCol () is used with numUpdatedCols ()
to retrieve each column that has been updated. (See "About the TimesTen TTClasses
demos" on page 1-7.)

Example 3-9 Using TTXlaRowViewer::numUpdatedCols() and updatedCol()
void
SampleHandler: :HandleUpdate (ttXlaUpdateDesc_t*)
{

cerr << row2.numUpdatedCols() << " column(s) updated: ";

for (int i = 1; 1 <= row2.numUpdatedCols ()

{

cerr << row2.updatedCol (i) << " ("
<< row2.getColumn (row2.updatedCol (i)-1)->getColName() << ") ";

;i)

}

cerr << endl;

TTXlaTableHandler

The TTX1aTableHandler class provides methods that enable and disable change
tracking for a table. Methods are also provided to handle update notification records
from XLA. It is intended as a base class from which application developers write
customized classes to process changes to a particular table.

The constructor associates the TTX1aTableHandler object with a particular table
and initializes the TTX1aTable data member contained within the
TTXlaTableHandler object:

TTX1laTableHandler (TTX1laPersistConnection& conn, const char* ownerpP,
const char* nameP)

Also see "TTXlaTable" on page 3-54.

Usage

Application developers can derive one or more classes from TTX1aTableHandler
and can put most of the application logic in the HandleInsert (),
HandleDelete (), and HandleUpdate () methods of that class.

One strategy is to derive multiple classes from TTX1aTableHandler, one for each
table. Business logic to handle changes to customer data might be implemented in a
CustomerTableHandler class, for example, while business logic to handle changes
to order data might be implemented in an OrderTableHandler class.

Another strategy is to derive one or more generic classes from TTX1aTableHandler
to handle various scenarios. For example, a generic class derived from
TTXlaTableHandler could be used to publish changes using a publish/subscribe
system.

See the xlasubscriberl and xlasubscriber2 demos in the TimesTen Quick Start
for examples of classes that extend TTX1aTableHandler. (Refer to "About the
TimesTen TTClasses demos" on page 1-7.)

3-50 Oracle TimesTen In-Memory Database TTClasses Guide

XLA classes

Public members
None

Protected members

Member

Description

TTX1laTable tbl

The metadata associated with the table being handled.

TTXlaRowViewer row

Used to view the row being inserted or deleted, or the old
image of the row being updated, in user-written
HandleInsert (),HandleDelete (), and
HandleUpdate () methods.

TTXlaRowViewer row2

Used to view the new image of the row being updated in
user-written HandleUpdate () methods.

Public methods

Method Description

DisableTracking () Disables XLA update tracking for the table.

EnableTracking () Enables XLA update tracking for the table.

generateSQL () Returns the SQL associated with a given XLA record.

HandleChange () Dispatches a record from ttXlaUpdateDesc_t to the
appropriate handling routine for processing.

HandleDelete () Invoked when the HandleChange () method is called to process
a delete operation.

HandleInsert () Invoked when the HandleChange () method is called to process
an insert operation.

HandleUpdate () Invoked when the HandleChange () method is called to process
an update operation.

DisableTracking()

virtual void DisableTracking ()

Disables XLA update tracking for the table. After this method is called, XLA will not
return information about changes to the table.

EnableTracking()

virtual void EnableTracking ()

Enables XLA update tracking for the table. Until this method is called, XLA will not
return information about changes to the table.

generateSQL()

void generateSQL (ttXlaUpdateDesc_t* updateDescP, char* buffer,
SQLINTEGER maxByteLen, SQLINTEGER* actualByteLenP)

This method prints the SQL associated with a given XLA record. The SQL string is
returned through the buffer parameter. Allocate space for the buffer and specify its
maximum length, maxByteLen. The actualByteLenP parameter returns
information about the actual length of the SQL string returned.

Class Descriptions 3-51

XLA classes

If maxByteLen is less than the length of the generated SQL string, a TTStatus error
will be thrown, and the contents of buffer and actualByteLenP will not be
modified.

HandleChange()

virtual void HandleChange (ttXlaUpdateDesc_t* updateDescP)
virtual void HandleChange (ttXlaUpdateDesc_t* updateDescP, void* pData)

Dispatches a ttXlaUpdateDesc_t object to the appropriate handling routine for
processing. The update description is analyzed to determine if it is for a delete, insert
or update operation. The appropriate handing method is then called:
HandleDelete(),HandleInsert (), or HandleUpdate ().

Classes that inherit from TTX1aTableHandler can use the optional ppData
parameter when they overload the TTX1aTableHandler: : HandleChange ()
method. This optional parameter is useful for determining whether the batch of XLA
records that was just processed ends on a transaction boundary. Knowing this will
help an application decide the appropriate time to invoke

TTConnection: :ackUpdates (). See "Acknowledging XLA updates at transaction
boundaries" on page 2-18 for an example that uses the pData parameter.

Also see "HandleChange()" on page 3-54 for TTX1aTableList objects.

HandleDelete()

virtual void HandleDelete(ttXlaUpdateDesc_t* updateDescP) = 0

This method is invoked whenever the HandleChange () method is called to process a
delete operation.

HandleDelete () is not implemented in the TTX1aTableHandler base class. It
must be provided by any classes derived from it, with appropriate logic to handle
deleted rows.

The row that was deleted from the table is available through the protected member
row of type TTX1aRowViewer.

Handlelnsert()

virtual void HandleInsert (ttXlaUpdateDesc_t* updateDescP) = 0

This method is invoked whenever the HandleChange () method is called to process
an insert operation.

HandleInsert () is not implemented in the TTX1aTableHandler base class. It
must be provided by any classes derived from it, with appropriate logic to handle
inserted rows.

The row that was inserted into the table is available through the protected member
row of type TTX1aRowViewer.

HandleUpdate()

virtual void HandleUpdate (ttXlaUpdateDesc_t* updateDescP) = 0

This method is invoked whenever the HandleChange () method is called to process
an update operation.

3-52 Oracle TimesTen In-Memory Database TTClasses Guide

XLA classes

HandleUpdate () is not implemented in the TTX1aTableHandler base class. It
must be provided by any classes derived from it, with appropriate logic to handle
updated rows.

The previous version of the row that was updated from the table is available through
the protected member row of type TTX1aRowViewer. The new version of the row is
available through the protected member row2, also of type TTX1aRowViewer.

TTXlaTableList

The TTX1aTableList class provides a list of TTX1aTableHandler objects and is
used to dispatch update notification events to the appropriate TTX1aTableHandler
object. When an update notification is received from XLA, the appropriate
HandleXxxxxx () method of the appropriate TTX1aTableHandler object is called
to process the record.

For example, if an object of type CustomerTableHandler is handling changes to
table CUSTOMER, and an object of type OrderTableHandler is handling changes to
table ORDERS, the application should include both of these objects in a
TTXlaTableList object. As XLA update notification records are fetched from XLA,
they can be dispatched to the correct handler by a call to

TTX1laTableList: :HandleChange ().

The constructor has two forms:

TTXlaTableList (TTXlaPersistConnection* cP, unsigned int num_tbls_to_monitor)

Where num_tbls_to_monitor is the number of database objects to monitor.
Or:
TTXlaTableList (TTX1laPersistConnection* cP);

Where cP references the database connection to be used for XLA operations. This form
of the constructor can monitor up to 150 database objects.

Usage

By registering TTX1aTableHandler objects in a TTX1aTableList object, the
process of fetching update notification records from XLA and dispatching them to the
appropriate methods for processing can be accomplished using a loop.

Public members
None

Public methods

Method Description

add () Adds a TTX1aTableHandler object to the list.

del() Deletes a TTX1aTableHandler object from the list.

HandleChange () Processes a record obtained from a ttXlaUpdateDesc_t
structure.

add()

void add(TTXlaTableHandler* tblh)

Class Descriptions 3-53

XLA classes

TTXlaTable

Adds a TTX1aTableHandler object to the list.

del()

void del (TTXlaTableHandler* tblh)

Deletes a TTX1aTableHandler object from the list.

HandleChange()

void HandleChange (ttXlaUpdateDesc_t* updateDescP)
void HandleChange (ttXlaUpdateDesc_t* updateDescP, void* pData)

When a ttXlaUpdateDesc_t object is received from XLA, it can be processed by
calling this method, which determines which table the record references and calls the
HandleChange () method of the appropriate TTX1aTableHandler object.

See "HandleChange()" on page 3-52 for TTX1aTableHandler objects, including a
discussion of the pData parameter.

The TTX1aTable class encapsulates the metadata for a table being monitored for
changes. It acts as a metadata interface for the TimesTen ttX1laTblDesc_t C data
structure. (See "ttXlaTblDesc_t" in Oracle TimesTen In-Memory Database C Developer's
Guide.)

Usage

When a user application creates a class that extends TTX1aTableHandler, it will
typically call TTX1aTable: :getColNumber () to map a column name to its XLA
column number. You can then use the column number as input to the
TTXlaRowViewer: :Get () method. This is shown in the xlasubscriber2 demo in
the TimesTen Quick Start. (Refer to "About the TimesTen TTClasses demos" on

page 1-7.)

This class also provides useful metadata functions to return the name, owner, and
number of columns in the table.

Public members
None.

Public methods

Method Description

getColNumber () Returns the column number of the specified column in the table.
getNCols () Returns the number of columns in the table.

getOwnerName () Returns the name of owner of the table.

getTableName () Returns the name of the table.

getColNumber()

int getColNumber (const char* colNameP) const

3-54 Oracle TimesTen In-Memory Database TTClasses Guide

XLA classes

TTXlaColumn

For a specified column name in the table, this method returns its column number, or -1
if there is no column by that name.

getNCols()

int getNCols() const

Returns the number of columns in the table.

getOwnerName()

const char* getOwnerName() const

Returns the user name of the owner of the table.

getTableName()

const char* getTableName ()

const

Returns the name of the table.

A TTX1aColumn object contains the metadata for a single column of a table being
monitored for changes. It acts as a metadata interface for the TimesTen
ttXlaColDesc_t C data structure. (See "ttXlaColDesc_t" in Oracle TimesTen
In-Memory Database C Developer’s Guide.) Information including the column name,
type, precision, and scale can be retrieved.

Usage

Applications can associate a column with a TTX1aColumn object by using the
TTXlaRowViewer: :getColumn () method.

Public members
None.

Public methods

Method

Description

getColName ()

Returns the name of the column.

getPrecision() Returns the precision of the column.

getScale() Returns the scale of the column.

getSize() Returns the size of the column data, in bytes.

getSysColNum/() Returns the system-generated column number of this column as
stored in the database.

getType () Returns the data type of the column, as an integer.

getUserColNum () Returns a column number optionally specified by the user, or 0.

isNullable ()

Indicates whether the column allows NULL values

isPKColumn ()

Indicates whether the column is the primary key for the table.

isTTTimestamp ()

Indicates whether the column is a TT_TIMESTAMP column.

isUpdated()

Indicates whether the column was updated.

Class Descriptions 3-55

XLA classes

getColName()

const char* getColName() const

Returns the name of the column.

getPrecision()

SQLULEN getPrecision() const

Returns the precision for data in the column, referring to the maximum number of
digits that are used by the data type.

getScale()

int getScale() const

Returns the scale for data in the column, referring to the maximum number of digits to
the right of the decimal point.

getSize()

SQLUINTEGER getSize() const
Returns the size of values in the column, in bytes.

getSysColNum()
SQLUINTEGER getSysColNum() const
This is the system-generated column number of the column, numbered from 1. It

equals the corresponding COLNUM value in SYS.COLUMNS. (See "SYS.COLUMNS" in
Oracle TimesTen In-Memory Database System Tables and Limits Reference.)

getType()
int getType() const

Returns an integer representing the TimesTen XLA data type (TTXLA_xxx) of the
column. This is a value from the dataType field of the TimesTen ttXlaColDesc_t
data structure. In some cases this corresponds to an ODBC SQL data type (SQL_ xxx)
and the corresponding standard integer value.

Refer to "About XLA data types" in Oracle TimesTen In-Memory Database C Developer’s
Guide for information regarding TimesTen XLA data types. The corresponding integer
values are defined for use in any TTClasses application that includes the TTX1a.h
header file.

Also refer to "ttXlaColDesc_t" in Oracle TimesTen In-Memory Database C Developer’s
Guide for information about that data structure.

getUserColNum()

SQLUINTEGER getUserColNum() const

Returns a column number optionally specified by the user through the
ttSetUserColumnID TimesTen built-in procedure, or 0.

See "ttSetUserColumnlID" in Oracle TimesTen In-Memory Database Reference.

isNullable()

3-56 Oracle TimesTen In-Memory Database TTClasses Guide

XLA classes

bool isNullable() const
Returns TRUE if null values are allowed inthe column, or FALSE otherwise.

isPKColumn()

bool isPKColumn() const

Returns TRUE if this column is the primary key for the table, or FALSE otherwise.

isTTTimestamp()

bool isTTTimestamp() const
Returns TRUE if this column is a TT_TIMESTAMP column, or FALSE otherwise.

isUpdated()

bool isUpdated() const

Returns TRUE if this column was updated, or FALSE otherwise.

Class Descriptions 3-57

XLA classes

3-58 Oracle TimesTen In-Memory Database TTClasses Guide

A

access control
connections, 2-6
CREATE SESSION privilege to connect, 2-7
in XLA, 2-19
TimesTen features, 2-4
acknowledging XLA updates
ackUpdates method, 3-44
at transaction boundaries, 2-18
without transaction boundaries, 2-17
ackUpdates method (XLA), 3-44
add method (add table handler to XLA table
list), 3-53
AddConnectionToPool method, 3-12
AIX, linking considerations, 1-6
autocommit, 3-10

batch operations
bind parameter, 3-28
execute, 3-29
prepare, 3-32
size of batch, 3-28
TTCmd methods, 3-27
batchSize method, 3-28
binding parameters
duplicate parameters in SQL, 2-12
IN parameters, 2-8
length of bound value, setting (batch), 3-32
length of bound value, setting (non-batch), 3-24
null value, setting (batch), 3-33
null value, setting (non-batch), 3-24
OUT and IN OUT parameters, 2-10
registering parameters, 2-9
registerParam method, 3-22
set parameter value (batch), 3-28
set parameter value (non-batch), 3-22
BindParameter method (bind parameter,
batch), 3-28
bookmark
acquire location, 3-46
delete, 3-45
return to location, 3-46

Index

Cc

catalog
catalog class (metadata information, tables), 3-34
column class (metadata information,
column), 3-38
fetch catalog data, 3-34
index class (metadata information, index), 3-40
special column class (metadata information,
special column), 3-41
system catalog classes, 3-33
table class (metadata information, single
table), 3-36
client/server, deferred prepare, 3-22
Close method (close result set), 3-16
column class, catalog, 3-38
column, number of columns, return, 3-37
columnPrec method (XLA row viewer), 3-47
columnScale method (XLA row viewer), 3-47
Commit method, 3-7
CompactDataStore method, 3-8
compiler macros
64-bit TimesTen, 1-5
C++ streams, 1-4
gee, 1-5
HP-UX, 1-5
TT_64BIT, 1-5
TTC_USE_STRINGSTREAM, 14
TTDEBUG, 1-5
USE_OLD_CPP_STREAMS, 14
compiling
applications, 1-5
applications on UNIX, 1-5
applications on Windows, 1-6
TTClasses on HP-UX, 1-5
TTClasses on UNIX, 1-2
TTClasses on Windows, 1-3
UNIX compilation options for TTClasses, 1-2
Windows compilation options for TTClasses, 1-3
Connect method
description, 3-8
example, 2-3
XLA, 3-44
connection
access control, 2-6
autocommit, 3-10

Index-1

confirm connection, 3-9

connect (XLA), 3-44

Connect method example, 2-3

connecting, 3-8

connecting and disconnecting, 2-5

connection class definition, 2-2

connection pools, 3-11

context value, 3-9

CREATE SESSION privilege, 2-7

disconnect (XLA), 3-45

Disconnect method example, 2-4

disconnecting, 3-9

managing connections, 2-5

ODBC connection handle, 3-9

privilege for XLA connections, 2-7

TTConnection class, 3-6

validity check, 3-5

XLA, privilege for connections, 2-7
connection pool

adding connection to pool, 3-12

connecting all connections in pool, 3-12

disconnecting all connections in pool, 3-13

getting a connection from pool, 3-13

returning a connection to pool, 3-13

status information, 3-13

TTConnectionPool class, 3-11
CREATE SESSION privilege, 2-7

D

data source names (DSNs), 2-5
debugging
debug libraries, shared and static (UNIX), 1-2
generating information, 1-5
shared debug library (UNIX), 1-2
static debug library (UNIX), 1-2
deferred prepare, client/server, 3-22
del method (delete table handler from XLA table
list), 3-54
delete TTClasses libraries and object files
UNIX, 1-2
Windows, 1-3
deleteBookmarkAndDisconnect method, 3-45
demos for TTClasses, 1-7
disableLogging method, 3-2
DisableTracking method (XLA table handler), 3-51
Disconnect method
description, 3-9
XLA, 3-45
DisconnectAll method, 3-13
DO_NOT_THROW flag (TTStatus), suppress
exceptions, 3-3
driver manager
restrictions, 1-7
shared optimized library for driver manager
(Windows), 1-3
Drop method (drop prepared statement), 3-16
DSNis (data source names), 2-5
duplicate parameter binding, 2-12
DuplicateBindMode general connection

Index-2

attribute, 2-12
DurableCommit method, 3-9

E

EnableTracking method (XLA table handler), 3-51
environment handle, ODBC, 3-3
environment variables
UNIX, 1-1
Windows, 1-3
error reporting
print error to stream, 3-5
suppress exceptions, DO_NOT_THROW flag, 3-3
try/catch with TTStatus, 3-3
TTError class, 3-4
TTStatus class, 3-3
TTWarning class, 3-4
Execute method (execute statement), 3-16
ExecuteBatch method, 3-29
Executelmmediate method (instead of Prepare and
Execute), 3-16

F

fetch result set row, 3-17

fetchCatalogData method, 3-34

FetchNext method (fetch result set row), 3-17
fetchUpdatesWait method (XLA), 3-46
freeConnection method, 3-13

G

gcc, using to compile TTClasses, 1-5
generateSQL method (XLA table handler), 3-51
Get method (column value, XLA row viewer), 3-47
getBookmarkIndex method (XLA), 3-46
getCollation method (index), 3-40
getColName method (XLA column), 3-56
getColNumber method (XLA table), 3-54
getColumn method

catalog, column, 3-37

description, 3-17

metadata, XLA row viewer, 3-48
getColumnLength method, 3-19
getColumnName method

catalog, column, 3-39

description, 3-26

index, 3-40
getColumnName method (special column), 3-42
getColumnNullability method, 3-26
getColumnNullable method, 3-19
getColumnPrecision method, 3-26
getColumnScale method, 3-26
getColumnType method, 3-26
getDataType method

column, 3-39

special column, 3-42
getHdbc method, 3-9
getIndex method, 3-37
getIndexName method, 3-40
getIndexOwner method, 3-40

getLength method

column, 3-39

special column, 3-42
getMaxRows method, 3-19
getNCols method (number of columns, XLA

table), 3-55

getNColumns method, 3-26
getNextColumn method, 3-20
getNextColumnNullable method, 3-20
getNParameters method, 3-26
getNullable method (column), 3-39
getNumColumns method

index, 3-41

table, 3-37
getNumlIndexes method, 3-37
getNumSpecial Columns method, 3-37
getNumSysTables method, 3-35
getNumTables method, 3-35
getNumUSserTables method, 3-35
getOwnerName method (XLA table), 3-55
getParam method, 3-20
getParamNullability method, 3-26
getParamPrecision method, 3-27
getParamScale method, 3-27
getParamType method, 3-27
getPrecision method

column, 3-39

special column, 3-42

XLA column, 3-56
getQueryThreshold method, 3-21
getRadix method, column, 3-39
getRowCount method, 3-21
getScale method

column, 3-39

special column, 3-42

XLA column, 3-56
getSize method (XLA column), 3-56
getSpecialColumn method, 3-38
getStats method, 3-13
getSysColNum method (XLA column), 3-56
getTable method, 3-35
getTableIndex method, 3-35
getTableName method

catalog, table, 3-38

index, 3-41

XLA table, 3-55
getTableOwner method, 3-38
getTableType method, 3-38
GetTTContext method, 3-9
getType method

index, 3-41

XLA column, 3-56
getTypeName method

column, 3-40

special column, 3-42
getUserColNum method (XLA column), 3-56
getUserTable method, 3-36

H

HandleChange method

XLA table handler, 3-52

XLA table list, 3-54
HandleDelete method (XLA table handler), 3-52
Handlelnsert method (XLA table handler), 3-52
HandleUpdate method (XLA table handler), 3-52
HDBC (connection) handle, ODBC, 3-9
HENYV (environment) handle, ODBC, 3-3
HP-UX, compiling TTClasses, 1-5
HSTMT (statement) handle, ODBC, 3-14, 3-19

IN parameters, 2-8
index class, catalog, 3-40
index, number of indexes, return, 3-37
I/0 streams, C++ flag settings, 1-4
isBeingExecuted method, 3-27
isColumnNull method, 3-21
isColumnTTTimestamp method (XLA row
viewer), 3-48

isConnected method, 3-9
isConnectionInvalid method, 3-5
isNull method (column, XLA row viewer), 3-49
isNullable method (XLA column), 3-56
isolation level

Read Committed, 3-10

Serializable, 3-10
isPKColumn method (primary key, XLA

column), 3-57

isSystemTable method, 3-38
isTTTimestamp method (XLA column), 3-57
isUnique method (index), 3-41
isUpdated method (XLA column), 3-57
isUserTable method, 3-38

L

linking applications

AIX considerations, 1-6

on UNIX, 1-5

on Windows, 1-6

references to related information, 1-5
lock timeout interval, 3-10

logging
disable, 3-2
levels, 3-2

logging information, where to send, 3-3
TTGlobal class, 3-1
using, 2-16

macros--see compiler macros
make
clean, delete TTClasses libraries and object files
(UNIX), 1-2
clean, delete TTClasses libraries and object files
(Windows), 1-3

Index-3

debug libraries (UNIX), 1-2

optimized libraries (UNIX), 1-2

optimized libraries, direct and client/server
(Windows), 1-3

optimized library, client/server (Windows),

shared debug library (UNIX), 1-2

shared optimized library (UNIX), 1-2

shared optimized library for driver manager
(Windows), 1-3

static debug library (UNIX), 1-2

static optimized library (UNIX), 1-2

metadata

column, 3-38

index, 3-40

number of system tables, 3-35

number of tables, 3-35

number of user tables, 3-35

special column, 3-41

table, single, 3-36

tables, 3-34

multithreaded applications, 3-11

N

1-3

name of table, return, 3-38
numUpdatedCols method (XLA row viewer),

(o)

3-49

ODBC
HDBC (connection) handle, 3-9
HENV (environment) handle, 3-3
HSTMT (statement) handle, 3-14, 3-19
optimized library
client/server (Windows), 1-3
direct and client/server (Windows), 1-3
for driver manager (Windows), 1-3
shared (UNIX), 1-2
shared and static (UNIX), 1-2
static (UNIX), 1-2
ostream method, 3-5
OUT and IN OUT parameters
binding, 2-10
getting output values, 3-20
registering, 2-9
owner of table, return, 3-38

P

parameter binding--see binding parameters
prefetch, 3-10

Prepare method (prepare statement), 3-21
PrepareBatch method, 3-32

printColumn method, 3-22

Q

queryBeingExecuted method (now
isBeingExecuted), 3-27

query--see result set

Quick Start demos for TTClasses, 1-7

Index-4

R

REF CURSORs
getParam method for REF CURSORs, 3-21
using, 2-13
registerParam method, 2-9, 3-22
RePrepare method (after invalidation), 3-22
resetErrors method, 3-5
result set
close, 3-16
fetch a column of current row, 3-17
fetch next column of current row, 3-20
fetch row, 3-17
maximum rows, 3-22

print value of a column of current row, 3-22

Rollback method, 3-9
rowids, ROWID type, 2-15

S

SetAutoCommitOff method, 3-9
SetAutoCommitOn method, 3-10
setBookmarkIndex method (XLA), 3-46
SetlsoReadCommitted method, 3-10
SetlsoSerializable method, 3-10
SetLockWait method, 3-10
setLogLevel method, 3-2
setLogStream method, 3-3
setMaxRows method, 3-22
setParam method (bind parameter, non-batch),
setParamLength method

batch operations, 3-32

non-batch operations, 3-24
setParamNull method

batch operations, 3-33

non-batch operations, 3-24
SetPrefetchCloseOff method, 3-10
SetPrefetchCloseOn method, 3-10
SetPrefetchCount method, 3-11
setQueryThreshold method, 3-25
setQueryTimeout method, 3-25
setTuple method (XLA row viewer), 3-49
shared debug library (UNIX), 1-2
shared optimized library (UNIX), 1-2
size of batch, 3-28
special column class, catalog, 3-41
SQL statements

drop, 3-16

execute, 3-16

execute immediate (instead of prepare and

execute), 3-16

execution, confirm, 3-27

number of rows affected, 3-21

prepare, 3-21

reprepare (after invalidation), 3-22

timeouts and thresholds, 2-16

TTCmd class, 3-14
sqlhenv method, 3-3
statement handle, ODBC, 3-14, 3-19
statements--see SQL statements
static debug library (UNIX), 1-2

3-22

static optimized library (UNIX), 1-2 TTXlaTableList class, 3-53
streams, C++ flag settings, 1-4

system catalog--see catalog U
T UNIX
compilation options for TTClasses, 1-2
table class, catalog, 3-36 compiling and linking applications, 1-5
threshold, SQL statements, 2-16 compiling TTClasses, 1-2
throwError method, 3-5 environment variables, 1-1
timeout, SQL statements, 2-16 installing TTClasses library, 1-2
transaction updatedCol method (XLA row viewer), 3-50
acknowledge XLA updates at transaction USE_OLD_CPP_STREAMS compiler macro, 1-4
boundaries, 2-18
acknowledge XLA updates without transaction w
boundaries, 2-17
autocommit, 3-10 Windows
committing, 3-7 compilation options for TTClasses, 1-3
durable commit, 3-9 compiling and linking applications, 1-6
isolation level, Read Commited, 3-10 compiling TTClasses, 1-3
isolation level, Serializable, 3-10 environment variables, 1-3
log API, overview, 2-17
rolling back, 3-9 X
TT_64BIT compiler macro, 1-5
TTC_USE_STRINGSTREAM compiler macro, 1-4 XLA
TTCatalog class (metadata information, tables), 3-34 access control, 2-19

ackUpdates method, acknowledge updates, 3-44
bookmark location, acquire, 3-46
bookmark location, return, 3-46

TTCatalogColumn class
metadata information, column, 3-38
return a TTCatalogColumn object, 3-37

TTCatalogIndex class classes, 2-17
metadata information, index, 3-40 classes to use XLA, 3-42
return a TTCatalogIndex object, 3-37 column class, 3-55

connect, 3-44
connection, create, 3-43
connections, privilege, 2-7

TTCatalogSpecial Column class
metadata information, special column, 3-41
return a TTCatalogSpecial Column object, 3-38

TTCatalogTable class delete bookmark, ~ 3-45
metadata information, single table, 3-36 disconnect, 3-45
return a TTCatalogTable object, 3-35 fetch records, 3-46

TTCmd class (SQL statement) privﬂe.ge for connections, 2-7
batch operations, 3-27 row viewer class, 3-46
general use, 3-15 table class, 3-54
introduction and overview, 3-14 table }}andler class, 3-50
non-batch operations, 3-15 table list class, 3-53

updates, acknowledging at transaction
boundaries, 2-18

updates, acknowledging without transaction
boundaries, 2-17

object properties, obtaining, 3-25

overview, using, 2-1
TTConnection class

description, 3-6

overview, using, 2-1
TTConnectionPool class

description, 3-11

overview, using, 2-1
TTDEBUG compiler macro, 1-5
TTError class, 3-4
TTGlobal class (logging), 3-1
TTStatus class (error reporting), 3-3
TTWarning class, 3-4
TTXlaColumn class, 3-55
TTXlaPersistConnection class, 3-43
TTXlaRowViewer class, 3-46
TTXlaTable class, 3-54
TTXlaTableHandler class, 3-50

Index-5

Index-6

	Contents
	Preface
	Audience
	Related documents
	Conventions
	Documentation Accessibility
	Technical support

	What's New
	New features in Release 11.2.1.6.0
	New features in Release 11.2.1.1.0

	1 TTClasses Development Environment
	Setting up TTClasses
	Setting up TTClasses on UNIX
	Set UNIX environment variables
	Compile TTClasses on UNIX
	Compilation options on UNIX
	Install TTClasses after compilation (UNIX only)

	Setting up TTClasses on Windows
	Set Windows environment variables
	Compile TTClasses on Windows
	Compilation options on Windows

	TTClasses compiler macros
	TTC_USE_STRINGSTREAM, USE_OLD_CPP_STREAMS: For C++ I/O streams
	TTDEBUG: Generate additional debugging and error checking logic
	TT_64BIT: Use TTClasses with 64-bit TimesTen
	Platform-specific compiler macros

	Compiling and linking applications
	Compiling and linking applications on UNIX
	Compiling and linking applications on Windows
	Considerations when using an ODBC driver manager (Windows)

	About the TimesTen TTClasses demos

	2 Understanding and Using TTClasses
	Overview of TTClasses
	Using TTCmd, TTConnection, and TTConnectionPool
	Considering TimesTen features for access control
	Managing TimesTen connections
	About DSNs
	Connecting and disconnecting
	Access control for connections
	Connection method signatures for access control
	CREATE SESSION privilege for access control
	XLA privilege for XLA connections

	Managing TimesTen data
	Binding parameters
	Binding IN parameters
	Registering parameters
	Binding OUT or IN OUT parameters
	Binding duplicate parameters

	Working with REF CURSORs
	Working with rowids
	Setting a timeout or threshold for executing SQL statements

	Using TTClasses logging
	Using TTClasses XLA
	Acknowledging XLA updates without using transaction boundaries
	Acknowledging XLA updates at transaction boundaries
	Access control impact on XLA

	3 Class Descriptions
	Commonly used TTClasses
	TTGlobal
	Usage
	Public members
	Public methods

	TTStatus
	Usage
	Subclasses
	Public members
	Public methods

	TTConnection
	Usage
	Public members
	Public methods

	TTConnectionPool
	Usage
	Public members
	Public methods

	TTCmd
	Usage
	Public members
	Public methods for general use and non-batch operations
	Public methods for obtaining TTCmd object properties
	Public methods for batch operations

	System catalog classes
	TTCatalog
	Public members
	Public methods

	TTCatalogTable
	Public members
	Public methods

	TTCatalogColumn
	Public members
	Public methods

	TTCatalogIndex
	Public members
	Public methods

	TTCatalogSpecialColumn
	Usage
	Public members
	Public methods

	XLA classes
	TTXlaPersistConnection
	Usage
	Public members
	Public methods

	TTXlaRowViewer
	Usage
	Public members
	Public methods

	TTXlaTableHandler
	Usage
	Public members
	Protected members
	Public methods

	TTXlaTableList
	Usage
	Public members
	Public methods

	TTXlaTable
	Usage
	Public members
	Public methods

	TTXlaColumn
	Usage
	Public members
	Public methods

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	X

