ORACLE

Oracle® In-Memory Database Cache
Introduction

Release 11.2.1
E14261-08

January 2011

Oracle In-Memory Database Cache Introduction, Release 11.2.1
E14261-08
Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

PUrOIACE ...t s st vii
NS Lo = VT TSR RSO RRRTRTTN Vii
ReELAtEA AOCUIMICIES ...ttt et ettt e et e et e e s aaeeseaaeeseaseeesaseessaaseesateesnssessnseeessseesas Vii
(@) 723 415 [0 1= TN Vii
Documentation Accessibility ... viii
TechNICal SUPPOTL....cocviiiiiiiiiicici e iX

WIRAL'S INEW ...ttt es s esaseesanannas Xi
New features in Release 11.2.1.8.0 ...ttt ettt e et e e et e e seaaeeesaaeeseaeessseeesssseesnseesssaneeas Xi
New features in Release 11.2.1.7.0 ...ttt ettt eve et et eeetesenas e teeteeeneeenns Xi
New features in Release 11.2.1.1.0 ...ttt ettt e s e aa e eeaae e s sateeesasesesaeeesanaeeaas Xi

1 Oracle TimesTen In-Memory Database and Oracle In-Memory Database Cache

Why is Oracle TimesTen In-Memory Database fast?cccocovvniiiinninnnnie, 1-2
TimesTen and IMDB Cache feature OVeIVIEWc.cccooveiiieiiiiiieeecieceeeteeeeete ettt eve e sve v 1-3
TimesTen AP SUPPOTLccouiiiiiiiiiiiii e 1-3
ODBC and JDBC INtEIfaCESccuerveieuieuieiieiietieteeie sttt ettt s ettt et be bbb be e esenseeenean 1-3

SQL and PL/SQL functionalitycccccccceiiiiiniiiriiiiiiiiiicicnccesscsnssseseseseens 1-3

OCI and Pro*C/C++ Precompiler SUPPOIt......ccccooeveviiiiiiiiiiiiiiiiiiiciciiccc 1-4
ODP.INET SUPPOTL...coviiiiiiiiiiiiisiiiiiissii et 1-4
Transaction Log APL..........ccoiiiiiii s 1-4
TTCLASSES. . vttt ettt ettt b bbbt bbbt et et e st e st e ae e bt e b e s bt sb e b e st e st enten s et eneebeebesbenaens 1-4
Distributed Transaction Processing APIs............cccoooiiiiiiiiiiicc 1-4

ACCESS CONETOL ...ttt ettt ettt ettt v e ete et e eta e beeabeebeeaesbeesaenbeessebeessenseesseseensenseeneas 1-5
Database cONNECtiVItYooueviiuiii 1-5
DULADIlItY ...ovviiiiicii s 1-5
Query OptMIZAtION ..o 1-6
CONCUITEIICY «.vvtt ettt bbbttt 1-6
Automatic data agingceueiiriiiiii e 1-6
Globalization SUPPOTT.......cccciiiiiiiiiiiiiiii e 1-7
Administration and ULHEEScoeeiiiriiiiiee ettt 1-7
REPICATION.c..eeeiiett ettt 1-7
IIMIDB CACRE ...ttt ettt et ettt et et et e etaebeeat e beesaeebeesaenbeesbenseessensaesseseensenseeneas 1-8

2 Using TimesTen and IMDB Cache

USES £Or TIMESTEN ...t 2-1
Uses for IMDB Cache ... 2-1
TimesTen application SCENATIOc.couccirieiriiiiieiieireeereee ettt et sa et st e sre e enenees 2-2
Real-time quote service applicationccooiiiiiiii 2-2
IMDB Cache application SCENATIOS.........c.ccevviiiriiiriiirieiece e 2-4
Call center apPliCatiON.......cccvviiiiiiiiiiiiiiicc s 2-4
Caller usage metering appliCation..........ccocrueiiiiciciiiic e 2-5

3 Oracle In-Memory Database Cache Architecture and Components

Architectural OVeIVIEWc.cciiiiiiiiiiiiiii e 3-1
SRATed LIDTATIES.cvceeieieiiieeee ettt e 3-2
Memory-resident data structuresccocooviiiiiiii 3-3
Database PrOCESSES............cccoviviiiiiiiiiiiiiiiiic s 3-3
Administrative programs..............ccovviiiiiiiiii 3-3
Checkpoint and transaction log files..............cccocooiiiiiiiii 3-3
CaChed data........ocoouiiiii e 3-3
REPIICALION. ...ttt ettt 3-4
TimesTen connection OPtioNScocuiiiiiiiiiiii e 3-4

Direct driver CONNECHON.c.cciiiiiiiiiii e 3-4

CLient/SEIrVETr COMMECTIONc.ccvrveueuieirirrereiiireeteietetnterereeetseereaestsessesestaeseeseneseseseesesestaesaesesesesessenenene 3-5

Driver manager CONNECIONcoviriiieieriiiieietetcee ettt ans 3-5
For more information..............ccoooiiiiiiiiiiic e 3-5

4 Concurrent Operations

TransSaction 1SOLAtION............ociiiiiieiecceee ettt ettt et e e b e s teessesseesbesreebesssensensnens 4-1
Read comMMItted ISOLATION ...c.eevvevieeieiiiiriistiieteietet ettt et e e e st e s eseeseesassessessessessessassasassensens 4-1
S ST t=1 17221 o) (ST ToTo) F= N 1o) o USRS 4-2
LOCKS ..ttt ettt ettt ettt e it et e et e et e et e e beesbeebeesbeeba e b e eha e st e ere et e ere et e erteabeere e beera e beerbenbeerbeteensereenes 4-3
Database-1evel I0CKING.......cccccciiiiimiiiiiiiiecce e 4-3
Table-1eVel LOCKINGc.oviiiiiiiiiiie bbb 4-3
ROW-1EVEL IOCKING......oviiiiiiiiiiiiiiiiciicc e 4-4
FOr more information............coociiiiiiiriieieceeeeeeee ettt ettt e e s se e s e seensesaeensesneensesneens 4-4

5 Query Optimization

Optimization time and MemMOry usage............cccccocvviiiiiiiiiiniiiii e 5-2
SEALISTICS .o 5-2
OptmMIzZer MINES..........ocoooiiiii s 5-2
INAEXES.....c.oiiiiiii e 5-3
Scan MEthods ... 5-3
JOIN INEENOMS. ...ttt ettt ettt ettt 5-4

INESEEA LOOP JOIM. ..ottt 5-5

IMETEE JOIM..ottiiiictitcttt s 5-5
OPtIMIZET PIAN ... 5-7
For more information..............ccooiiiiiiiiii 5-8

6 Data Availability and Integrity

Transaction IoGGINgG..........ccccvviiiiiiiiiiiiii s 6-1
Writing the log buffer to disKccoiiiiiii e 6-1
When are transaction log files deleted?cooeiiiiiii e 6-2
TimesTen COMIMUEScoooviiiiiiiicc s 6-2
ChecKPOointing..........cccoovviiiiiiiiiiiii e 6-2
Nonblocking checkpoints ..o 6-2
Blocking CheCKPOINtScouiiiiiiii e 6-3
Recovery from log and checkpoint files ... 6-3
RePLICAtION ... 6-3
Active Standby Pair ... e 6-4
Other replication cONfiGUIAtiONS.c.cccuiuiueuiuiiiiiiiieieiciccceeeee e 6-5
Unidirectional 1eplication ... 6-5
Bidirectional replication..........ccceueioiiiiiiiic s 6-6
Asynchronous and return service replication..........cccoceucccieiiiieeeiccceeeeeeeeeeenenenes 6-7
Replication failover and reCOVErY ...t 6-8

For more information..............ccocooiiiiiii s 6-8

7 Event Notification

Transaction Log APL..........ccooiiiii 7-1
HOW XA WOTKS. ..ottt ettt sttt et e st e et e s e e ae s s e esaessaensesseensenseensensesnsensennees 7-1
LOg Update TeCOTASooieieiiiiceci e 7-2

Materialized views and XLA ..ottt e e e te e e e ste e b e s reesaesreenbesreessesreens 7-2

SINIMP BEAPS ... ettt sttt sttt sttt 7-4

FOr more information............c.oocviviiiiiiiieieccicete ettt e ettt esa e s e e e e sseessesseessesreessesseensenseens 7-4

8 IMDB Cache

CaChe GIid ... s 8-1
CACKE GIOUPS ..o 8-2
Dynamic cache groups and explicitly loaded cache groupscccocviiiiiiniiiis 8-3
Global and local cache Sroups ...t s 8-4
Transmitting data between the IMDB Cache and Oracle Database..............ccccocevininnniniinnnnee. 8-4

Updating a cache group from Oracle tables...........ccooiiiiiiiiiiiiicicececceeeeeeeenenes 8-4

Updating Oracle tables from a cache group..........coccceuoiiiieieiiiiiciiiicc 8-5
AGING FRALUTE........ceoiiiiiiiic ettt ettt 8-5
Passthrough feature ... 8-5
Replicating cache roups ... s 8-6
For more infOormation............cccooviiiiiiiiiiiiiineceee ettt 8-6

9 TimesTen and IMDB Cache Administration

Installing TimesTen and IMDB Cache..............ccccccoiiiiiiiiiiiies 9-1
ACCESS COMEIOL........oiiiiiiiiiiiiiee ettt sttt et et e e bt b e bt bt b e b e s et et et e e eseneeneen 9-1
Command line adminiStration...........cc.cooiiiiiiiiiiiiiiieeeee ettt ettt 9-1
SOL adminiStratioN.......ccuieiiieieieieeeee ettt ettt et e st e b e besaeneenae st eneeseeseeseenens 9-2
SOQL DEVEIOPET......cmiuiiiiieieieieeieeee ettt st sttt st 9-2

ODBC AMUNISTIATOTcceviiieiiiieeiieeeeeeeee et ee e e e e ae e eetaeeseaaeeseseesssaeesenseesesnaeessseeean 9-3

Upgrading TimesTen and the IMDB Cache............cccccovviniiiiiii, 9-3

IN-Place UPGLades.......cccuiuimiuiiiiiiiiiiiieiicicieeeiee et 9-3

OffliNe UPZIrades.......ccueiiuiuiiiiiiiciiect et 9-3

ONlNe UPGTadescucuiieiiiiiicici ettt 9-3

For more information................ocooii 9-4
Index

vi

Preface

This guide provides an introduction to the Oracle In-Memory Database Cache.

Audience

This document is intended for readers with a basic understanding of database
systems.

Related documents

TimesTen documentation is available on the product distribution media and on the
Oracle Technology Network:

http://www.oracle.com/technetwork/database/timesten/documentation

Conventions

TimesTen supports multiple platforms. Unless otherwise indicated, the information in
this guide applies to all supported platforms. The term Windows refers to Windows
2000, Windows XP and Windows Server 2003. The term UNIX refers to Solaris, Linux,
HP-UX and AIX.

Note: In TimesTen documentation, the terms "data store" and
"database" are equivalent. Both terms refer to the TimesTen database
unless otherwise noted.

This document uses the following text conventions:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

vii

Convention Meaning

italic monospace Italic monospace type indicates a variable in a code example that you
must replace. For example:

Driver=install_dir/lib/libtten.sl

Replace install_dir with the path of your TimesTen installation

directory.
[1 Square brackets indicate that an item in a command line is optional.
{} Curly braces indicated that you must choose one of the items separated

by a vertical bar (|) in a command line.
| A vertical bar (or pipe) separates alternative arguments.

An ellipsis (. . .) after an argument indicates that you may use more
than one argument on a single command line.

% The percent sign indicates the UNIX shell prompt.
The number (or pound) sign indicates the UNIX root prompt.

TimesTen documentation uses these variables to identify path, file and user names:

Convention Meaning

install_dir The path that represents the directory where the current release of
TimesTen is installed.

TTinstance The instance name for your specific installation of TimesTen. Each
installation of TimesTen must be identified at install time with a unique
alphanumeric instance name. This name appears in the install path.

bitsor bb Two digits, either 32 or 64, that represent either the 32-bit or 64-bit
operating system.

releaseor rr Three numbers that represent the first three numbers of the TimesTen
release number, with or without a dot. For example, 1121 or 11.2.1
represents TimesTen Release 11.2.1.

jdk_version Two digits that represent the version number of the major JDK release.
Specifically, 14 represent JDK 1.4; 5 represents JDK 5.

DSN The data source name.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http: //www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

viii

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Technical support

For information about obtaining technical support for TimesTen products, go to the
following Web address:

http://www.oracle.com/support/contact.html

What's New

This section summarizes the new features of Oracle TimesTen In-Memory Database
release 11.2.1 that are described in this guide. It provides links to more information.

New features in Release 11.2.1.8.0

ODP.NET support for Oracle TimesTen In-Memory Database (TimesTen) provides
ADO.NET data access from .NET client applications to TimesTen databases. See
"ODP.NET support" on page 1-4.

New features in Release 11.2.1.7.0

You can create explicitly loaded global cache groups. See "Global and local cache
groups" on page 8-4.

New features in Release 11.2.1.1.0

This section lists new features for Release 11.2.1.1.0 that are described in this guide.

PL/SQL support
TimesTen supports PL/SQL. See "SQL and PL/SQL functionality" on page 1-3.

OCI and Pro*C support

TimesTen supports OCI and Pro*C. See "OCI and Pro*C/C++ Precompiler support" on
page 1-4.

Cache grid

A cache grid consists of one or more grid members each backed by an Oracle
In-Memory Database Cache (IMDB Cache). Grid members cache tables from a central
Oracle database or Real Application Cluster (Oracle RAC). See "Cache grid" on

page 8-1.

Dynamic cache groups

In a dynamic cache group, new data is loaded into IMDB Cache tables on demand or
manually. See "Dynamic cache groups and explicitly loaded cache groups" on
page 8-3.

xi

Xii

Oracle Clusterware

You can use Oracle Clusterware to manage recovery of a TimesTen active standby
pair. See "Replication failover and recovery" on page 6-8.

Bitmap indexes
TimesTen supports bitmap indexes. See "Indexes" on page 5-3.

Automatic client failover

You can configure automatic client failover for databases that have active standby
pairs with client/server connections. See "Replication failover and recovery" on
page 6-8.

Asynchronous materialized views

You can create a materialized view whose maintenance is deferred until after a
transaction has been committed on the detail tables. See "Materialized views and XLA"
on page 7-2.

1

Oracle TimesTen In-Memory Database and
Oracle In-Memory Database Cache

Oracle TimesTen In-Memory Database (TimesTen) is a memory-optimized relational
database that empowers applications with the responsiveness and high throughput
required by today's real-time enterprises and industries such as telecom, capital
markets and defense. Oracle In-Memory Database Cache (IMDB Cache) uses the
Oracle TimesTen In-Memory Database as its RDBMS engine. Deployed in the
application tier as an embedded database, Oracle TimesTen In-Memory Database
operates on databases that fit entirely in physical memory using standard SQL
interfaces. High availability for the in-memory database is provided through real-time
transactional replication.

Oracle In-Memory Database Cache (IMDB Cache) is an Oracle Database product option
ideal for caching performance-critical subsets of an Oracle database for improved
response time in the application tier. Cache tables can be read-only or updatable.
Applications read and update the cache tables using standard SQL, and data
synchronization between the cache and the Oracle Database is performed
automatically. Oracle In-Memory Database Cache offers applications the full
generality and functionality of a relational database, the transparent maintenance of
cache consistency with the Oracle Database, and the real-time performance of an
in-memory database.

Oracle TimesTen In-Memory Database and IMDB Cache deliver real-time
performance by changing the assumptions about where data resides at runtime. By
managing data in memory and optimizing data structures and access algorithms
accordingly, database operations execute with maximum efficiency, achieving
dramatic gains in responsiveness and throughput, even compared with a fully cached,
disk-based relational database management system (RDBMS). TimesTen and IMDB
Cache libraries are also embedded within applications, eliminating context switching
and unnecessary network operations, further improving performance.

Following the standard relational data model, you can use SQL, JDBC, ODBC,
PL/SQL and Oracle Call Interface (OCI) to access TimesTen and IMDB Cache
databases. Using SQL to shield applications from system internals allows databases to
be altered or extended without impacting existing applications. New services can be
quickly added into a production environment simply by adding application modules,
tables and columns. As with any mainstream RDBMS, a cost-based optimizer
automatically determines the fastest way to process queries and transactions. Any
developer familiar with the Oracle Database or SQL interfaces can be immediately
productive developing real-time applications with TimesTen and IMDB Cache.

Oracle TimesTen In-Memory Database and Oracle In-Memory Database Cache 1-1

Why is Oracle TimesTen In-Memory Database fast?

Why is Oracle TimesTen In-Memory Database fast?

Much of the work that is done by a conventional, disk-optimized RDBMS is done
under the assumption that data primarily resides on disk. Optimization algorithms,
buffer pool management, and indexed retrieval techniques are designed based on this
fundamental assumption.

Even when a disk-based RDBMS has been configured to hold all of its data in main
memory, its performance is hobbled by assumptions of disk-based data residency.
These assumptions cannot be easily reversed because they are hard-coded in
processing logic, indexing schemes, and data access mechanisms.

TimesTen is designed with the knowledge that data resides in main memory and can
take more direct routes to data, reducing the length of the code path and simplifying
algorithms and structure.

When the assumption of disk-residency is removed, complexity is dramatically
reduced. The number of machine instructions drops, buffer pool management
disappears, extra data copies are not needed, index pages shrink, and their structure is
simplified. The design becomes simple and more compact, and requests are executed
faster. Figure 1-1 shows the simplicity of the TimesTen design.

Figure 1-1 Comparing a disk-based RDBMS to TimesTen

Disk-Based RDBMS TimesTen
Applications Applications
sqL IPC RDBMS saL TimesTen
71 Query Optimizer Query Optimizer
A A .
py record to
Use IPC to send Table# Page# application buffer aDSztierans,Z?che;'; v
buffer to application IPC
Locate pointer to page in buffer pool
[__—I using hashing and linear search Memory Address
Copy record to
private buffer Hash
\ — Function
\ (N g / ata) Checkpoint Fi
is
Linked List (preloaded
Buffer Pool into Buffers (M_
into memory
;{ O O —
atabase
\I:I> O O

Assuming page
is already in
memory...

Data Pag

In a conventional disk-based RDBMS, client applications communicate with a
database server process over some type of IPC connection, which adds performance
overhead to all SQL operations. An application can link TimesTen directly into its
address space to eliminate the IPC overhead and streamline query processing. This is
accomplished through a direct connection to TimesTen. Traditional client/server
access is also supported for functions such as reporting, or when a large number of
application-tier platforms must share access to a common in-memory database. From

1-2 Oracle In-Memory Database Cache Introduction

TimesTen and IMDB Cache feature overview

an application's perspective, the TimesTen API is identical whether it is a direct
connection or a client/server connection.

TimesTen and IMDB Cache feature overview

TimesTen and IMDB Cache have many familiar database features as well as some
unique features. This section includes the following topics:

s TimesTen API support

= Access Control

s Database connectivity

s Durability

s Query optimization

s Concurrency

= Automatic data aging

= Globalization support

= Administration and utilities
= Replication

s IMDB Cache

TimesTen API support

The runtime architecture of TimesTen supports connectivity through the ODBC, JDBC,
OCI and ODP.NET APIs. TimesTen also provides built-in procedures and utilities that
extend ODBC, JDBC and OCI functionality for TimesTen-specific operations, as well
as supporting PL/SQL. Additional API support is described in subsequent sections.

ODBC and JDBC interfaces

TimesTen and IMDB Cache support ODBC and JDBC. Unlike many other database
systems, where ODBC or JDBC API support may be much slower than the proprietary
interface, ODBC and JDBC are native TimesTen interfaces that operate directly with
the database engine. TimesTen supports versions of these APIs that are both fully
compliant with the standards and tuned for maximum performance in the TimesTen
environment.

For more information, see Oracle TimesTen In-Memory Database C Developer’s Guide and
Oracle TimesTen In-Memory Database Java Developer’s Guide.

SQL and PL/SQL functionality

TimesTen and IMDB Cache support extensive SQL functionality as well as SQL
extensions to simplify the configuration and management of special features such as
replication and IMDB Cache.

TimesTen and IMDB Cache support PL/SQL (Procedural Language Extension to
SQL), a programming language that enables you to integrate procedural constructs
with SQL for a TimesTen or IMDB Cache database. You can execute PL/SQL from
client applications including ODBC, JDBC, TTClasses, OCI and the Pro*C/C++
Precompiler.

For more information, see Oracle TimesTen In-Memory Database SQL Reference and
Oracle TimesTen In-Memory Database PL/SQL Developer’s Guide

Oracle TimesTen In-Memory Database and Oracle In-Memory Database Cache 1-3

TimesTen and IMDB Cache feature overview

OClI and Pro*C/C++ Precompiler support

TimesTen and IMDB Cache support the Oracle Call Interface (OCI) and the
Pro*C/C++ Precompiler for TimesTen functionality.

TimesTen OCI depends on the Oracle client library and the TimesTen ODBC libraries.
TimesTen OCI support enables you to run many existing OCI applications with
TimesTen in direct mode or client/server mode. It also enables you to use other Oracle

products, such as Pro*C/C++, that use OCI as a database interface. You can also call
PL/SQL from OCI applications.

You can use the Pro*C/C++ Precompiler with embedded SQL and PL/SQL
applications that access a TimesTen database.

For more information, see Oracle TimesTen In-Memory Database C Developer’s Guide.

ODP.NET support

Oracle Data Provider for NET (ODP.NET) is an implementation of the Microsoft
ADO.NET interface. ODP.NET support for TimesTen and IMDB Cache provides fast
and efficient ADO.NET data access from .NET client applications to TimesTen
databases.

For more information, see Oracle Data Provider for NET Oracle TimesTen In-Memory
Database Support User's Guide.

Transaction Log API

TimesTen and IMDB Cache have an API that allows applications to monitor update
activities in order to generate actions outside the database. In TimesTen and IMDB
Cache, this capability is provided by the Transaction Log API (XLA), which allows
applications to monitor update records as they are committed and take various actions
based on the detected updates. For example, an XLA application can apply the
detected updates to another database, which could be TimesTen or a disk-based
RDBMS. Another type of XLA application can notify subscribers that an update of
interest has taken place.

TimesTen and IMDB Cache provide materialized views that can be used with XLA to
enable notification of events described by SQL queries.

For more information, see "Transaction Log API" on page 7-1 and Oracle TimesTen
In-Memory Database C Developer’s Guide.

TTClasses

TimesTen C++ Interface Classes (TTClasses) is easier to use than ODBC while
maintaining fast performance. This C++ class library provides wrappers around the
most common ODBC functionality. The TTClasses library is also intended to promote
best practices when writing application software.

For more information, see Oracle TimesTen In-Memory Database TTClasses Guide.

Distributed Transaction Processing APls

TimesTen implements the X/Open XA Specification and its Java derivative, the Java
Transaction API (JTA).

The TimesTen implementation of the XA interfaces is intended for use by transaction
managers in distributed transaction processing (DTP) environments. These interfaces
can be used to write a new transaction manager or to adapt an existing transaction
manager to operate with TimesTen resource managers.

1-4 Oracle In-Memory Database Cache Introduction

TimesTen and IMDB Cache feature overview

The TimesTen implementation of the JTA interfaces is intended to enable Java
applications, application servers, and transaction managers to use TimesTen resource
managers in DTP environments.

For more information, see Oracle TimesTen In-Memory Database C Developer’s Guide and
Oracle TimesTen In-Memory Database Java Developer’s Guide.

Access Control

TimesTen and IMDB Cache are installed with access control to allow only users with
specific privileges to access particular TimesTen features. TimesTen Access Control
uses standard SQL operations to establish user accounts with specific privileges.
TimesTen supports TimesTen offers object-level access control as well as
database-level access control.

For more information, see Oracle TimesTen In-Memory Database Operations Guide.

Database connectivity

Durability

TimesTen and IMDB Cache support direct driver connections for higher performance,
as well as connections through a driver manager. TimesTen also supports
client/server connections.

These connection options allow users to choose the best tradeoff between performance
and functionality for their applications. Direct driver connections are fastest.
Client/server connections may provide more flexibility. Driver manager connections
can provide support for ODBC applications written for a different ODBC version or
for multiple RDBMS products with ODBC interfaces.

See "TimesTen connection options" on page 3-4.

TimesTen and IMDB Cache achieve durability through a combination of transaction
logging and periodic refreshes of a disk-resident version of the database. Log records
are written to disk asynchronously or synchronously to the completion of the
transaction and controlled by the application at the transaction level. For systems
where maximum throughput is paramount, such as non-monetary transactions within
network systems, asynchronous logging allows extremely high throughput with
minimal exposure. In cases where data integrity must be preserved, such as securities
trading, TimesTen and IMDB Cache ensure complete durability, with no loss of data.

TimesTen uses the transaction log in the following situations:

= Recover transactions if the application or database fails

= Undo transactions that are rolled back

= Replicate changes to other TimesTen databases

= Replicate TimesTen changes to Oracle tables

= Enable applications to detect changes to tables (using the XLA API)

TimesTen and IMDB Cache maintain the disk-resident version of the database with a
checkpoint operation that takes place in the background and has very little impact on
database applications. This operation is called a "fuzzy" checkpoint and is performed
automatically. TimesTen and IMDB Cache also have a blocking checkpoint that does
not require transaction log files for recovery. Blocking checkpoints must be initiated by
the application. TimesTen and IMDB Cache maintain two checkpoint files in case a

Oracle TimesTen In-Memory Database and Oracle In-Memory Database Cache 1-5

TimesTen and IMDB Cache feature overview

failure occurs mid-checkpoint. Checkpoint files should reside on disks separate from
the transaction logs to minimize the impact of checkpointing on application activity.

See the following sections for more information:
= "Transaction logging" on page 6-1
= "When are transaction log files deleted?" on page 6-2

s "Checkpointing" on page 6-2

Query optimization

Concurrency

TimesTen and IMDB Cache have a cost-based query optimizer that chooses the best
query plan based on factors such as the presence of indexes, the cardinality of tables
and the presence of ORDER BY clauses in the query.

Optimizer cost sensitivity is somewhat higher in TimesTen and IMDB Cache than in
disk-based systems because the cost structure of a main-memory system differs from
that of disk-based systems in which disk access is a dominant cost factor. Because disk
access is not a factor in TimesTen and IMDB Cache, the optimization cost model
includes factors not usually considered by optimizers for disk-based systems, such as
the cost of evaluating predicates.

TimesTen and IMDB Cache provide range, hash and bitmap indexes and support two
types of join methods (nested-loop and merge-join). The optimizer can create
temporary indexes as needed.

The optimizer also accepts hints that give applications the flexibility to make tradeoffs
between such factors as temporary space usage and performance.

See "Query Optimization" on page 5-1 for more information about the query optimizer
and indexing techniques.

TimesTen and IMDB Cache provide full support for shared databases. Options are
available so users can choose the optimum balance between response time,
throughput and transaction semantics for an application.

Read-committed isolation provides nonblocking operations and is the default isolation
level. For databases with extremely strict transaction semantics, serializable isolation is
available. These isolation levels conform to the ODBC standard and are implemented
with optimal performance in mind. As defined by the ODBC standard, a default
isolation level can be set for a TimesTen or IMDB Cache database, which can be
dynamically modified for each connection at runtime.

For more information about managing concurrent operations in TimesTen and IMDB
Cache, see "Concurrent Operations" on page 4-1.

Automatic data aging

Data aging is an operation to remove data that is no longer needed. There are two
general types of data aging: removing old data based on some time value or removing
data that has been least recently used (LRU). For example, you can remove yesterday's
price list, remove profiles and preferences of users who have logged out from the
system, or remove detailed records that are more than 2 days old.

Two types of automatic data aging capability for TimesTen database tables and IMDB
Cache data are available:

1-6 Oracle In-Memory Database Cache Introduction

TimesTen and IMDB Cache feature overview

s Time-based data aging based on timestamp values
s Usage-based data aging based on the LRU algorithm

For more information, see "Implementing aging in your tables" in Oracle TimesTen
In-Memory Database Operations Guide and "Implementing aging in a cache group" in
Oracle In-Memory Database Cache User’s Guide.

Globalization support

TimesTen and IMDB Cache provide globalization support for storing, retrieving, and
processing data in native languages. Over 50 different national, multinational, and
vendor-specific character sets including the most popular single-byte and multibyte
encodings, plus Unicode, are supported as the database storage character set. The
connection character set can be defined to enable an application running in a different
encoding to communicate to the TimesTen or IMDB Cache database; character set
conversion between the application and the database occurs automatically and
transparently.

TimesTen and IMDB Cache offer linguistic sorting capabilities that handle the complex
sorting requirements of different languages and cultures. More than 80 linguistic sorts
are provided. They can be extended to enable the application to perform
case-insensitive and accent-insensitive sorting and searches.

For more information, see "Globalization Support" in Oracle TimesTen In-Memory
Database Operations Guide.

Administration and utilities

Replication

TimesTen and IMDB Cache support typical database utilities such as interactive SQL,
backup and restore, copy (copies data between different database systems), and

migrate (a high speed copy for moving data between different versions of TimesTen or
IMDB Cache).

Many administrative activities are available by using SQL extensions. TimesTen and
IMDB Cache also use SQL extensions to set up replication, caching from an Oracle
database and materialized views.

TimesTen built-in procedures and C language functions enable programmatic control
over TimesTen operations and settings. TimesTen command-line utilities allow users
to monitor the status of connections, locks, replication, and so on. Status can also be
obtained using SQL SELECT queries on the system tables in the TimesTen schema. For
example, the TimesTen SYS. SYSTEMSTATS table records many statistics that are
useful for analyzing or debugging a TimesTen application.

For more information on TimesTen administration, see "TimesTen and IMDB Cache
Administration" on page 9-1.

TimesTen and IMDB Cache replication enable real-time data replication between
servers for high availability and load sharing. Data replication configurations can be
active-standby or active-active, using asynchronous or synchronous transmission,
with conflict detection and resolution and automatic resynchronization after a failed
server is restored.

See "Replication" on page 6-3.

Oracle TimesTen In-Memory Database and Oracle In-Memory Database Cache 1-7

TimesTen and IMDB Cache feature overview

IMDB Cache

The Oracle In-Memory Database Cache creates a real-time, updatable cache for Oracle
data. It offloads computing cycles from Oracle databases and enables responsive and
scalable real-time applications. IMDB Cache loads a subset of Oracle tables into a
cache database. It can be configured to propagate updates in both directions and to
automate passthrough of SQL requests for uncached data. It automatically
resynchronizes data after failures.

See "IMDB Cache" on page 8-1.

1-8 Oracle In-Memory Database Cache Introduction

2

Using TimesTen and IMDB Cache

This chapter describes how TimesTen and IMDB Cache can be used to enable
applications that require real-time access to data. It includes the following sections:

Uses for TimesTen
Uses for IMDB Cache
TimesTen application scenario

IMDB Cache application scenarios

Uses for TimesTen

TimesTen can be used as:

The primary database for real-time applications. All data needed by the applications
resides in the TimesTen database.

A data utility for accelerating performance-critical points in an architecture. For
example, providing persistence and transactional capabilities to a message
queuing system might be achieved by using TimesTen as the repository for the
messages.

A data integration point for multiple data sources on top of which new applications
can be built. For example, an organization may have large amounts of information
stored in several data sources, but only subsets of this information may be relevant
to running its daily business. A suitable architecture would be to pull the relevant
information from the different data sources into one TimesTen operational
database to provide a central repository for the data of immediate interest to the
applications.

Uses for IMDB Cache

IMDB Cache can be used as:

A real-time data manager for specific tasks in an overall workflow in collaboration
with a disk-based RDBMS like the Oracle Database. For example, a phone billing
application may capture and store recent call records in the IMDB Cache database
while storing information about customers, their billing addresses and credit
information in an Oracle database. It can also age and keep archives of all call
records in the Oracle database. Thus the information that requires real-time access
is stored in the IMDB Cache database while the information needed for
longer-term analysis, auditing, and archival is stored in the Oracle database.

Using TimesTen and IMDB Cache 2-1

TimesTen application scenario

» A read-only cache. Oracle data can be cached in an IMDB Cache read-only cache
group. Read-only cache groups are automatically refreshed when Oracle tables are
updated. A read-only cache group provides fast access to reference data such as
look-up tables and subscriber profiles.

= An updatable cache. Oracle data can be cached in IMDB Cache updatable cache
groups. Transactions on the cache groups can be committed synchronously or
asynchronously to the associated Oracle tables.

» Adistributed cache. Oracle data can be cached in multiple installations of IMDB
Cache running on different machines to provide scalability. You can configure a
dynamic distributed cache in which records are loaded automatically and aged
automatically.

TimesTen application scenario

This section describes an application scenario to illustrate how TimesTen can be
integrated as part of a data management solution.

The application scenario is a Real-time quote service application. It uses TimesTen to
store stock quotes from a data feed for access by program trading applications. Quote
data is collected from the data feed and published on a real-time message bus. The
data is read from the message bus and stored in TimesTen, where it is accessed by the
program trading applications.

Real-time quote service application

A financial services company is adding a real-time quote and news service to its online
trading facility. The real-time quote service will read an incoming news wire from a
major market data vendor and make a subset of the data available to trading
applications that manage the automated trading operations for the company. The
company plans to build an infrastructure that can accommodate future expansion to
provide real-time quotes, news, and other trading services to retail subscribers.

The real-time quote service includes a NewsReader process that reads incoming data
from a real-time message bus that is constantly fed data from a news wire. Each
NewsReader is paired with a backup NewsReader that independently reads the data
from the bus and inserts it into a separate TimesTen database. In this way, the message
bus is used to fork incoming data to two TimesTen databases for redundancy. In this
scenario, forking the data from the message bus is more efficient than using TimesTen
replication.

One NewsReader makes the stock data available to a trading application, while the
other serves as a hot standby backup to be used by the application if a failure occurs.
The current load requires four NewsReader pairs, but more NewsReader pairs can be
added in the future to scale the service to deliver real-time quotes to other types of
clients over the Web or cellular phone.

Figure 2-1 shows the configuration for capturing data from a message bus and feeding
it to NewsReaders.

2-2 Oracle In-Memory Database Cache Introduction

TimesTen application scenario

Figure 2—1 Capturing feed data from a message bus

[]

Data Feed Message Bus
Backup
NewsReader NewsReader

\ \

i Trading
TimesTen TimesTen Application

As shown in Figure 2-2, the NewsReader updates stock price data in a Quotes table in
the TimesTen database. Less dynamic earnings data is updated in an Earnings table.
The Stock columns in the Quotes and Earnings tables are linked through a foreign key
relationship.

The purpose of the trading application is to track only those stocks with PE ratios
below 50, then use internal logic to analyze the current stock price and trading volume
to determine whether to place a trade using another part of the trading facility. For
maximum performance, the trading application implements an event facility that uses
the TimesTen Transaction Log API (XLA) to monitor the TimesTen transaction log for
updates to the stocks of interest.

To provide the fastest possible access to such updates, the company creates a
materialized view, named PE_Alerts, with a WHERE clause that calculates the PE ratio
from the Price column in the Quotes table and the Earns column in the Earnings table.
By using the XLA event facility to monitor the transaction log for price updates in the
materialized view, the trading application receives alerts only for those stocks that
meet its trading criteria.

Figure 2-2 Using materialized views and XLA

NewsReader Trafi 'n9
Application
~ ~ r
/ \TmesTen
Quotes Earnings
Stock Price Vol Time Stock Earns Est
IBM 135.03 10 9:54:03 IBM 435 425
Detail ORCL 16.23 15 9:54:02 ORCL 043 0.55
| SUNW 15.21 4 9:54:02 SUNW -0.17 0.25
tables |wser 6106 12 9:5401 MSFT 115 095
JNPR 1536 1 9:54:01 JNPR 036 0.51
\ /
CREATE MATERIALIZED VIEW PE_Alerts AS
SELECT Q.Stock, Q.Price, Q.Vol, E.Earns
FROM Quiotes Q, Earnings E
WHERE Q.Stock = E.Stock AND Q.Price / E.Earns < 50; XLA Interface
PE Alerts Read Update
Stock Price Vol Earns Records
Materialized |1BM 13503 10 435
. ORCL 1623 15 043 Transaction | IBM || ORCL || INPR |
view JNPR 1536 1 036 Log Buffer Update | |Update | |Update

Using TimesTen and IMDB Cache 2-3

IMDB Cache application scenarios

IMDB Cache application scenarios
This section describes scenarios that illustrate how IMDB Cache can be used:

= Call center application: Uses IMDB Cache as an application-tier cache to hold
customer profiles maintained in an Oracle database.

» Caller usage metering application: Uses IMDB Cache to store metering data on the
activities of cellular callers. The metering data is collected from multiple TimesTen
nodes distributed throughout a service area and archived in a central Oracle
database for use by a central billing application.

Call center application

Advance Call Center provides customer service for Wireless Communications.

Figure 2-3 shows that the call center system includes a central server that hosts
back-end applications and an Oracle database that stores the customer profiles.

Figure 2-3 Dynamically loading Oracle data to IMDB Cache nodes

Node 1 Node 2 Node n
IMDB Cache IMDB Cache IMDB Cache
Cache group Cache group Cache group

— ;

Customer Customer

Prof file
Customer
Profile \ -
Customer ~ Customer Billing
Profile Application
Profile oral
Customer ra[;c) e
Customer '€ 7 Database Data .Mm.mg
Profile s Application
-

Central server

To manage a large volume of concurrent customer sessions, the call center has
deployed several application server nodes and periodically deploys additional nodes
as its customer base increases. Each node contains an IMDB Cache database. When a
customer contacts the call center, the user is automatically routed to an available
application server node and the appropriate customer profile is dynamically loaded
from the Oracle database into the cache database.

When a customer completes a call, changes to the customer profile are flushed from
IMDB Cache database to the Oracle database. Least recently used (LRU) aging is
configured to remove inactive customer profiles from the IMDB Cache database.

If the same customer contacts the call center again shortly after the first call and is
connected to a different application server node, the customer profile is dynamically
loaded to the new node from either the Oracle database or from the first IMDB Cache
node, depending on where the most recent copy resides. The IMDB Cache determines
where the most recent copy resides and uses peer-to-peer communication to exchange

2-4 Oracle In-Memory Database Cache Introduction

IMDB Cache application scenarios

information with other IMDB Cache databases in its grid. It also manages concurrent
updates to the same data within its grid.

All of the customer data is stored in the Oracle database. The Oracle database is much
larger than the combined IMDB Cache databases and is best accessed by applications

that do not require the real-time performance of IMDB Cache but do require access to

large amounts of data. Such applications may include a billing application and a data

mining application.

As the customer base increases and demands to serve more customers concurrently
increases, the call center may decide to deploy additional application server nodes.
New IMDB Cache members can join the IMDB Cache grid with no disruption to
ongoing requests in the grid. Similarly, failures or removal of individual nodes do not
disrupt operations in the rest of the grid.

Caller usage metering application

Wireless Communications has a usage metering application that keeps track of the
duration of each cellular call and the services used. For example, if a caller makes a
regular call, a base rate is applied for the duration of the call. If a caller uses special
features like roaming, extra charges are applied.

The usage metering application must efficiently monitor up to 100,000 concurrent
calls, gather usage data on each call, and store the data in a central database for use by
other applications that generate bills, reports, audits, and so on.

The company uses an IMDB Cache database to store the caller data that is of
immediate interest to the usage metering application and to warehouse all of the other
data in the Oracle database. The company distributes multiple installations of the
usage metering application and IMDB Cache on individual nodes throughout its
service areas. For maximum performance, each usage metering application connects to
its local IMDB Cache database by an ODBC direct driver connection.

Figure 2—4 shows the configuration.

Using TimesTen and IMDB Cache 2-5

IMDB Cache application scenarios

Figure 2—4 Distributed caching of usage data

Service Areas

650 408 415
> Usage Meterinj@ @\Usage Metering% @\ Usage Metering%
Application Application Application
/ Y /
IMDB Cache ™ IMDB Cache™ IMDB Cache >
Standby Standby Standby

Oracle
Databas

A usage metering application and IMDB Cache are deployed on each node to handle
the real-time processing for calls beginning and terminating at different geographical
locations delineated by area code. For each call, the local node stores a separate record
for the beginning and the termination of a call. This is because the beginning of a
cellular call might be detected by one node and its termination by another node.

Transactions that impact revenue (inserts and updates) must be durable. To ensure
data availability, each IMDB Cache database is replicated to a standby database.

Each time a customer makes, receives or terminates a cellular call, the application
inserts a record of the activity into the Calls table in the IMDB Cache database. Each
call record includes a timestamp, unique identifier, originating host's IP address, and
information on the services used.

An IMDB Cache process periodically archives the rows in the Calls table to the Oracle
database. After the call records have been successfully archived in the Oracle database,
they are deleted from the IMDB Cache database by a time-based aging process.

2-6 Oracle In-Memory Database Cache Introduction

3

Oracle In-Memory Database Cache
Architecture and Components

This chapter includes the following topics:

Architectural overview

Shared libraries

Memory-resident data structures
Database processes

Administrative programs
Checkpoint and transaction log files
Cached data

Replication

TimesTen connection options

Architectural overview

This section describes the architecture of the Oracle In-Memory Database Cache. The
architecture of the Oracle TimesTen In-Memory Database is the same as the
architecture of the IMDB Cache except that the Oracle database and cache agent are
not included. Figure 3-1 shows the architecture of the IMDB Cache.

Oracle In-Memory Database Cache Architecture and Components 3-1

Shared libraries

Figure 3—1 Oracle In-Memory Database Cache architecture

@
'; Client/server applications
S =
E User interfaces Afgﬂﬁﬁggn
S for direct-linked TimesTen
g applications client driver
o Network / Message Bus
e B
(Handles 1)
client/server y Replication
requests agents
Y
Direct-linked applications t Administrati
_ — ministrative
k3 Application -l programs
'; business logic Oracle
-..% TimesTen ~ |n-Memory Database
i o o
.791 shared libraries Database Cache processes
Q
< i ; T_> Checkpoint
files
Log
Y files
Cache
agent
A
L J
R B
1 Network / Message Bus
Oracle
database

The architectural components include shared libraries, memory-resident data
structures, database processes, and administrative programs. Memory-resident data
structures include tables, indexes, system tables, locks, cursors, compiled commands
and temporary indexes. The application can connect to the IMDB Cache or TimesTen
database by direct link and by client/server connections.

Replication agents receive information from master databases and send information to
subscriber databases. The cache agent performs all asynchronous data transfers
between cache groups in the IMDB Cache and the Oracle database.

These components are described in subsequent sections.

Shared libraries

The routines that implement the TimesTen functionality are embodied in a set of
shared libraries that developers link with their applications and execute as a part of
the application's process. This shared library approach is in contrast to a more
conventional RDBMS, which is implemented as a collection of executable programs to
which applications connect, typically over a client/server network. Applications can
also use a client/server connection to access an IMDB Cache or TimesTen database,
though in most cases the best performance will be realized with a directly linked
application. See "TimesTen connection options" on page 3-4.

3-2 Oracle In-Memory Database Cache Introduction

Cached data

Memory-resident data structures

The IMDB Cache or TimesTen database resides entirely in main memory at runtime. It
is maintained in shared memory segments in the operating system and contains all
user data, indexes, system catalogs, log buffers, lock tables and temp space. Multiple
applications can share one database, and a single application can access multiple
databases on the same system.

Database processes

TimesTen assigns a separate process to each database to perform operations including
the following tasks:

s Loading the database into memory from a checkpoint file on disk

= Recovering the database if it needs to be recovered after loading it into memory
= Performing periodic checkpoints in the background against the active database
= Detecting and handling deadlocks

= Performing data aging

= Writing log records to files

Administrative programs

Utility programs are explicitly invoked by users, scripts, or applications to perform
services such as interactive SQL, bulk copy, backup and restore, database migration
and system monitoring.

Checkpoint and transaction log files

Checkpoint files contain an image of the database on disk. TimesTen uses dual
checkpoint files for additional safety, in case the system fails while a checkpoint
operation is in progress. Changes to databases are captured in transaction logs that are
written to disk periodically. If a database needs to be recovered, TimesTen merges the
database checkpoint on disk with the completed transactions that are still in the
transaction log files. Normal disk file systems are used for checkpoints and transaction
log files.

See "Data Availability and Integrity" on page 6-1 for more information.

Cached data

When the IMDB Cache is used to cache portions of an Oracle database in a TimesTen
in-memory database, a cache group is created to hold the cached data.

A cache group is a collection of one or more tables arranged in a logical hierarchy by
using primary key and foreign key relationships. Each table in a cache group is related
to an Oracle database table. A cache table can contain all rows and columns or a subset
of the rows and columns in the related Oracle table. You can create or modify cache
groups by using SQL statements or by using Oracle SQL Developer. Cache groups
support these features:

= Applications can read from and write to cache groups.

= Cache groups can be refreshed from Oracle data automatically or manually.

Oracle In-Memory Database Cache Architecture and Components 3-3

Replication

= Updates to cache groups can be propagated to Oracle tables automatically or
manually.

= Changes to either Oracle tables or the cache group can be tracked automatically.

When rows in a cache group are updated by applications, the corresponding rows in
Oracle tables can be updated synchronously as part of the same transaction or
asynchronously immediately afterward depending on the type of cache group. The
asynchronous configuration produces significantly higher throughput and much faster
application response times.

Changes that originate in the Oracle tables are refreshed into the cache by the cache
agent.

See "IMDB Cache" on page 8-1 for more information.

Replication

TimesTen replication enables you to achieve near-continuous availability or workload
distribution by sending updates between two or more servers. A master server is
configured to send updates and a subscriber server is configured to receive them. A
server can be both a master and a subscriber in a bidirectional replication scheme.
Time-based conflict detection and resolution are used to establish precedence in case
the same data is updated in multiple locations at the same time.

When replication is configured, a replication agent is started for each database. If
multiple databases on the same server are configured for replication, each database
has a separate replication agent. Each replication agent can send updates to one or
more subscribers and to receive updates from one or more masters. Each of these
connections is implemented as a separate thread of execution inside the replication
agent process. Replication agents communicate through TCP/IP stream sockets.

For maximum performance, the replication agent detects updates to a database by
monitoring the existing transaction log. It sends updates to the subscribers in batches,
if possible. Only committed transactions are replicated. On the subscriber node, the
replication agent updates the database through an efficient low-level interface,
avoiding the overhead of the SQL layer.

See "Replication” on page 6-3 for more information.

TimesTen connection options
Applications can connect to a TimesTen database in one of the following ways:
= Direct driver connection
s Client/server connection

= Driver manager connection

Direct driver connection

In a traditional database system, TCP/IP or another IPC mechanism is used by client
applications to communicate with a database server process. All exchanges between
client and server are sent over a TCP/IP connection. This IPC overhead adds
substantial cost to all SQL operations and can be avoided in TimesTen by connecting
the application directly to the TimesTen ODBC direct driver.

The ODBC direct driver is a library of ODBC and TimesTen routines that implement
the database engine used to manage the databases. Java applications access the ODBC

3-4 Oracle In-Memory Database Cache Introduction

For more information

direct driver through the JDBC library. OCI applications access the ODBC direct driver
through the OCl library.

An application can create a direct driver connection when it runs on the same machine
as the IMDB Cache or TimesTen database. In a direct driver connection, the ODBC
driver directly loads the IMDB Cache or TimesTen database into a shared memory
segment. The application then uses the direct driver to access the memory image of the
database. Because no inter-process communication (IPC) of any kind is required, a
direct-driver connection provides extremely fast performance and is the preferred way
for applications to access the IMDB Cache or TimesTen database.

Client/server connection

The TimesTen client driver and server daemon processes accommodate connections from
remote client machines to databases across a network. The server daemon spawns a
separate server child process for each client connection to the database.

Applications on a client machine issue ODBC, JDBC or OCI calls. These calls access a
local ODBC client driver that communicates with a server child process on the
TimesTen server machine. The server child process, in turn, issues native ODBC
requests to the ODBC direct driver to access the IMDB Cache or TimesTen database.

If the client and server reside on separate nodes in a network, they communicate by
using sockets and TCP/IP. If both the client and server reside on the same machine,
they can communicate more efficiently by using a shared memory segment as IPC.

Traditional database systems are typically structured in this client/server model, even
when the application and the database are on the same system. Client/server
communication adds extra cost to all database operations.

Driver manager connection

Applications can connect to the IMDB Cache or TimesTen database through an ODBC
driver manager, which is a database-independent interface that adds a layer of
abstraction between the applications and the TimesTen database. In this way, the
driver manager allows applications to be written to operate independently of the
database and to use interfaces that are not directly supported by TimesTen. The use of
a driver manager also enables a single process to have both direct and client
connections to the database.

On Microsoft Windows systems, applications can connect to the MS ODBC driver
manager to use an IMDB Cache or TimesTen database along with data sources from
other vendors. Driver managers for UNIX systems are available as open-source
software as well as from third-party vendors.

For more information

For more information about the TimesTen database, see "Working with TimesTen
Databases" in Oracle TimesTen In-Memory Database C Developer’s Guide and "Working
with Data in a TimesTen Database" in Oracle TimesTen In-Memory Database Operations
Guide.

For more information about connecting to databases, see "Managing TimesTen
Databases" and "Working with the TimesTen Client and Server" in Oracle TimesTen
In-Memory Database Operations Guide.

Oracle In-Memory Database Cache Architecture and Components 3-5

For more information

3-6 Oracle In-Memory Database Cache Introduction

4

Concurrent Operations

A database can be accessed in shared mode. When a shared database is accessed by
multiple transactions, there must be a way to coordinate concurrent changes to data
with reads of the same data in the database. TimesTen and IMDB Cache use
transaction isolation and locks to coordinate concurrent access to data.

This chapter includes the following topics:
» Transaction isolation

s Locks

Transaction isolation

Transaction isolation provides an application with the appearance that the system
performs one transaction at a time, even though there are concurrent connections to
the database. Applications can use the Isolation general connection attribute to set
the isolation level for a connection. Concurrent connections can use different isolation
levels.

Isolation level and concurrency are inversely related. A lower isolation level enables
greater concurrency, but with greater risk of data inconsistencies. A higher isolation
level provides a higher degree of data consistency, but at the expense of concurrency.

TimesTen has two isolation levels:
s Read committed isolation

s Serializable isolation

Read committed isolation

When an application uses read committed isolation, readers use a separate copy of the
data from writers, so read locks are not needed. Read committed isolation is
nonblocking for queries and can work with Serializable isolation or read committed
isolation. Under read committed isolation, writers block only other writers and readers
using serializable isolation; writers do not block readers using read committed
isolation. Read committed isolation is the default isolation level.

TimesTen and IMDB Cache use versioning to implement read committed isolation.
TimesTen and IMDB Cache update operations create new copies of the rows they
update to allow nonserializable reads of those rows to proceed without waiting.

Figure 4-1 shows that applications use a committed copy of the data to read while
another application writes and reads on an uncommitted copy.

Concurrent Operations 4-1

Transaction isolation

Figure 4-1 Read committed isolation

Read -

Application ——— = R
- Read Committed Copy ’:/:f
Application ~———— :
Write (/
Application Read Uncommitted Copy ’
]

Read committed isolation provides increased concurrency because readers do not
block writers and writers do not block readers. This isolation level is useful for
applications that have long-running scans that may conflict with other operations
needing access to a scanned row. However, the disadvantage when using this isolation
level is that non-repeatable reads are possible within a transaction or even a single
statement (for example, the inner loop of a nested join).

When using this isolation level, DDL statements that operate on a table can block
readers and writers of that table. For example, an application cannot read a row from a
table if another application has an uncommitted DROP TABLE, CREATE INDEX, or
ALTER TABLE operation on that table. In addition, blocking checkpoints will block
readers and writers.

Read committed isolation does acquire read locks as needed during materialized view
maintenance to ensure that views are consistent with their detail tables. These locks
are not held until the end of the transaction but are instead released when
maintenance has been completed.

Serializable isolation

When an application uses serializable isolation, locks are acquired within a transaction
and are held until the transaction commits or rolls back for both reads and writes. This
level of isolation provides for repeatable reads and increased isolation within a
transaction at the expense of decreased concurrency. Transactions use serializable
isolation when database-level locking is chosen.

Figure 4-2 shows that locks are held until the transaction is committed.

Figure 4-2 Serializable isolation

Application _Read [> Fetched row

‘ [4
Read next row > Fetched row 3

Commit transaction ;4
J

Y

Serializable isolation level is useful for transactions that require the strongest level of
isolation. Concurrent applications that must modify the data that is read by a

4-2 Oracle In-Memory Database Cache Introduction

Locks

transaction may encounter lock timeouts because read locks are held until the
transaction commits.

Locks

Locks are used to serialize access to resources to prevent one user from changing an
element that is being read or changed by another user. TimesTen and IMDB Cache
automatically perform locking if a database is accessed in shared mode.

Serializable transactions acquire share locks on the items they read and exclusive locks
on the items they write. These locks are held until the transaction commits or rolls
back. Read-committed transactions acquire exclusive locks on the items they write and
hold these locks until the transactions are committed. Read-committed transactions do
not acquire locks on the items they read. Committing or rolling back a transaction
closes all cursors and releases all locks held by the transaction.

TimesTen and IMDB Cache perform deadlock detection to report and eliminate
deadlock situations. If an application is denied a lock because of a deadlock error, it
should roll back the entire transaction and retry it.

Applications can select from three lock levels:
= Database-level locking
» Table-level locking

= Row-level locking

Database-level locking

Locking at the database level locks an entire database when it is accessed by a
transaction. All database-level locks are exclusive. A transaction that requires a
database-level lock cannot start until there are no active transactions on the database.
After a transaction has obtained a database-level lock, all other transactions are
blocked until the transaction commits or rolls back.

Database-level locking restricts concurrency more than table-level locking and is
useful only for initialization operations such as bulkloading, when no concurrency is
necessary. Database-level locking has better response time than row-level or
table-level locking at the cost of diminished concurrency and diminished throughput.

Different transactions can coexist with different levels of locking, but the presence of
even one transaction that uses database-level locking leads to reduced concurrency.

Use the LockLevel general connection attribute or the ttLockLevel built-in
procedure to implement database-level locking.

Table-level locking

Table-level locking locks a table when it is accessed by a transaction. It is useful when
a statement accesses most of the rows in a table. Applications can call the
ttOptSetFlag built-in procedure to request that the optimizer use table locks. The
optimizer determines when a table lock should be used.

Table locks can reduce throughput, so they should be used only when a substantial
portion of the table must be locked or when high concurrency is not needed. For
example, tables can be locked for operations such as bulk updates. In read-committed
isolation, TimesTen and IMDB Cache do not use table-level locking for read operations
unless it is explicitly requested by the application.

Concurrent Operations 4-3

For more information

Row-level locking

Row-level locking locks only the rows that are accessed by a transaction. It provides the
best concurrency by allowing concurrent transactions to access rows in the same table.
Row-level locking is preferable when there are many concurrent transactions, each
operating on different rows of the same tables.

Applications can use the LockLevel general connection attribute, the t tLockLevel
built-in procedure and the ttOptSetFlag built-in procedure to manage row-level
locking.

For more information

For more information about locks and transaction isolation, see "Transaction
Management and Recovery" in Oracle TimesTen In-Memory Database Operations Guide.

4-4 Oracle In-Memory Database Cache Introduction

O

Query Optimization

TimesTen and IMDB Cache have a cost-based query optimizer that ensures efficient
data access by automatically searching for the best way to answer queries.
Optimization is performed in the third stage of the compilation process. The stages of
compilation are shown in Figure 5-1.

Figure 5-1 Compilation stages

SQL Query

Parser

v

Semantic
Analyzer

v

Optimizer

Y

Code
Generator

v

Executable Code

The role of the optimizer is to determine the lowest cost plan for executing queries. By
"lowest cost plan"” we mean an access path to the data that will take the least amount of
time. The optimizer determines the cost of a plan based on:

Table and column statistics
Metadata information (such as referential integrity, primary key)
Index choices (including automatic creation of temporary indexes)

Scan methods (full table scan, rowid lookup, range index scan, bitmap index
lookup, hash index lookup)

Join algorithm choice (nested loop joins, nested loop joins with indexes, or merge
join)

This chapter includes the following topics:

Query Optimization 5-1

Optimization time and memory usage

= Optimization time and memory usage
= Statistics

s Optimizer hints

= Indexes

= Scan methods

= Join methods

= Optimizer plan

Optimization time and memory usage

Statistics

The optimizer is designed to generate the best possible plan within reasonable time
and memory constraints. No optimizer always chooses the optimal plan for every
query. Instead, the goal of the optimizer is to choose the best plan from among a set of
plans generated by using strategies for finding the most promising areas within the
search-space of plans. Because optimization usually happens only once for each query
while the query itself may be executed many times, the optimizer is designed to give
precedence to execution time over optimization time.

The plans generated by the optimizer emphasize performance over memory usage.
The optimizer may designate the use of significant amounts of temporary memory
space in order to speed up execution time. In memory-constrained environments,
applications can use the optimizer hints described in "Optimizer hints" on page 5-2 to
disable the use of temporary indexes and tables in order to create plans that trade
maximum performance for reduced memory usage.

When determining the execution path for a query, the optimizer examines statistics
about the data referenced by the query, such as the number of rows in the tables, the
minimum and maximum values and the number of unique values in interval statistics
of columns used in predicates, the existence of primary keys within a table, the size
and configuration of any existing indexes. These statistics are stored in the
SYS.TBL_STATS and SYS.COL_STATS tables, which are populated when an
applications calls the t tOptUpdateStats built-in procedure.

The optimizer uses the statistics for each table to calculate the selectivity of predicates,
such as t1.a=4, or a combination of predicates, suchas t1.a=4 AND t1l.b<10.
Selectivity is an estimate of the number of rows in a table. If a predicate selects a small
percentage of rows, it is said to have high selectivity, while a predicate that selects a
large percentage of rows has low selectivity.

Optimizer hints

The optimizer allows applications to provide hints to adjust the way that plans are
generated. For example, applications can use the t tOpt SetFlag built-in procedure to
provide the optimizer with hints about how to best optimize a particular query. This
takes the form of directives that restrict the use of particular join algorithms, use of
temporary indexes and types of index, use of locks, whether to optimize for all the
rows or only the first n number of rows in a table and whether to materialize
intermediate results. You can view the existing hints set for a database by using the
ttOptGetFlag built-in procedure.

5-2 Oracle In-Memory Database Cache Introduction

Scan methods

Indexes

Applications can also use the t tOpt SetOrder built-in procedure to specify the order
in which tables are to be joined by the optimizer, as well as the t tOptUseIndex
built-in procedure to specify which indexes should be considered for each correlation
in a query.

The query optimizer uses indexes to speed up the execution of a query. The optimizer
uses existing indexes or creates temporary indexes to generate an execution plan when
preparing a SELECT, INSERT SELECT, UPDATE, or DELETE statement. An index is a
map of keys to row locations in a table. Strategic use of indexes is essential to obtain
maximum performance from a TimesTen system.

TimesTen uses these types of indexes:

= Range index: Range indexes are useful for finding rows with column values within
a range specified as an equality or inequality. Range indexes can be created over
one or more columns of a table. They can be designated as unique or not unique.
Multiple NULL values are permitted in a unique range index. When sorting data
values, TimesTen considers NULL values to be larger than all non-NULL values.
When you create an index using the CREATE INDEX SQL statement and do not
specify the index type, TimesTen creates a range index.

» Bitmap index: Bitmap indexes encode information about a unique value in a row in
a bitmap. Each bit in the bitmap corresponds to a row in the table. Use a bitmap
index for columns that do not have many unique values. An example of such a
column is a column that records gender as one of two values. Bitmap indexes are
widely used in data warehousing environments. The environments typically have
large amounts of data and ad hoc queries, but a low level of concurrent DML
transactions. Bitmap indexes are compressed and have smaller storage
requirements than other indexing techniques.

» Hash index: Hash indexes are created for tables with a primary key when you
specify the UNIQUE HASH INDEX clause in the CREATE TABLE statement. There
can be only one hash index for each table. In general, hash indexes are faster than
range indexes for exact match lookups and equijoins. However, hash indexes
cannot be used for lookups involving ranges or the prefix of a key and can require
more space than range indexes and bitmap indexes.

Scan methods

The optimizer can select from multiple types of scan methods. The most common scan
methods are:

= Full table scan

= Rowid lookup

= Range index scan (on either a permanent or temporary index)

= Hash index lookup (on either a permanent or temporary index)
= Bitmap index lookup (on a permanent index)

TimesTen and IMDB Cache perform fast exact matches through hash indexes, bitmap
indexes and rowid lookups. They perform range matches through range indexes. The
ttOptSetFlag built-in procedure can be used to allow or disallow the optimizer
from considering certain scan methods when choosing a query plan.

Query Optimization 5-3

Join methods

A full table scan examines every row in a table. Because it is the least efficient way to
evaluate a query predicate, a full scan is only used when no other method is available.

TimesTen assigns a unique ID, called a rowid, to each row stored in a table. A rowid
lookup is applicable if, for example, an application has previously selected a rowid and
then uses a WHERE ROWID= clause to fetch that same row. Rowid lookups are faster
than index lookups.

A hash index lookup uses a hash index to find rows based on their primary keys. Such
lookups are applicable if the table has a primary key that has a hash index and the
predicate specifies an exact match over the primary key columns.

A bitmap index lookup uses a bitmap index to find rows that satisfy an equality
predicate such as customer.gender="'male'. Bitmap indexes are appropriate for
columns with few unique values. They are particularly useful in evaluating several
predicates each of which can use a bitmap index lookup because the combined
predicates can be efficiently evaluated through bit operations on the indexes
themselves. For example, if table customer has a bitmap index on the column
gender and if table sweater has a bitmap index on the column color, the
predicates customer.gender="'male' and sweater.color ='pink' could
rapidly find all male customers who purchased pink sweaters by performing a logical
AND operation on the two bitmap indexes.

A range index scan uses a range index to access a table. Such a scan is applicable to
exact match predicates such as t1.a=2 or to range predicates such as t1.a>2 and
t1l.a<10 as long as the column used in the predicate has a range index defined over
it. If a range index is defined over multiple columns, it can be used for multiple
column predicates. For example, the predicates t1.b=100 and t1.c>"'ABC' resultin
a range index scan if a range index is defined over columns t1.b and t1.c. The index
can be used if it is defined over more columns. For example, if a range index is defined
over t1.b, tl.c and tl.d, the optimizer uses the index prefix over columns b and ¢
and returns all the values for column d that match the stated predicate over columns b
and c.

Join methods

The optimizer can select from multiple join methods. When the rows from two tables
are joined, one table is designated the outer table and the other the inner table. During a
join, the optimizer scans the rows in the outer and inner tables to locate the rows that
match the join condition.

The optimizer analyzes the statistics for each table and, for example, might identify the
smallest table or the table with the best selectivity for the query as outer table. If
indexes exist for one or more of the tables to be joined, the optimizer takes them into
account when selecting the outer and inner tables.

If more than two tables are to be joined, the optimizer analyzes the various
combinations of joins on table pairs to determine which pair to join first, which table to
join with the result of the join, and so on for the optimum sequence of joins.

The cost of a join is largely influenced by the method in which the inner and outer
tables are accessed to locate the rows that match the join condition. The optimizer can
select from two join methods:

= Nested loop join

s Mergejoin

5-4 Oracle In-Memory Database Cache Introduction

Join methods

Nested loop join

Merge join

In a nested loop join with no indexes, a row in the outer table is selected one at a time
and matched against every row in the inner table. All of the rows in the inner table are
scanned as many times as the number of rows in the outer table. If the inner table has
an index on the join column, that index is used to select the rows that meet the join
condition. The rows from each table that satisfy the join condition are returned.
Indexes may be created on the fly for inner tables in nested loops, and the results from
inner scans may be materialized before the join.

Figure 5-2 shows an example of a nested loop join. The join condition is:
WHERE tl.a=t2.a
t1 is the outer table and t2 is the inner table. Values in column a in table t1 that

match values in column a in table t2 are 1 and 7. The join results concatenate the rows
from t1 and t2. For example, the first join result is the following row:

75043.54 21 13.69

It concatenates a row from t1:

7 5043.54

with the first row from t2 in which the values in column a match:

72113.69

Figure 5-2 Nested loop join

7 50 4354 21 13.69
7 50 4354 33 61.79 Results
7 50 4354 30 5554
1 20 23.09 20 43.59
AN
Join cond/ition: WHERE t1.a=t2.a
t1 t2
a_ b C ~__a_ b C
41 32| 72.89 7 | 21 [13.69
7| 50| 43.54 9162|1219
51 42| 53.22 < |91 20 | 23.09
3[70 33.94 31812112312
6| 504274 1 | 20 | 43.59
| 3] 50| 43.54 7 | 33 161.79
11 20 23.09 | [7 13015554
Outer table Inner table

A merge join is used only when the join columns are sorted by range indexes. In a
merge join, a cursor advances through each index one row at a time. Because the rows
are already sorted on the join columns in each index, a simple formula is applied to

Query Optimization 5-5

Join methods

efficiently advance the cursors through each row in a single scan. The formula looks
something like:

» If Inner.JoinColumn < Outer.JoinColumn, then advance inner cursor
» If Inner.JoinColumn = Outer.JoinColumn, then read match
» If Inner.JoinColumn > Outer.JoinColumn, then advance outer cursor

Unlike a nested loop join, there is no need to scan the entire inner table for each row in
the outer table. A merge join can be used when range indexes have been created for
the tables before preparing the query. If no range indexes exist for the tables being
joined before preparing the query, the optimizer may in some situations create
temporary range indexes in order to use a merge join.

Figure 5-3 shows an example of a merge join. The join condition is:
WHERE tl.a=t2.a
x1 is the index on table t1, sorting on column a. x2 is the index on table t2, sorting

on column a. The merge join results concatenate the rows in x1 with rows in x2 in
which the values in column a match. For example, the first merge join result is:

12023.09 20 43.59

It concatenates a row in x1:

12023.09

with the first row in x2 in which the values in column a match:

12043.59

5-6 Oracle In-Memory Database Cache Introduction

Optimizer plan

Figure 5-3 Merge join

1 20 23.09 20 43.59
7 50 4354 21 13.69 Results
7 50 4354 33 61.79
7 50 4354 30 55.54
e AN
Join condition: WHERE t1.a=1t2.a
x1 X2
a_ b C a_ b C
1 | 20 [23.09 1| 20 [43.59
3 | 50 | 43.54 C L7] 21[13.69
3] 70 [33.94 c[7[33[61.79 ,
4 [32 [72.89 Y [7] 30 [5554 | Sortedindexes
5 | 42 | 5322 8 | 2112312
6 | 50 | 4274 916211219
715014354 91 20 123.09
t1 t2
a_ b C a_ b C
4] 32[72.89 7 21 [13.69
7 | 50 [43.54 9] 62]12.19
5[42 [53.22 9 | 20 [23.09 .
3| 70 | 33.94 8| 2112312 Original tables
6| 50 [4274 11 2014359
3 [50 [4354 713316179
11 2012309 71305554
Outer table Inner table

Optimizer plan

Like most database optimizers, the query optimizer stores the details on how to most
efficiently perform SQL operations in an execution plan, which can be examined and
customized by application developers and administrators.

The execution plan data is stored in the TimesTen SYS . PLAN table and includes
information about which tables are to be accessed and in what order, which tables are
to be joined, and which indexes are to be used. Users can direct the query optimizer to
enable or disable the creation of an execution plan in the SYS. PLAN table by setting
the GenPlan optimizer flag in the t tOptSetFlag built-in procedure.

The execution plan designates a separate step for each database operation to be
performed to execute the query. The steps in the plan are organized into levels that
designate which steps must be completed to generate the results required by the step
or steps at the next level.

Consider this query:

SELECT COUNT (*)
FROM tl1, t2, t3
WHERE t3.b/tl.b > 1
AND t2.b <> 0
AND tl.a = -t2.a

Query Optimization 5-7

For more information

AND t2.a = t3.a;

In this example, the optimizer breaks down the query into its individual operations
and generates a 5-step execution plan to be performed at three levels, as shown in
Figure 5-4.

Figure 5-4 Example execution plan

Step 5

Merge results from Steps 3
and 4 and join the rows
that match: t2.a=t3.a Level 1

After join, return the rows
that match: t3.b/t1.b> 1

Step 3 Step 4
Merge results from Steps 1 Scan table t3 and sort
and 2 and join the rows using a temporary Level 2
that match: t1.A=-t2.A range index
Step 1 Step 2
Scan table t1 and sort Scan table t2 and sort using
using a temporary a temporary range index

i Level 3
range index After scan, return the rows

that match:t2.b <> 0

For more information

For more information about the query optimizer, see "The TimesTen Query
Optimizer" in Oracle TimesTen In-Memory Database Operations Guide.

For more information about indexing, see "Understanding indexes" in Oracle TimesTen
In-Memory Database Operations Guide.

Also see descriptions for the CREATE TABLE and CREATE INDEX statements in Oracle
TimesTen In-Memory Database SQL Reference.

5-8 Oracle In-Memory Database Cache Introduction

6

Data Availability and Integrity

TimesTen and IMDB Cache ensure the availability, durability, and integrity of data
through the following mechanisms:

s Transaction logging
» Checkpointing

= Replication

Transaction logging
The TimesTen or IMDB Cache transaction log is used for the following purposes:
= Redo transactions if a system failure occurs
= Undo transactions that are rolled back
= Replicate changes to other TimesTen databases or IMDB Cache databases
= Replicate changes to an Oracle database
= Enable applications to monitor changes to tables through the XLA interface

The transaction log is stored in files on disk. The end of the transaction log resides in
an in-memory buffer.

Writing the log buffer to disk

TimesTen and IMDB Cache write the contents of the in-memory log buffer to disk at
every durable commit, at every checkpoint, and at other times defined by the
implementation. Applications that cannot tolerate the loss of any committed
transactions if a failure occurs should request a durable commit for every transaction
that is not read-only. They can do so by setting the DurableCommits general
connection attribute to 1 when they connect to the database.

Applications that can tolerate the loss of some recently committed transactions can
significantly improve their performance by committing some or all of their
transactions nondurably. To do so, they set the DurableCommits general connection
attribute to 0 (the default) and typically request explicit durable commits either at
regular time intervals or at specific points in their application logic. To request a
durable commit, applications call the ttDurableCommi t built-in procedure.

Data Availability and Integrity 6-1

Checkpointing

When are transaction log files deleted?

Transaction log files are kept until TimesTen or the IMDB Cache declares them to be
purgeable. A transaction log file cannot be purged until all of the following actions
have been completed:

= All transactions writing log records to the transaction log file (or a previous
transaction log file) have committed or rolled back.

= All changes recorded in the transaction log file have been written to the
checkpoint files on disk.

= All changes recorded in the transaction log file have been replicated (if replication
is used).

= All changes recorded in the transaction log file have been propagated to the Oracle
database if the IMDB Cache has been configured for that behavior.

= All changes recorded in transaction log files have been reported to the XLA
applications (if XLA is used).

TimesTen commits

ODBC provides an autocommit mode that forces a commit after each statement. By
default, autocommit is enabled so that an implicit commit is issued immediately after
a statement executes successfully. TimesTen recommends that you turn autocommit
off so that commits are intentional.

TimesTen issues an implicit commit before and after any data definition language
(DDL) statement by default. This behavior is controlled by the DDLCommitBehavior
general connection attribute. You can use the attribute to specify instead that DDL
statements be executed as part of the current transaction and committed or rolled back
along with the rest of the transaction.

Checkpointing

Checkpoints are used to keep a snapshot of the database. If a system failure occurs,
TimesTen and the IMDB Cache can use a checkpoint file with transaction log files to
restore a database to its last transactionally consistent state.

Only the data that has changed since the last checkpoint operation is written to the
checkpoint file. The checkpoint operation scans the database for blocks that have
changed since the last checkpoint. It then updates the checkpoint file with the changes
and removes any transaction log files that are no longer needed.

TimesTen and IMDB Cache provide two kinds of checkpoints:
= Nonblocking checkpoints
= Blocking checkpoints

TimesTen and IMDB Cache create nonblocking checkpoints automatically.

Nonblocking checkpoints

TimesTen and IMDB Cache initiate nonblocking checkpoints in the background
automatically. Nonblocking checkpoints are also known as fuzzy checkpoints. The
frequency of these checkpoints can be adjusted by the application. Nonblocking
checkpoints do not require any locks on the database, so multiple applications can
asynchronously commit or roll back transactions on the same database while the
checkpoint operation is in progress.

6-2 Oracle In-Memory Database Cache Introduction

Replication

Blocking checkpoints

An application can call the t tCkptBlocking built-in procedure to initiate a blocking
checkpoint in order to construct a transaction-consistent checkpoint. While a blocking
checkpoint operation is in progress, any other new transactions are put in a queue
behind the checkpointing transaction. If any transaction is long-running, it may cause
many other transactions to be held up. No log is needed to recover from a blocking
checkpoint because the checkpoint record contains the information needed to recover.

Recovery from log and checkpoint files

Replication

If a database becomes invalid or corrupted by a system or process failure, every
connection to the database is invalidated. When an application reconnects to a failed
database, the subdaemon allocates a new memory segment for the database and
recovers its data from the checkpoint and transaction log files.

During recovery, the latest checkpoint file is read into memory. All transactions that
have been committed since the last checkpoint and whose log records are on disk are
rolled forward from the appropriate transaction log files. Note that such transactions
include all transactions that were committed durably as well as all transactions whose
log records aged out of the in-memory log buffer. Uncommitted or rolled-back
transactions are not recovered.

For applications that require uninterrupted access to TimesTen data in the event of
failures, see "Replication" on page 6-3.

The fundamental motivation behind replication is to make data highly available to
applications with minimal performance impact. In addition to its role in failure
recovery, replication is also useful for distributing application workloads across
multiple databases for maximum performance and for facilitating online upgrades and
maintenance.

Replication is the process of copying data from a master database to a subscriber
database. Replication at each master and subscriber database is controlled by
replication agents that communicate through TCP/IP stream sockets. The replication
agent on the master database reads the records from the transaction log for the master
database. It forwards changes to replicated elements to the replication agent on the
subscriber database. The replication agent on the subscriber then applies the updates
to its database. If the subscriber agent is not running when the updates are forwarded
by the master, the master retains the updates in its transaction log until they can be
applied at the subscriber.

TimesTen recommends the active standby pair configuration for highest availability. It
is the only replication configuration that you can use for replicating IMDB Cache.

The rest of this section includes the following topics:
= Active standby pair

» Other replication configurations

= Asynchronous and return service replication

= Replication failover and recovery

Data Availability and Integrity 6-3

Replication

Active standby pair

An active standby pair includes an active database, a standby database, optional
read-only subscriber databases, and the tables and cache groups that comprise the
databases. Figure 61 shows an active standby pair.

Figure 6—1 Active standby pair

Applications

¥

Active
database
Replication
A4
Standby
database
‘/‘/ \%g‘ation

Read-only subscribers

In an active standby pair, two databases are defined as masters. One is an active
database, and the other is a standby database. The active database is updated directly.
The standby database cannot be updated directly. It receives the updates from the
active database and propagates the changes to read-only subscribers. This
arrangement ensures that the standby database is always ahead of the read-only
subscribers and enables rapid failover to the standby database if the active database
fails.

Only one of the master databases can function as an active database at a specific time.
If the active database fails, the role of the standby database must be changed to active
before recovering the failed database as a standby database. The replication agent
must be started on the new standby database.

If the standby database fails, the active database replicates changes directly to the
read-only subscribers. After the standby database has recovered, it contacts the active
database to receive any updates that have been sent to the read-only subscribers while
the standby was down or was recovering. When the active and the standby databases
have been synchronized, then the standby resumes propagating changes to the
subscribers.

Active standby replication can be used with IMDB Cache to achieve cross-tier high
availability. Active standby replication is available for both read-only and
asynchronous writethrough cache groups. When used with read-only cache groups,
updates are sent from the Oracle database to the active database. Thus the Oracle

6-4 Oracle In-Memory Database Cache Introduction

Replication

database plays the role of the application in this configuration. When used with
asynchronous writethrough cache groups, the standby database propagates updates
that it receives from the active database to the Oracle database. In this scenario, the
Oracle database plays the role of one of the read-only subscribers.

An active standby pair that replicates one of these types of cache groups can perform
failover and recovery automatically with minimal chance of data loss. See "Active
standby pairs with cache groups" in Oracle TimesTen In-Memory Database TimesTen to
TimesTen Replication Guide.

Other replication configurations

TimesTen replication architecture is flexible enough to achieve balance between
performance and availability. In general, replication can be configured to be
unidirectional from a master to one or more subscribers, or bidirectional between two
or more databases that serve as both master and subscriber.

Unidirectional replication

Figure 6-2 shows a unidirectional replication scheme. The application is configured on
both nodes so that the subscriber is ready to take over if the master node fails. While
the master is up, updates from the application to the master database are replicated to
the subscriber database. The application on the subscriber node does not execute any
updates against the subscriber database, but may read from that database. If the
master fails, the application on the subscriber node takes over the update function and
starts updating the subscriber database.

Figure 6-2 Unidirectional replication scheme

Application Application

>

>
—)

>

he—) he—

>
Master Subscriber

Replication can also be used to copy updates from a master database to many
subscriber databases. Figure 6-3 shows a replication scheme with multiple subscribers.

Data Availability and Integrity 6-5

Replication

Figure 6-3 Unidirectional replication to multiple subscribers

||
Application =|I| _||_|

B -
i]
||
B > _||
> |
Replication
Master to multiple subscribers

Figure 6-4 shows a propagation configuration. One master propagates updates to three
subscribers. The subscribers are also masters that propagate updates to additional
subscribers.

Figure 6—4 Propagation configuration

Application

Master

Propagators

NN NN\

Subscribers

Bidirectional replication

Bidirectional replication schemes are used for load balancing. The workload can be
split between two bidirectionally replicated databases. There are two basic types of
load-balancing configurations:

» Split workload where each database bidirectionally replicates a portion of its data to
the other database. Figure 6-5 shows a split workload configuration.

» Distributed workload where user access is distributed across duplicate
application/database combinations that replicate updates to each other. In a
distributed workload configuration, the application has the responsibility to
divide the work between the two systems so that replication collisions do not

6-6 Oracle In-Memory Database Cache Introduction

Replication

occur. If collisions do occur, TimesTen has a timestamp-based collision detection
and resolution capability. Figure 6-6 shows a distributed workload configuration.

Figure 6-5 Split workload replication

Users
Application Application
v v
>
)
S| S E——
[]=Master

[[] = Subscriber

Figure 6—6 Distributed workload replication
Users

Application Application

2

Asynchronous and return service replication

TimesTen replication is by default an asynchronous mechanism. When using
asynchronous replication, an application updates the master database and continues
working without waiting for the updates to be received by the subscribers. The master
and subscriber databases have internal mechanisms to confirm that the updates have
been successfully received and committed by the subscriber. These mechanisms
ensure that updates are applied at a subscriber only once, but they are invisible to the
application.

Asynchronous replication provides maximum performance, but the application is
completely decoupled from the receipt process of the replicated elements on the
subscriber. TimesTen also provides two return service options for applications that
need higher levels of confidence that the replicated data is consistent between the
master and subscriber databases:

Data Availability and Integrity 6-7

For more information

» The return receipt service synchronizes the application with the replication
mechanism by blocking the application until replication confirms that the update
has been received by the subscriber replication agent.

s The return twosafe service enables fully synchronous replication by blocking the
application until replication confirms that the update has been both received and
committed on the subscriber.

Note: Do not use return twosafe service in a distributed workload
configuration. This can produce deadlocks.

Applications that use the return services trade some performance to ensure higher
levels of consistency and reduce the risk of transaction loss between the master and
subscriber databases. In the event of a master failure, the application has a higher
degree of confidence that a transaction committed at the master persists in the
subscribing database. Return receipt replication has less performance impact than
return twosafe at the expense of potential loss of transactions.

Replication failover and recovery

For replication to make data highly available to applications with minimal
performance impact, there must be a way to shift applications from the failed database
to its surviving backup as seamlessly as possible.

You can use Oracle Clusterware to manage failures in systems with active standby
pairs. Other kinds of replication schemes can be managed with custom and third-party
cluster managers. They detect failures, redirect users or applications from the failed
database to either a standby database or a subscriber, and manage recovery of the
failed database. The cluster manager or administrator can use TimesTen-provided
utilities and functions to duplicate the surviving database and recover the failed
database.

Subscriber failures generally have no impact on the applications connected to the
master databases and can be recovered without disrupting user service. If a failure
occurs on a master database, the cluster manager must redirect the application load to
a standby database or a subscriber in order to continue service with no or minimal
interruption.

You can configure automatic client failover for databases that have active standby
pairs with client/server connections. This enables the client to fail over automatically
to the server on which the standby database resides.

For more information

For more information about logging and checkpointing, see "Transaction Management
and Recovery" in Oracle TimesTen In-Memory Database Operations Guide.

For more information about replication, see Oracle TimesTen In-Memory Database
TimesTen to TimesTen Replication Guide.

For more information about automatic client failover, see Oracle TimesTen In-Memory
Database Operations Guide.

6-8 Oracle In-Memory Database Cache Introduction

7

Event Notification

TimesTen and IMDB Cache event notification is done through the Transaction Log
API (XLA), which provides functions to detect changes to the database. XLA monitors
log records. A log record describes an insert, update or delete on a row in a table. XLA
can be used with materialized views to focus the scope of notification on changes
made to specific rows across multiple tables.

TimesTen and IMDB Cache also use SNMP traps to send asynchronous alerts of
events.

This chapter includes the following topics:
» Transaction Log API
» Materialized views and XLA

s SNMP traps

Transaction Log API

TimesTen and IMDB Cache provide a Transaction Log API (XLA) that enables
applications to monitor the transaction log of a local database to detect changes made
by other applications. XLA also provides functions that enable XLA applications to
apply the detected changes to another database. XLA is a C language API. TimesTen
and IMDB Cache provide a C++ wrapper interface for XLA as part of TTClasses, as
well as a separate Java wrapper interface.

Applications use XLA to implement a change notification scheme. In this scheme, XLA
applications can monitor a database for changes and then take actions based on those
changes. For example, a TimesTen database in a stock trading environment might be
constantly updated from a data stream of stock quotes. Automated trading
applications might use XLA to "watch" the database for updates on certain stock prices
and use that information to determine whether to execute orders. See "Real-time quote
service application" on page 2-2 for a complete example.

XLA can also be used to build a custom data replication solution in place of the
TimesTen replication. Such XLA-enabled replication solutions might include
replication with a non-TimesTen database or pushing updates to another TimesTen
database.

How XLA works

XLA obtains update records for transactions directly from the transaction log buffer. If
the records are not present in the buffer, XLA obtains the update records from the
transaction log files on disk, as shown in Figure 7-1. Records are available as long as
the transaction log files are available. Readers use bookmarks to maintain their

Event Notification 7-1

Materialized views and XLA

position in the log update stream. Bookmarks are stored in the database, so they are
persistent across database connections, shutdowns, and failures.

Figure 7-1 How XLA works

XLA application

Applications A
1
Commit | XLA interface |
transaction ' " T I

I ! I |
Read updatle records for a tr{ansaFtion

1 [SNURERUE

log buffer |~ ~| Firsttransaction Transc!:ction
1 update record commit record

If no record is found
in the log buffer
Database @ @ --------- >

DSName.log0

DSName.log1

DSName.log2 II |

Log files
on disk

XLA also operates in nonpersistent mode. In nonpersistent mode, XLA obtains update
records from the transaction log buffer and stages them in an XLA staging buffer.
After records are read by the application from the staging buffer, they are removed
and are no longer available. XLA in nonpersistent mode does not use bookmarks.

Log update records

Update records are available to be read from the log as soon as the transaction that
created them commits. A "log sniffer" application can obtain groups of update records
written to the log.

Each returned record contains a fixed-length update header and one or two rows of
data stored in an internal format. The update header describes:

= The table to which the updated row applies

» Whether the record is the first or last commit record in the transaction
» The type of transaction it represents

s Thelength of the returned row data

s Which columns in the row were updated

Materialized views and XLA

In most database systems, materialized views are used to simplify and enhance the
performance of SELECT queries that involve multiple tables. Though materialized
views offer this same capability in TimesTen and IMDB Cache, another purpose of
materialized views in TimesTen and IMDB Cache is their role in working with XLA to
keep track of specific rows and columns in multiple tables.

7-2 Oracle In-Memory Database Cache Introduction

Materialized views and XLA

When a materialized view is present, an XLA application needs to monitor only
update records that are of interest from a single materialized view. Without a
materialized view, the XLA application would have to monitor all of the update
records from all of the detail tables, including records reflecting updates to rows and
columns of no interest to the application.

Figure 7-2 shows an update made to a column in a detail table that is part of the
materialized view result set. The XLA application monitoring updates to the
materialized view captures the updated record. Updates to other columns and rows in
the same detail table that are not part of the materialized view result set are not seen
by the XLA application.

Figure 7-2 Using XLA to detect updates on a materialized view table

Application XLA application
Update!
P A
row |
Materlallzed | XLA interface |

|
I Read update record
|

-
-
- - -
- -
-
-y

e H-IOEEOOO0O-

Detail tables

See "Real-time quote service application” on page 2-2 for an example of a trading
application that uses XLA and a materialized view to detect updates to select stocks.

The TimesTen and IMDB Cache implementation of materialized views emphasizes
performance as well as the ability to detect updates across multiple tables. Readers
familiar with other implementations of materialized views should note that the
following tradeoffs have been made:

s The application must explicitly create materialized views. The TimesTen query
optimizer has no facility to create materialized views automatically.

s The query optimizer does not rewrite queries on the detail tables to reference
materialized views. Application queries must directly reference views.

s There are some restrictions to the SQL used to create materialized views.

When creating a materialized view, the application must specify whether the
maintenance of the view should be immediate or deferred. With immediate
maintenance, a view is refreshed as soon as changes are made to its detail tables. With
deferred maintenance, a view is refreshed only after the transaction that updated the
detail tables is committed. A view with deferred maintenance is called an asynchronous
materialized view. The refreshes may be automatic or may be initiated by the
application, and they may be incremental or full. The application must specify the
frequency of automatic refreshes. Note that the order of XLA notifications for an
asynchronous materialized view is not necessarily the same as the order of
transactions for the associated detail tables.

Event Notification 7-3

SNMP traps

SNMP traps

Simple Network Management Protocol (SNMP) is a protocol for network management
services. Network management software typically uses SNMP to query or control the
state of network devices like routers and switches. These devices sometimes also
generate asynchronous alerts in the form of UDP/IP packets, called SNMP traps, to
inform the management systems of problems.

TimesTen and IMDB Cache cannot be queried or controlled through SNMP. However,
TimesTen and IMDB Cache send SNMP traps for certain critical events to facilitate
user recovery mechanisms. TimesTen sends traps for the following events:

= IMDB Cache autorefresh failure
= Database out of space

= Replicated transaction failure

» Death of daemons

= Database invalidation

= Assertion failure

These events also cause log entries to be written by the TimesTen daemon, but
exposing them through SNMP traps allows properly configured network management
software to take immediate action.

For more information

For more information about XLA, see "XLA and TimesTen Event Management" in the
Oracle TimesTen In-Memory Database C Developer’s Guide and "Using JMS/XLA for
Event Management" in Oracle TimesTen In-Memory Database Java Developer’s Guide.

For more information about TTClasses, see Oracle TimesTen In-Memory Database
TTClasses Guide.

For more information about materialized views, see "Understanding materialized
views" in Oracle TimesTen In-Memory Database Operations Guide. Also see the CREATE
MATERIALIZED VIEW statement in Oracle TimesTen In-Memory Database SQL
Reference.

For more information about SNMP traps, see "Diagnostics through SNMP Traps" in
Oracle TimesTen In-Memory Database Error Messages and SNMP Traps.

7-4 Oracle In-Memory Database Cache Introduction

8

Cache grid

IMDB Cache

IMDB Cache provides the ability to transfer data between an Oracle database and an
IMDB Cache database.

You can cache Oracle data in an IMDB Cache database by defining a cache grid and
then creating cache groups in TimesTen where each cache group maps to a single table
in the Oracle database or to a group of tables related by foreign key constraints.

This chapter includes the following topics:

» Cache grid

» Cache groups

= Dynamic cache groups and explicitly loaded cache groups

= Global and local cache groups

s Transmitting data between the IMDB Cache and Oracle Database
= Aging feature

» Passthrough feature

= Replicating cache groups

A cache grid is a collection of IMDB Cache databases that collectively manage the
application data. A cache grid consists of one or more grid members that are each
backed by an IMDB Cache database. Grid members cache tables from a central Oracle
database or Real Application Cluster (Oracle RAC). Cached data is dynamically
distributed across multiple grid members without shared storage. This architecture
allows the capacity of the cache grid to scale based on the processing needs of the
application. When the workload increases or decreases, new grid members attach to
the grid or existing grid members detach from the grid without interrupting
operations on other grid members.

An IMDB Cache database within a cache grid can contain explicitly loaded and
dynamic cache groups as well as global and local cache groups of any cache group
type. A cache grid ensures that data is consistent across nodes.

Figure 8-1 shows a cache grid. The grid has three members: two standalone IMDB
Cache databases and an active standby pair with a read-only subscriber. The read-only
subscriber is not part of the grid.

IMDB Cache 8-1

Cache groups

Figure 8-1 Cache grid

TimesTen in-memory databases

Active standby pair

Standalone Standalone Active Standby Read-only
database 1 database 2 master [~ master »| subscriber
database database database

Oracle
database

Cache groups

You can cache Oracle data by creating a cache group in an IMDB Cache database. A
cache group can be created to cache a single Oracle table or a set of related Oracle
tables. The cached Oracle data can consist of all the rows and columns or a subset of
the rows and columns in the Oracle tables.

IMDB Cache supports the following features:
= Applications can both read from and write to cache groups.

= Cache groups can be refreshed (bring Oracle data into the cache group)
automatically or manually.

= Cache updates can be sent to the Oracle database automatically or manually. The
updates can be sent synchronously or asynchronously.

The IMDB Cache database interacts with the Oracle database to perform all of the
synchronous cache group operations, such as creating a cache group and propagating
updates between the cache group and the Oracle database. A process called the cache
agent performs asynchronous cache operations, such as loading data into the cache
group, manually refreshing the data from the Oracle database to the cache group, and
automatically refreshing the data from the Oracle database to the cache group.

Figure 8-2 illustrates the IMDB Cache features and processes.

8-2 Oracle In-Memory Database Cache Introduction

Dynamic cache groups and explicitly loaded cache groups

Figure 8-=2 IMDB Cache

Applications
Cache group
Oracle database -
IMDB Cache - A~ h
Clcl;e
Cache agent | roup
)k tables

- o
-~
~ -
-~ _

Each cache group has a root table that contains the primary key for the cache group.
Rows in the root table may have one-to-many relationships with rows in child tables,
each of which may have one-to-many relationships with rows in other child tables.

A cache instance is the set of rows that are associated by foreign key relationships with
a particular row in the root table. Each primary key value in the root table specifies a
cache instance. Cache instances form the unit of cache loading and cache aging. No
table in the cache group can be a child to more than one parent in the cache group.
Each IMDB Cache record belongs to only one cache instance and has only one parent
in its cache group.

The most commonly used cache group types are:

» Read-only cache group - A read-only cache group enforces a caching behavior in
which committed updates to Oracle tables are automatically refreshed to the
corresponding cache tables in the IMDB Cache database.

» Asynchronous writethrough (AWT) cache group - An AWT cache group enforces a
caching behavior in which committed updates to cache tables in the IMDB Cache
database are automatically propagated to the corresponding Oracle tables
asynchronously.

Other types of cache groups are:

» Synchronous writethrough (SWT) cache group - An SWT cache group enforces a
caching behavior in which committed updates to cache tables in the IMDB Cache
database are automatically propagated to the corresponding Oracle tables
synchronously.

» User managed cache group - A user managed cache group defines customized
caching behavior. For example, individual cache tables in a user managed cache
are not constrained to be all of the same type. Some tables may be defined as
read-only while others may be defined as updatable.

Dynamic cache groups and explicitly loaded cache groups
Cache groups can be either dynamically loaded or explicitly loaded.

In explicitly loaded cache groups, the application preloads data into the cache tables
from the Oracle database using a load cache group operation. From that point on, all
data needed by the application is available in the IMDB Cache database.

IMDB Cache 8-3

Global and local cache groups

In dynamic cache groups, cache instances are automatically loaded into the IMDB
Cache from the Oracle database when the application references cache instances that
are not already in the IMDB Cache. The use of dynamic cache groups is typically
coupled with least recently used (LRU) aging so that less recently used cache instances
are aged out of the cache to free up space for recently used cache instances. Using
dynamic cache groups is appropriate when the size of the data that qualifies for
caching exceeds the size of the memory available for the IMDB Cache database.

All cache group types (read-only, AWT, SWT, user managed) can be defined as a
explicitly loaded or dynamic.

Global and local cache groups
Cache groups can be defined as either local or global.

In local cache groups, data in the cached tables is not shared among IMDB Cache
databases even if the databases are members of the same cache grid. Consequently, the
content of the databases may overlap with no coordination from the IMDB Cache.
Local cache groups are appropriate for applications that have logically partitioned
their data between different nodes or for read-only cache groups. Any cache group
type can be defined as a local cache group. Local cache groups can be explicitly loaded
or dynamic.

In global cache groups, data in the cached tables is shared among IMDB Cache
databases within the same cache grid. Updates to the same data by different grid
members are coordinated by the grid to ensure read /write data consistency across the
IMDB Caches.

A dynamic AWT cache group and an explicitly loaded AWT cache group can be
defined as a global cache group. New cache instances are loaded into the cache tables
of a global cache group on demand. Queries on a dynamic AWT global cache group
can be satisfied by data from the local grid member on which the query is made, from
remote grid members or from the Oracle database. Queries on an explicitly loaded
AWT cache group can be satisfied by data from the local grid member or from remote
grid members

Transmitting data between the IMDB Cache and Oracle Database

The IMDB Cache maintains consistency between cached data and the Oracle database
by automatically propagating updates from cache groups to the Oracle database and
automatically refreshing data in cache groups from the Oracle database.

The rest of this section includes the following topics:
= Updating a cache group from Oracle tables
= Updating Oracle tables from a cache group

Updating a cache group from Oracle tables

The following mechanisms are available to keep a cache group synchronized with the
corresponding data in the Oracle tables:

» Autorefresh - An incremental autorefresh operation updates only records that have
been modified in the Oracle database since the last refresh. The IMDB Cache
automatically performs the incremental refresh at specified time intervals. You can
also specify a full autorefresh operation, which automatically refreshes the entire
cache group at specified time intervals.

8-4 Oracle In-Memory Database Cache Introduction

Passthrough feature

s Manual refresh - An application issues a REFRESH CACHE GROUP statement to
refresh either an entire cache group or a specific cache instance. It is equivalent to
unloading and then loading the cache group or cache instance.

These mechanisms are useful under different circumstances. A full autorefresh may be
the best choice if the Oracle table is updated only once a day and many rows are
changed. An incremental autorefresh is the best choice if the Oracle table is updated
often, but only a few rows are changed with each update. A manual refresh is the best
choice if the application logic knows when the refresh should happen.

Updating Oracle tables from a cache group

The propagate and flush mechanisms are available to keep the Oracle database up to
date with the cache group:

» Propagate - The most common way to propagate cache group data to the Oracle
database is by using an asynchronous writethrough (AWT) cache group. Other
methods of updating the Oracle tables are using a synchronous writethrough
(SWT) cache group or specifying the PROPAGATE option in a user managed cache
group.

Changes to an AWT cache group are committed without waiting for the changes
to be applied to the Oracle tables. AWT cache groups provide better response
times and performance than SWT cache groups and user managed cache groups
with the PROPAGATE option, but the IMDB Cache database and the Oracle
database do not always contain the same data because changes are applied to the
Oracle tables asynchronously.

» Flush - A flush operation can be used to propagate updates manually from a user
managed cache group to the Oracle database.An application initiates a flush
operation by issuing a FLUSH CACHE GROUP statement. Flush operations are
useful when frequent updates occur for a limited period of time over a set of
records. Flush operations do not propagate deletes.

Aging feature

Records can be automatically aged out of a TimesTen database, and cache instances
can be automatically aged out of an IMDB Cache database. Aging can be usage-based
or time-based.You can configure both usage-based and time-based aging in the same
system, but you can define only one type of aging on a specific cache group.

Dynamic load can be used to reload a requested cache instance that has been deleted
by aging.

Passthrough feature

Applications can send SQL statements to either a cache group or to the Oracle
database through a single connection to an IMDB Cache. This single-connection
capability is enabled by a passthrough feature that checks whether the SQL statement
can be handled locally by the cached tables in the IMDB Cache or if it must be
redirected to the Oracle database, as shown in Figure 8-3. The passthrough feature
provides settings that specify what types of statements are to be passed through and
under what circumstances. The specific behavior of the passthrough feature is
controlled by the PassThrough IMDB Cache general connection attribute.

IMDB Cache 8-5

Replicating cache groups

Figure 8-3 Passthrough feature
Application

IMDB ICache

Passthrough logic

Statements that can
be handled in the
cache

F T Statements that cannot
be handled in the cache are
3 passed through to the Oracle

[T Cache group database

Oracle database

Replicating cache groups

You can use an active standby pair to replicate AWT cache groups and read-only
cache groups.

You can recover from a complete failure of a site by creating a special disaster recovery
read-only subscriber as part of the active standby pair configuration. This special
subscriber, located at a remote disaster recovery site, can propagate updates to a
second Oracle database, also located at the disaster recovery site.

For more information

For more information about IMDB Cache, see Oracle In-Memory Database Cache User’s
Guide.

For more information about aging in cache groups, see "Implementing aging on a
cache group" in Oracle In-Memory Database Cache User’s Guide. For information about
aging in tables that are not in cache groups, see "Implementing aging in your tables" in
Oracle TimesTen In-Memory Database Operations Guide.

8-6 Oracle In-Memory Database Cache Introduction

For more information

For more information about the passthrough feature, see "Setting a passthrough level"
in Oracle In-Memory Database Cache User’s Guide.

For more information about replicating cache groups, see "Cache groups and
replication” in Oracle TimesTen In-Memory Database TimesTen to TimesTen Replication
Guide.

IMDB Cache 8-7

For more information

8-8 Oracle In-Memory Database Cache Introduction

9

TimesTen and IMDB Cache Administration

This chapter includes the following topics:

Installing TimesTen and IMDB Cache
Access Control

Command line administration

SQL administration

SQL Developer

ODBC Administrator

Upgrading TimesTen and the IMDB Cache

Installing TimesTen and IMDB Cache

TimesTen and IMDB Cache software is easy to install. On UNIX systems, TimesTen is
installed by a simple set-up script. On Windows, TimesTen is installed by running
InstallShield®.

Access Control

TimesTen and IMDB Cache are installed with Access Control to allow only users with
specific privileges to access particular TimesTen features.

TimesTen Access Control uses standard SQL statements to establish TimesTen user
accounts with specific privilege levels. TimesTen offers object-level access control as
well as database-level access control.

Command line administration

Most TimesTen and IMDB Cache administration tasks are performed with command
line utilities. The following table summarizes common utilities:

Name Description

ttAdmin A general utility for managing TimesTen databases and IMDB Caches.

Used to specify policies for automatically or manually loading and
unloading databases from RAM, as well as to starting and stopping
TimesTen cache agents and replication agents.

ttBackup and Used to create a backup copy of a database and restore it at a later time.
ttRestore

TimesTen and IMDB Cache Administration 9-1

SQL administration

Name Description

ttBulkCp Used to transfer data between TimesTen tables and ASCII files.

ttIsql Used to run SQL interactively from the command line. Also provides a
number of administrative commands to reconfigure and monitor
databases.

ttMigrate Used to save tables and cache group definitions to a binary data file.
Also used to restore tables and cache group definitions from the binary
file.

ttRepAdmin Used to monitor replication status.

ttSize Used to estimate the amount of space to allocate for a table in the
database.

ttStatus Used to display information that describes the current state of
TimesTen or IMDB Cache.

ttTraceMon Used to enable and disable the TimesTen and IMDB Cache internal

tracing facilities.

ttXactAdmin Used to list ownership, status, log and lock information for each
outstanding transaction. The ttXactAdmin utility also allows users to
commit, abort or forget an XA transaction branch.

SQL administration

TimesTen provides SQL statements for administrative activities such as creating and
managing tables, replication schemes, cache groups, materialized views, and indexes.

The metadata for each TimesTen database is stored in a group of system tables.
Applications can use SQL SELECT queries on these tables to monitor the current state
of a database.

Administrators can use the ttIsqgl utility for SQL interaction with a database. For
example, there are several built-in tt Isgql commands that display information on
database structures.

SQL Developer

Oracle SQL Developer is a graphical tool for database development tasks. Use SQL
Developer to:

= Browse, create, and edit database objects and PL/SQL programs
= Automate cache group operations

= Manipulate and export data

s Execute SQL and PL/SQL statements and scripts

» View and create reports

SQL Developer is a Java application that supports direct-linked and client/server
connections to the TimesTen databases. Support for connecting to multiple databases
enables SQL Developer users to work with data in the TimesTen and the Oracle
databases concurrently.

9-2 Oracle In-Memory Database Cache Introduction

Upgrading TimesTen and the IMDB Cache

ODBC Administrator

The ODBC Administrator is a utility program used on Windows to create, configure
and delete data source definitions. You can use it to define a data source and set
connection attributes.

Upgrading TimesTen and the IMDB Cache

TimesTen and the IMDB Cache provide the facilities to perform three types of
upgrades:

s In-place upgrades
» Offline upgrades

s Online upgrades

In-place upgrades

In-place upgrades are typically used to move to a new patch release of TimesTen or
IMDB Cache.

In-place upgrades can be done without destroying the existing databases. However, all
applications must first disconnect from the databases, and the databases must be
unloaded from shared memory. After uninstalling the old release of TimesTen or
IMDB Cache and installing the new release, applications can reconnect to the
databases and resume operation.

Offline upgrades

Offline upgrades are performed by using the ttMigrate utility to export the database
into an external file and to restore the database with the desired changes.

Use offline upgrades to perform the following tasks:

= Move to a new major TimesTen or IMDB Cache release
= Move to a different directory or machine

= Reduce database size

During an offline upgrade, the database is not available to applications. Offline
upgrades usually require enough disk space for an extra copy of the upgraded
database.

Online upgrades

TimesTen replication enables online upgrades, which can be performed online by the
ttMigrate and ttRepAdmin utilities while the database and its applications remain
operational and available to users. Online upgrades are useful for applications where
continuous availability of the database is critical.

Use online upgrades to perform the following tasks:

= Move to a new major release of TimesTen or IMDB Cache and retain continuous
availability to the database

s Increase or reduce the database size

m Move the database to a new location or machine

TimesTen and IMDB Cache Administration 9-3

For more information

Updates made to the database during the upgrade are transmitted to the upgraded
database at the end of the upgrade process. Because an online upgrade requires that
the database be replicated to another database, it can require more memory and disk
space than offline upgrades.

For more information

For more information about installing and upgrading TimesTen, see Oracle TimesTen
In-Memory Database Installation Guide.

For more information about Access Control, see Oracle TimesTen In-Memory Database
Operations Guide.

For more information about SQL Developer, see Oracle SQL Developer TimesTen
In-Memory Database Support User’s Guide.

For more information about general administration of TimesTen, see "Managing
TimesTen Databases" and "Working with Data in a TimesTen Database" in Oracle
TimesTen In-Memory Database Operations Guide. These chapters include the use of the
ODBC Administrator.

For more information about administering TimesTen replication, see Oracle TimesTen
In-Memory Database TimesTen to TimesTen Replication Guide.

For a complete list of SQL statements, see Oracle TimesTen In-Memory Database SQL
Reference.

For a complete list of TimesTen command-line utilities, see Oracle TimesTen In-Memory
Database Reference.

9-4 Oracle In-Memory Database Cache Introduction

A

Access Control, 9-1
database level, 1-5
object level, 1-5

active standby pair, 6-4

administration
command line utilities, 9-1

aging
cache group, 8-4
cache groups, 8-5
data, 1-6

architecture
IMDB cache, 3-1
TimesTen, 3-1

asynchronous materialized view, 7-3

autorefresh, 8-4
AWT cache group, 8-3

bitmap index, 5-3

Cc

C++ interface, 1-4,7-1
cache grid

definition, 8-1
cache group

aging, 8-4

asynchronous writethrough, 8-3

definition, 3-3
description, 8-2
dynamic, 8-4
explicitly loaded, 8-3
global, 8-4

local, 8-4

passthrough feature, 8-5
read-only, 8-3

synchronous writethrough, 8-3

user managed, 8-3

cache groups
replicating, 8-6

cache instance, 8-3

caching Oracle data in TimesTen
overview, 3-3

Index

character sets, 1-7
checkpoint
recovery, 6-3
checkpoint operation
overview, 1-5
checkpoints
blocking, 6-3
fuzzy, 6-2
nonblocking, 6-2
purpose, 3-3
client
configuring automatic failover on Windows, 6-8
client/server connection, 1-5, 3-5
cluster managers, 6-8
commit behavior, 6-2
concurrency, 1-6
connection
client/server, 3-5
direct driver, 3-4
driver manager, 3-5

D
data structures, 3-3
deadlock detection

description, 4-3
direct driver connection, 1-5,3-4
disaster recovery, 8-6
driver manager connection, 3-5
durability, 1-5
durable commits, 6-1
dynamic cache group, 8-3
definition, 8-4

E

explicitly loaded cache group
definition, 8-3

F

failover

configuring for client on Windows, 6-8
flush

from IMDB Cache to Oracle database, 8-5

Index-1

G

global cache group
definition, 8-4
dynamic, 8-4
explicitly loaded, 8-4

globalization support, 1-7

H

hash index, 5-3

IMDB Cache, 1-8
architecture, 3-1
scenarios, 2-1

using, 2-1
index

bitmap, 5-3

hash, 5-3

range, 5-3
indexes

and query optimizer, 5-3

supported types, 5-3
isolation, 1-6

read committed, 4-1

serializable, 4-2

transactions, 4-1

J

JDBC interface, 1-3
join
merge, 5-5
methods, 5-4
nested loop, 5-5
JTA support
overview, 1-4

L

linguistic sorting, 1-7
local cache group

definition, 8-4
locks

database level, 4-3

description, 4-3

row level, 4-4

table level, 4-3
log buffer

writing to disk, 6-1
log files

interaction with checkpoints, 3-3

when deleted, 6-2
logging, 1-5

transaction, 6-1

materialized view

Index-2

asynchronous, 7-3
materialized views

and XLA, 7-2

comparing with other databases,
memory usage

query optimization, 5-2

(o)

OCI support, 1-4
ODBC Administrator, 9-3
ODBC interface, 1-3
optimizer
description, 5-1
plan, 5-7
scan methods, 5-3
optimizer hints, 5-2
Oracle Call Interface support, 1-4
Oracle Clusterware, 6-8
Oracle In-Memory Database Cache,

P

passthrough feature, 8-5
PL/SQL support, 1-3
Pro*C/C++ Precompiler support,
processes

database, 3-3
propagate

changes from IMDB Cache to Oracle

database, 8-5

Q

query optimizer, 1-6
description, 5-1
hints, 5-2
memory usage, 5-2
plan, 5-7
using statistics, 5-2

R

range index, 5-3
read committed isolation
description, 4-1
read-only cache group, 8-3
recovery
using checkpoint files, 6-3
refresh
manual (cache group), 8-5
replication
active standby pair, 6-4
as part of architecture, 3-4
bidirectional, 6-6
distributed workload, 6-6
failover, 6-8
multiple subscribers, 6-5
propagation to subscribers, 6-6
split workload, 6-6
unidirectional, 6-5

replication support, 1-7

S

scan methods, 5-3
serializable isolation
description, 4-2
shared libraries, 3-2
SNMP traps, 7-4
SQL Developer, 9-2
statistics
query optimizer, 5-2
SWT cache group, 8-3

T

TimesTen
architecture, 3-1
scenarios, 2-1
using, 2-1
transaction isolation
overview, 4-1
read committed, 4-1
Transaction Log API, 7-1
overview, 1-4

transaction logging, 1-5, 6-1

transactions
recovery, 1-5
replication, 1-5
rollback, 1-5

TTClasses, 1-4

U

upgrade
in place, 9-3
offline, 9-3
online, 9-3

upgrading TimesTen, 9-3
user managed cache group,

X

XA support
overview, 1-4
XLA, 7-1

materialized views, 7-2

overview, 1-4

Index-3

Index-4

	Contents
	Preface
	Audience
	Related documents
	Conventions
	Documentation Accessibility
	Technical support

	What's New
	New features in Release 11.2.1.8.0
	New features in Release 11.2.1.7.0
	New features in Release 11.2.1.1.0

	1 Oracle TimesTen In-Memory Database and Oracle In-Memory Database Cache
	Why is Oracle TimesTen In-Memory Database fast?
	TimesTen and IMDB Cache feature overview
	TimesTen API support
	Access Control
	Database connectivity
	Durability
	Query optimization
	Concurrency
	Automatic data aging
	Globalization support
	Administration and utilities
	Replication
	IMDB Cache

	2 Using TimesTen and IMDB Cache
	Uses for TimesTen
	Uses for IMDB Cache
	TimesTen application scenario
	Real-time quote service application

	IMDB Cache application scenarios
	Call center application
	Caller usage metering application

	3 Oracle In-Memory Database Cache Architecture and Components
	Architectural overview
	Shared libraries
	Memory-resident data structures
	Database processes
	Administrative programs
	Checkpoint and transaction log files
	Cached data
	Replication
	TimesTen connection options
	Direct driver connection
	Client/server connection
	Driver manager connection

	For more information

	4 Concurrent Operations
	Transaction isolation
	Read committed isolation
	Serializable isolation

	Locks
	Database-level locking
	Table-level locking
	Row-level locking

	For more information

	5 Query Optimization
	Optimization time and memory usage
	Statistics
	Optimizer hints
	Indexes
	Scan methods
	Join methods
	Nested loop join
	Merge join

	Optimizer plan
	For more information

	6 Data Availability and Integrity
	Transaction logging
	Writing the log buffer to disk
	When are transaction log files deleted?
	TimesTen commits

	Checkpointing
	Nonblocking checkpoints
	Blocking checkpoints
	Recovery from log and checkpoint files

	Replication
	Active standby pair
	Other replication configurations
	Asynchronous and return service replication
	Replication failover and recovery

	For more information

	7 Event Notification
	Transaction Log API
	How XLA works
	Log update records

	Materialized views and XLA
	SNMP traps
	For more information

	8 IMDB Cache
	Cache grid
	Cache groups
	Dynamic cache groups and explicitly loaded cache groups
	Global and local cache groups
	Transmitting data between the IMDB Cache and Oracle Database
	Updating a cache group from Oracle tables
	Updating Oracle tables from a cache group

	Aging feature
	Passthrough feature
	Replicating cache groups
	For more information

	9 TimesTen and IMDB Cache Administration
	Installing TimesTen and IMDB Cache
	Access Control
	Command line administration
	SQL administration
	SQL Developer
	ODBC Administrator
	Upgrading TimesTen and the IMDB Cache
	In-place upgrades
	Offline upgrades
	Online upgrades

	For more information

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /Symbol
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

