NG

Oracle VM
VirtualBox®

Programming Guide and
Reference

Version 3.2.8
(©) 2004-2010 Oracle Corporation

http://www.virtualbox.org

Contents

Introduction

1.1 Modularity: the building blocks of VirtualBox

1.2 Two guises of the same “Main API”: the web service or COM/XPCOM . .

1.3 Aboutwebservicesingeneral

1.4 Runningthewebservice.
1.4.1 Command line options of vboxwebsrv
1.4.2 Authenticating at web servicelogon
1.4.3 Solaris host: starting the web service via SMF

The object-oriented web service (OOWS)

2.1 The object-oriented web service for JAXWS
2.1.1 Preparations it e e e e e e e e e
2.1.2 Getting started: running the samplecode
2.1.3 Logging ontothe webservice
2.1.4 Obtaining basic machine information. Reading attributes
2.1.5 Changing machine settings. Sessions
2.1.6 Startingmachines
2.1.7 Objectmanagementottt

2.2 The object-oriented web service for Python

2.3 The object-oriented web servicefor PHP

Using the raw web service with any language

3.1 Raw web service example for Java with Axis

3.2 Raw web service example forPerl. o L.

3.3 Programming considerations for the raw web service
3.3.1 Fundamental conventions
3.3.2 Example: A typical web service client session
3.3.3 Managed object references
3.3.4 Some more detail about web service operation

Using the Main APl documentation to write web service clients

The VirtualBox COM/XPCOM API

51 Python COMAPI i
5.2 Common Python bindingslayer
53 C++COMAPI e
5.4 Event queue ProcCessing ¢ v v et ittt e e

14
14
15
17
18
18
19
20

21
21
21
21
22
23
23
24
25
25
26

27
27
28
29
29
30
31
32

Contents

5.5 Visual Basic and Visual Basic Script (VBS) on Windows hosts 40
5.6 Cbindingto XPCOMAPI 40
5.6.1 Gettingstarted e 41
5.6.2 XPCOM initialization 41
5.6.3 XPCOM method invocation 41
5.6.4 XPCOM attribute access v v v v v v v e e e e e 42
5.6.5 Stringhandling, 43
5.6.6 XPCOM uninitialization 43
5.6.7 Compiling and linking. 44
The VirtualBox shell 45
Main API change log 47
7.1 Incompatible API changes with version3.2 47
7.2 Incompatible API changes with version3.1 48
7.3 Incompatible API changes with version3.0 49
7.4 Incompatible API changes with version2.2 51
7.5 Incompatible API changes with version2.1 52
License information 54
Classes (interfaces) 55
9.1 IAppliance 55
9.1.1 Attributes 56
9.1.2 createVFSEXplorer o v v v i e e 57
9.1.3 getWarnings oo e e e 57
9.1.4 importMachines 57
9.1.5 Interpret e e e e e e e e e e 58
9.1.6 read e 58
9.1.7 WIIte . . . o v i e e e e e e e e e e e 58
9.2 TAudioAdapter e e e e 59
9.2.1 Attributes e 59
9.3 IBIOSSettings v v v v vt e e e e e e e e e e e e 59
9.3.1 Attributes 59
9.4 IConsole. i e e e 61
9.4.1 Attributes 61
9.4.2 adoptSavedState. 63
9.4.3 attachUSBDevice v 64
9.4.4 createSharedFolder 64
9.4.5 deleteSnapshot 65
9.4.6 detachUSBDevice 66
9.4.7 findUSBDeviceByAddress 66
9.4.8 findUSBDeviceByld 66
9.49 forgetSavedState, 67
9.4.10 getDeviceActivity e 67

9.5

9.6

9.7

Contents

9.4.11 getGuestEnteredACPIMode 67
9.4.12 getPowerButtonHandled 67
9.4.13 PauSe i e e e e e e e 68
9.4.14 powerButton L. L Lo 68
9.4.15 powerDoOwn e e e e 68
9.4.16 powerUp« . L e e e e 68
9.4.17 powerUpPausedttt 69
9.4.18 registerCallback, 69
9.4.19 removeSharedFolder 70
9.4.20 TESEL L e e e e e e e e e e e e e 70
9.4.21 restoreSnapshot 70
9.4.22 TESUME v v vttt e e e e e e e e e e e e e 71
9.4.23 saveStatet e e e e e e e e e 71
9.4.24 sleepButton e 72
9.4.25 takeSnapshot 72
9.4.26 teleport e e e e e e e 73
9.4.27 unregisterCallback 73
IConsoleCallback 74
9.5.1 onAdditionsStateChange 74
9.5.2 onCPUChangeo, 74
9.5.3 onCanShowWindow 74
9.5.4 onKeyboardLedsChange. 75
9.5.5 onMediumChange 75
9.5.6 onMouseCapabilityChange 75
9.5.7 onMousePointerShapeChange 76
9.5.8 onNetworkAdapterChange 77
9.5.9 onParallelPortChange 77
9.5.10 onRemoteDisplaylnfoChange 77
9.5.11 onRuntimeError 78
9.5.12 onSerialPortChange 79
9.5.13 onSharedFolderChange 79
9.5.14 onShowWindow 80
9.5.15 onStateChange 80
9.5.16 onStorageControllerChange 81
9.5.17 onUSBControllerChange 81
9.5.18 onUSBDeviceStateChange 81
9.5.19 onVRDPServerChange.o v v ... 82
IDHCPServer o it e e e e e e e e e e 82
9.6.1 Attributes 82
9.6.2 setConfiguration 83
9.6.3 start e e e e 83
9.6.4 StOD e e e e 83
IDisplay o e e e e e e e 84
9.7.1 completeVHWACommand 84
9.7.2 drawToScreen i i e 84

9.8

9.9

9.10

9.11

9.12

Contents

9.7.3 getFramebuffer 85
9.7.4 getScreenResolution 85
9.7.5 invalidateAndUpdate 86
9.7.6 resizeCompleted, 86
9.7.7 setFramebuffer, 86
9.7.8 setSeamlessMode 86
9.7.9 setVideoModeHint 87
9.7.10 takeScreenShot, 87
9.7.11 takeScreenShotToArrayo v v ... 88
[Framebuffer e 88
9.8.1 Attributes 89
9.8.2 getVisibleRegion, 90
9.83 lock e 91
9.8.4 notifyUpdate 91
9.8.5 processVCGHWACommando... 92
9.8.6 requestResize 92
9.8.7 setVisibleRegion, 94
9.8.8 wunlock 95
9.8.9 videoModeSupported, 95
[FramebufferOverlay 95
9.9.1 Attributes 95
9.9.2 MOVE i it e e e e e e e e e e 96
IGUeSt . . . o o e e e e e 96
9.10.1 Attributes e 96
9.10.2 executeProcess.o 98
9.10.3 getProcessOutput i i i 99
9.10.4 getProcessStatus i e 99
9.10.5 internalGetStatistics e e 99
9.10.6 setCredentials 100
IGuestOSType o i e e 101
9.11.1 Attributes 101
THOSt . . o o e e 104
9.12.1 Attributes 104
9.12.2 createHostOnlyNetworkInterface 106
9.12.3 createUSBDeviceFilter. 107
9.12.4 findHostDVDDrive e 107
9.12.5 findHostFloppyDrive 107
9.12.6 findHostNetworkInterfaceByld 107
9.12.7 findHostNetworkInterfaceByName 108
9.12.8 findHostNetworkInterfacesOfType 108
9.12.9 findUSBDeviceByAddress 108
9.12.10findUSBDeviceByld 108
9.12.11getProcessorCPUIDLeaf 109
9.12.12getProcessorDescriptiono oo 109
9.12.13getProcessorFeature Lo 110

9.13

9.14

9.15

9.16

9.17

Contents

9.12.14getProcessorSpeedo 110
9.12.15insertUSBDeviceFilter o oo 110
9.12.16removeHostOnlyNetworkInterface 111
9.12.17removeUSBDeviceFilter 111
[HostNetworkInterface it i ... 111
9.13.1 Attributes 111
9.13.2 dhcpRediscover 113
9.13.3 enableDynamicIpConfig 113
9.13.4 enableStaticIpConfig 113
9.13.5 enableStaticIpConfigV6 114
[HostUSBDevice i ittt it et e e 114
9.14.1 Attributes 114
[HostUSBDeviceFilter 114
9.15.1 Attributes 114
IInternalMachineControl 115
9.16.1 adoptSavedState 115
9.16.2 autoCaptureUSBDevices 115
9.16.3 beginPowerUp o i e e 115
9.16.4 beginSavingState, 115
9.16.5 beginTakingSnapshot 116
9.16.6 captureUSBDevice e 116
9.16.7 deleteSnapshot, 117
9.16.8 detachAllUSBDevViceS v v v v v i e e e e e e e 117
9.16.9 detachUSBDevice i v i 117
9.16.10endPowerUpo it e 118
9.16.11endSavingState e e 118
9.16.12endTakingSnapshot 118
9.16.13finishOnlineMergeMedium 119
9.16.14getIPCId i it e e e e e 119
9.16.15lockMedia 119
9.16.160nSessionEnd o 119
9.16.17pullGuestProperties e 120
9.16.18pushGUEStPTOPEItY v v v v v v e e e e e e e 120
9.16.19restoreSnapshot Lo 120
9.16.20runUSBDeviceFilters 121
9.16.21setRemoveSavedStatet 121
9.16.22unlockMedia L 121
9.16.23updateState e e e e e e e e 121
IInternalSessionControl 122
9.17.1 accessGUESIPIOPEIty v v v v v v v v e 122
9.17.2 assignMachineo, 123
9.17.3 assignRemoteMachine. 123
9.17.4 enumerateGuestProperties 123
9.17.5 getPID e e e e e 124
9.17.6 getRemoteConsole e 124

9.18

9.19

9.20

Contents

9.17.7 onCPUChanget 124
9.17.8 onMediumChange 124
9.17.9 onNetworkAdapterChange 125
9.17.100nParallelPortChange 125
9.17.11onSerialPortChange 126
9.17.12onSharedFolderChange 126
9.17.13onShowWindow 126
9.17.14onStorageControllerChange 127
9.17.150nUSBControllerChange 127
9.17.160nUSBDeviceAttach 127
9.17.17onUSBDeviceDetach 128
9.17.18onVRDPServerChange 128
9.17.190onlineMergeMedium 128
9.17.20uninitialize oo 129
9.17.21updateMachineState 129
IKeyboard o o e e e e e 130
9.18.1 putCAD e e e e e 130
9.18.2 putScancode e e 130
9.18.3 putScancodes 130
[LocalOwner it e e 131
9.19.1 setLocalObject v i e 131
IMachine e e 131
9.20.1 Attributes e e 132
9.20.2 addStorageController 142
9.20.3 attachDevice e 143
9.20.4 canShowConsoleWindow 144
9.20.5 createSharedFolder 144
9.20.6 deleteSettings e 145
9.20.7 detachDevice. i e 145
9.20.8 discardSettings e 146
9.20.9 enumerateGuestProperties 147
9.20.10€XPOTt . . . L oo e e e e e 147
9.20.11findSnapshot 147
9.20.12getBootOrder e 148
9.20.13getCPUIDLeaf i 148
9.20.14getCPUPIoperty v v v v v v it e e e 149
9.20.15getCPUStatus v v v v v e i e e e e e e e e e e 149
9.20.16getExtraData 149
9.20.17getExtraDataKeys o 149
9.20.18getGuestPropertyo 150
9.20.19getGuestPropertyTimestamp 150
9.20.20getGuestPropertyValue 150
9.20.21getHWVirtExProperty oo o 151
9.20.22getMedium e e 151
9.20.23getMediumAttachment 151

9.21

9.22

9.23

Contents

9.20.24getMediumAttachmentsOfController 152
9.20.25getNetworkAdapter e 152
9.20.26getParallelPort 152
9.20.27getSerialPorto o e 153
9.20.28getSnapshot e 153
9.20.29getStorageControllerBylnstance 153
9.20.30getStorageControllerByName 154
9.20.31hotPlugCPU i e 154
9.20.32hotUnplugCPU i e 154
9.20.33mountMedium 154
9.20.34passthroughDevice 155
9.20.35queryLogFilename 156
9.20.36querySavedScreenshotPNGSize 156
9.20.37querySavedThumbnailSize 156
9.20.38readlog e e e e e e 157
9.20.39readSavedScreenshotPNGToArray 157
9.20.40readSavedThumbnailToArray 157
9.20.41removeAllCPUIDLEAVES v v v v v v vt e e e e e 158
9.20.42removeCPUIDLeaf 158
9.20.43removeSharedFolder 158
9.20.44removeStorageController 158
9.20.455aveSettingso it e e e e e e e e 159
9.20.46setBootOrdero e e e 159
9.20.47setCPUIDLeaf 160
9.20.48s5etCPUPIoperty v oo v v i i it 160
9.20.49setCurrentSnapshot 161
9.20.50setExtraDatao 161
9.20.51setGuestProperty oL 162
9.20.52setGuestPropertyValue 162
9.20.53setHWVirtExPropertyo v v i oo 163
9.20.54showConsoleWindow 163
IMachineDebugger 163
9.21.1 Attributes 163
9.21.2 dumpStats e e e e e e e e e e 165
9.21.3 getStatS. i e e e e e e e e e 165
9.21.4 injectNMI L 165
9.21.5 TESELSTALS .« . v v v v v e e e e e e e e e 166
IManagedObjectRef e 166
9.22.1 getlnterfaceName 166
9.22.2 release e e 166
IMedium e 167
9.23.1 Attributes e 172
9232 cloneTo L 177
9.23.3 close e e e 178
9.23.4 compacto e e e e e 179

9.24

9.25

9.26

9.27

9.28

9.29

9.30

Contents

9.23.5 createBaseStorage oo 179
9.23.6 createDiffStorage, 180
9.23.7 deleteStorage e 180
9.23.8 getProperties L e 181
9.23.9 getProperty 181
9.23.10getSnapshotlds 182
9.23.11lockRead 182
9.23.12lockWrite e 183
9.23.13mergeTo L e 184
9.23.14refreshState e 185
9.23.15reset . ..ol 185
9.23.161€SIZ€ e e e e e e e e e 186
9.23.17setProperties oo 186
9.23.185etProperty e e e e e e 187
9.23.19unlockRead 187
9.23.20unlockWrite 187
IMediumAttachment e 188
9.24.1 Attributes e 188
IMediumFormat v v v e e e e e e e e e e 189
9.25.1 Attributes 189
9.25.2 describePropertieso e 190
IMouUSe i i e e e e e e e e e e e e e e e e 191
9.26.1 Attributes e 191
9.26.2 putMouseEvent oo 192
9.26.3 putMouseEventAbsolute 192
INATENGIne o v e e e e e e e e e e e e e 193
9.27.1 Attributes L. 193
9.27.2 addRedirect e 195
9.27.3 getNetworkSettings, 195
9.27.4 removeRedirect 196
9.27.5 setNetworkSettings v it 196
INetworkAdapter e e 196
9.28.1 Attributes e e 197
9.28.2 attachToBridgedInterface 199
9.28.3 attachToHostOnlyInterface 199
9.28.4 attachTolnternalNetwork 199
9.28.5 attachToNAT it e e e et 199
9.28.6 attachToVDE i i i i e e e 199
9.28.7 detach e 199
TParallelPort o o e e e 200
9.29.1 Attributes 200
IPerformanceCollector i i it 201
9.30.1 Attributes 202
9.30.2 disableMetrics e e 202
9.30.3 enableMetrics e 203

9.31

9.32

9.33

9.34

9.35

9.36

9.37

9.38

9.39

9.40

9.41

9.42

9.43

Contents

9.30.4 getMetriCS v v it e e e e e e e 203
9.30.5 queryMetricsData 204
9.30.6 setupMetriCs e e e e 205
[PerformanceMetric e 206
9.31.1 Attributes 206
IProgress o i i i e e e e e e e e e e e 207
9.32.1 Attributes e e 207
9.32.2 cancel e 209
9.32.3 setCurrentOperationProgress 210
9.32.4 setNextOperation 210
9.32.5 waitForCompletion 210
9.32.6 waitForOperationCompletion 210
IRemoteDisplayInfo 211
9.33.1 Attributes 211
[SerialPort o o e e 213
9.34.1 Attributes 213
ISession L e e e e 214
9.35.1 Attributes 216
9.35.2 close e e 216
ISharedFolder 217
9.36.1 Attributes 218
ISnapshot e 219
9.37.1 Attributes e 220
IStorageController e 221
9.38.1 Attributes 222
9.38.2 getIDEEmulationPort 223
9.38.3 setIDEEmulationPort 224
ISystemProperties e e 224
9.39.1 Attributes 224
9.39.2 getDeviceTypesForStorageBus 229
9.39.3 getMaxDevicesPerPortForStorageBus 230
9.39.4 getMaxInstancesOfStorageBus 230
9.39.5 getMaxPortCountForStorageBus 230
9.39.6 getMinPortCountForStorageBus 230
IUSBController e e 230
9.40.1 Attributes 230
9.40.2 createDeviceFilter oo 231
9.40.3 insertDeviceFilter 232
9.40.4 removeDeviceFilter 232
IUSBDeVICE o i i e e e e e e e e e 232
9.41.1 Attributes 233
[IUSBDeviceFilter i it 234
9.42.1 Attributes 235
IVFSEXPIOTEr o ittt e e e e e e e e e 237
9.43.1 Attributes 237

10

9.44

9.45

9.46

Contents

9.43.2 cd e e e 237
9.43.3 cdUD . . . v o i e e e e 238
9.43.4 entryList 238
9.43.5 eXiStS e e e e e e e e 238
9.43.6 TEMOVEt vttt e e e e e e e e 238
9.43.7 update e e e e e 238
IVRDPServer i ittt e e e e e e e 239
9.44.1 Attributes e 239
IVirtualBoX o o o e e e e e e e 240
9.45.1 Attributes 240
9.45.2 checkFirmwarePresent 243
9.45.3 createAppliance e 243
9.45.4 createDHCPServer vt i .. 243
9.45.5 createHardDisk 244
9.45.6 createLegacyMachine, 244
9.45.7 createMachine o o oo 245
9.45.8 createSharedFolder 247
9.45.9 findDHCPServerByNetworkName 247
9.45.10findDVDImage o i i e e 248
9.45.11findFloppylmage e 248
9.45.12findHardDisk e 249
9.45.13findMachine 249
9.45.14getDVDImage Lo 249
9.45.15getExtraData Lo 250
9.45.16getExtraDataKeys o oo 250
9.45.17getFloppylmage e 250
9.45.18getGuestOSType o i e e 251
9.45.19getHardDisk 251
9.45.20getMachine e 251
9.45.21openDVDImage e 252
9.45.220penExistingSessiono oo e 252
9.45.230penFloppylmage 253
9.45.240penHardDisk oL, 254
9.45.250penMachine oo, 255
9.45.260penRemoteSession e e 255
9.45.270PenSessiONo e e e e e e 257
9.45.28registerCallback 258
9.45.29registerMachine oo, 259
9.45.30removeDHCPServero oo 259
9.45.31removeSharedFolder 259
9.45.32setExtraData 260
9.45.33unregisterCallback, 260
9.45.34unregisterMachine 261
9.45.35waitForPropertyChange 262
IVirtualBoxCallback 263

11

Contents

9.46.1 onExtraDataCanChange. 263
9.46.2 onExtraDataChange 263
9.46.3 onGuestPropertyChange 264
9.46.4 onMachineDataChange 264
9.46.5 onMachineRegistered, 265
9.46.6 onMachineStateChange 265
9.46.7 onMediumRegistered, 265
9.46.8 onSessionStateChange 266
9.46.9 onSnapshotChange 266
9.46.100nSnapshotDeleted 267
9.46.11onSnapshotTaken 267

9.47 IVirtualBoxErrorInfo 267
9.47.1 Attributes e 268
9.48 IVirtualSystemDescription oL 269
9.48.1 Attributes e 269
9.48.2 addDescription v it e e 269
9.48.3 getDesCriptiono i e e e e 270
9.48.4 getDescriptionByType e 272
9.48.5 getValuesByType o i i i it e 273
9.48.6 setFinalValues 273
9.49 IWebsessionManager v v v v v v it e e e e e e e 274
9.49.1 getSessionObject 274
9.49.2 logoff e 274
9.49.3 10gON L. e e e e 274

10 Enumerations (enums) 275
10.1 AccessMode o i e e e e e 275
10.2 AudioControllerType oo i e 275
10.3 AudioDriverType v v it e 275
10.4 BIOSBootMenuMode 276
10.5 CPUPropertyType« v v v i i e e e e e e e 276
10.6 ClipboardMode e e e 276
10.7 DataFlags o o i e e e e e e e 276
10.8 DataType o i it e e e e 277
10.9 DeviceACtivVity o i i i e 277
10.10DeviceType v o v i e e e e e e e e e e e e 277
10.11FirmwareType o i e e e e e e e e e e e 277
10.12FramebufferPixelFormat 278
10.13HWVirtExPropertyType o oo 278
10.14HostNetworkInterfaceMediumType 278
10.15HostNetworkInterfaceStatus L. 279
10.16HostNetworkInterfaceType« o v v v vt v i v oot 279
10.17KeyboardHidType o v v ittt i e e e 279
10.18MachineState e 279
10.19MediumFormatCapabilities 283

12

Contents

10.20MediumsState e e e e e e e e e e 283
10.21MediumType o v o e e e e e e e e e e e e e e e e e 284
10.22MediumVariant o . e e e e e e e e e e e e e e 284
10.23MouseButtonState e e e e e e e e e 285
10.24NATAliasMode o e e e e e 285
10.25NATProtocol o e e e 285
10.26NetworkAdapterType o i e 285
10.27NetworkAttachmentType 286
10.28PointingHidType o e 286
10.29PortMode e e e e e e e e e e e e e e e e e 286
10.30ProcessorFeature v v v v v i e e e e e e e e e e e e e 287
10.31SCOPE . . v o e e e e e e e e e e 287
10.32SeSSionState e e e e e e e e e e e e e e e e e e 287
10.33SessionTypeo e e e 288
10.34SettingsVersiono it e e e e e e e e 288
10.35StorageBus L. e e e 289
10.36StorageControllerType oo v v it e e e 289
10.37USBDeviceFilterAction v i i e e e 289
10.38USBDeviceState v i i e e e e e e e e e e e e e e e e 290
10.39VESFileType o o e e 290
T10.40VESTYPE . o v v v v o e e e e e e e e e e e e e e e e e e e 291
10.41VRDPAULhTYPe o ittt e e e e e e e e 291
10.42VirtualSystemDescriptionType Lo 291
10.43VirtualSystemDescriptionValueType 292
11 Host-Guest Communication Manager 293
11.1 Virtual Hardware Implementation 293
11.2 Protocol Specification 293
11.2.1 RequestHeader, 294
11.2.2 Connect v i i i e e e e e e e e e e e e e 295
11.2.3 Disconnect v i i e e e e e e e e e e 295
11.2.4 Call32and Call64 e 296
11.2.5 Cancel e e 297

11.3 Guest Software Interface 298
11.3.1 The Guest Driver Interface 298
11.3.2 Guest Application Interface 300

11.4 HGCM Service Implementation 300
12 RDP Web Control 302
12.1 RDPWeb features v v i i i e e e e e e e e e e 302
12.2 RDPWeb reference o v i v i i i i et e e e e 302
12.2.1 RDPWeb functions v v v v v it et e 302
12.2.2 Embedding RDPWeb ina HTML page 304

13

1 Introduction

VirtualBox comes with comprehensive support for third-party developers. This Soft-
ware Development Kit (SDK) contains all the documentation and interface files that
are needed to write code that interacts with VirtualBox.

1.1 Modularity: the building blocks of VirtualBox

VirtualBox is cleanly separated into several layers, which can be visualized like in the
picture below:

VirtualBox GUI VBoxManage

VirtualBox Main API

VirtualBox
RDP
Server Virtual
Devices
binary

Pol[tabi"ty X i compatible
e VirtualBox hypervisor interface

cross platform 3 part
. o . . ar
abstraction layer Windows, Linux, OS X, Solaris, FreeBSD plug—iny

Resource
Monitor
Windows

Kernel mode

The orange area represents code that runs in kernel mode, the blue area represents
userspace code.

At the bottom of the stack resides the hypervisor — the core of the virtualization
engine, controlling execution of the virtual machines and making sure they do not
conflict with each other or whatever the host computer is doing otherwise.

On top of the hypervisor, additional internal modules provide extra functionality. For
example, the RDP server, which can deliver the graphical output of a VM remotely to
an RDP client, is a separate module that is only loosely tacked into the virtual graphics

14

1 Introduction

device. Live Migration and Resource Monitor are additional modules currently in the
process of being added to VirtualBox.

What is primarily of interest for purposes of the SDK is the API layer block that
sits on top of all the previously mentioned blocks. This API, which we call the “Main
API”, exposes the entire feature set of the virtualization engine below. It is completely
documented in this SDK Reference — see chapter 9, Classes (interfaces), page 55 and
chapter 10, Enumerations (enums), page 275 — and available to anyone who wishes to
control VirtualBox programmatically. We chose the name “Main API” to differentiate
it from other programming interfaces of VirtualBox that may be publicly accessible.

With the Main API, you can create, configure, start, stop and delete virtual machines,
retrieve performance statistics about running VMs, configure the VirtualBox installa-
tion in general, and more. In fact, internally, the front-end programs VirtualBox and
VBoxManage use nothing but this API as well — there are no hidden backdoors into the
virtualization engine for our own front-ends. This ensures the entire Main API is both
well-documented and well-tested. (The same applies to VBoxHeadless, which is not
shown in the image.)

1.2 Two guises of the same “Main API”: the web
service or COM/XPCOM

There are several ways in which the Main API can be called by other code:

1. VirtualBox comes with a web service that maps nearly the entire Main API. The
web service ships in a stand-alone executable (vboxwebsrv) that, when running,
acts as an HTTP server, accepts SOAP connections and processes them.

Since the entire web service API is publicly described in a web service description
file (in WSDL format), you can write client programs that call the web service in
any language with a toolkit that understands WSDL. These days, that includes
most programming languages that are available: Java, C++, .NET, PHP, Python,
Perl and probably many more.

All of this is explained in detail in subsequent chapters of this book.

There are two ways in which you can write client code that uses the web service:

a) For Java with JAX-WS as well as Python, the SDK contains easy-to-use
classes that allow you to use the web service in an object-oriented, straight-
forward manner. We shall refer to this as the “object-oriented web service
(OOWS)«.

The OO bindings for Java are described in chapter 2.1, The object-oriented
web service for JAX-WS, page 21, those for Python in chapter 2.2, The object-
oriented web service for Python, page 25.

b) Alternatively, you can use the web service directly, without the object-

oriented client layer. We shall refer to this as the “raw web service”.

15

1 Introduction

You will then have neither native object orientation nor full type safety,
since web services are neither object-oriented nor stateful. However, in this
way, you can write client code even in languages for which we do not ship
object-oriented client code; all you need is a programming language with a
toolkit that can parse WSDL and generate client wrapper code from it.

We describe this further in chapter 3, Using the raw web service with any
language, page 27, with samples for Java and Perl.

2. Internally, for portability and easier maintenance, the Main API is implemented
using the Component Object Model (COM), an interprocess mechanism for
software components originally introduced by Microsoft for Microsoft Windows.
On a Windows host, VirtualBox will use Microsoft COM; on other hosts where
COM is not present, it ships with XPCOM, a free software implementation of
COM originally created by the Mozilla project for their browsers.

So, if you are familiar with COM and the C++ programming language (or
with any other programming language that can handle COM/XPCOM objects,
such as Java, Visual Basic or C#), then you can use the COM/XPCOM API di-
rectly. VirtualBox comes with all necessary files and documentation to build
fully functional COM applications. For an introduction, please see chapter 5, The
VirtualBox COM/XPCOM API, page 36 below.

The VirtualBox front-ends (the graphical user interfaces as well as the command
line), which are all written in C+ +, use COM/XPCOM to call the Main API. Tech-
nically, the web service is another front-end to this COM API, mapping almost all
of it to SOAP clients.

If you wonder which way to choose, here are a few comparisons:

Web service COM/XPCOM

Pro: Easy to use with Java and Python | Con: Usable from languages
with the object-oriented web service; where COM bridge available
extensive support even with other (most languages on Windows
languages (C++, .NET, PHP, Perl and | platform, Python and C++ on
others) other hosts)

Pro: Client can be on remote machine | Con: Client must be on the
same host where virtual
machine is executed

Con: Significant overhead due to XML | Pro: Relatively low invocation
marshalling over the wire for each overhead

method call

In the following chapters, we will describe the different ways in which to program
VirtualBox, starting with the method that is easiest to use and then increase complexity
as we go along.

16

1 Introduction

1.3 About web services in general

Web services are a particular type of programming interface. Whereas, with “normal”
programming, a program calls an application programming interface (API) defined by
another program or the operating system and both sides of the interface have to agree
on the calling convention and, in most cases, use the same programming language,
web services use Internet standards such as HTTP and XML to communicate.’

In order to successfully use a web service, a number of things are required — primar-
ily, a web service accepting connections; service descriptions; and then a client that
connects to that web service. The connections are governed by the SOAP standard,
which describes how messages are to be exchanged between a service and its clients;
the service descriptions are governed by WSDL.

In the case of VirtualBox, this translates into the following three components:

1. The VirtualBox web service (the “server”): this is the vboxwebsrv executable
shipped with VirtualBox. Once you start this executable (which acts as a HTTP
server on a specific TCP/IP port), clients can connect to the web service and thus
control a VirtualBox installation.

2. VirtualBox also comes with WSDL files that describe the services provided by
the web service. You can find these files in the sdk/bindings/webservice/
directory. These files are understood by the web service toolkits that are shipped
with most programming languages and enable you to easily access a web service
even if you don’t use our object-oriented client layers. VirtualBox is shipped with
pregenerated web service glue code for several languages (Python, Perl, Java).

3. A client that connects to the web service in order to control the VirtualBox in-
stallation.

Unless you play with some of the samples shipped with VirtualBox, this needs to
be written by you.

In some ways, web services promise to deliver the same thing as CORBA and DCOM did years ago.
However, while these previous technologies relied on specific binary protocols and thus proved to be
difficult to use between diverging platforms, web services circumvent these incompatibilities by using
text-only standards like HTTP and XML. On the downside (and, one could say, typical of things related to
XML), a lot of standards are involved before a web service can be implemented. Many of the standards
invented around XML are used one way or another. As a result, web services are slow and verbose,
and the details can be incredibly messy. The relevant standards here are called SOAP and WSDL, where
SOAP describes the format of the messages that are exchanged (an XML document wrapped in an HTTP
header), and WSDL is an XML format that describes a complete API provided by a web service. WSDL
in turn uses XML Schema to describe types, which is not exactly terse either. However, as you will see
from the samples provided in this chapter, the VirtualBox web service shields you from these details and
is easy to use.

17

1 Introduction

1.4 Running the web service

The web service ships in an stand-alone executable, vboxwebsrv, that, when running,
acts as a HTTP server, accepts SOAP connections and processes them — remotely or
from the same machine.

Note: The web service executable is not contained with the VirtualBox SDK,
but instead ships with the standard VirtualBox binary package for your specific
platform. Since the SDK contains only platform-independent text files and
documentation, the binaries are instead shipped with the platform-specific
packages.

The vboxwebsrv program, which implements the web service, is a text-mode (con-
sole) program which, after being started, simply runs until it is interrupted with Ctrl-C
or a kill command.

Once the web service is started, it acts as a front-end to the VirtualBox installation of
the user account that it is running under. In other words, if the web service is run under
the user account of userl, it will see and manipulate the virtual machines and other
data represented by the VirtualBox data of that user (e.g., on a Linux machine, under
/home/userl/.VirtualBox; see the VirtualBox User Manual for details on where this
data is stored).

1.4.1 Command line options of vboxwebsrv

The web service supports the following command line options:

e --help (or -h): print a brief summary of command line options.

e --background (or -b): run the web service as a background daemon. This
option is not supported on Windows hosts.

e --host (or -H): This specifies the host to bind to and defaults to “localhost”.

e --port (or -p): This specifies which port to bind to on the host and defaults to
18083.

e --timeout (or -t): This specifies the session timeout, in seconds, and defaults
to 300 (five minutes). A web service client that has logged on but makes no
calls to the web service will automatically be disconnected after the number of
seconds specified here, as if it had called the IWebSessionManager::logoff()
method provided by the web service itself.

It is normally vital that each web service client call this method, as the web
service can accumulate large amounts of memory when running, especially if
a web service client does not properly release managed object references. As a
result, this timeout value should not be set too high, especially on machines with
a high load on the web service, or the web service may eventually deny service.

18

1 Introduction

e --check-interval (or -i): This specifies the interval in which the web service
checks for timed-out clients, in seconds, and defaults to 5. This normally does
not need to be changed.

e --verbose (or -v): Normally, the webservice outputs only brief messages to the
console each time a request is served. With this option, the webservice prints
much more detailed data about every request and the COM methods that those
requests are mapped to internally, which can be useful for debugging client pro-
grams.

e --logfile (or -F) <file>: If this is specified, the webservice not only prints its
output to the console, but also writes it to the specified file. The file is created if
it does not exist; if it does exist, new output is appended to it. This is useful if
you run the webservice unattended and need to debug problems after they have
occurred.

1.4.2 Authenticating at web service logon

As opposed to the COM/XPCOM variant of the Main API, a client that wants to use the
web service must first log on by calling the IWebsessionManager: :logon() API (see
chapter 9.49.3, logon, page 274) that is specific to the web service. Logon is necessary
for the web service to be stateful; internally, it maintains a session for each client that
connects to it.

The IWebsessionManager::logon() API takes a user name and a password as
arguments, which the web service then passes to a customizable authentication plugin
that performs the actual authentication.

For testing purposes, it is recommended that you first disable authentication with
this command:

VBoxManage setproperty websrvauthlibrary null

Warning: This will cause all logons to succeed, regardless of user name or
password. This should of course not be used in a production environment.

Generally, the mechanism by which clients are authenticated is configurable by way
of the VBoxManage command:

VBoxManage setproperty websrvauthlibrary default|null|<library>

This way you can specify any shared object/dynamic link module that conforms with
the specifications for authentication modules as laid out in section 9.3 of the VirtualBox
User Manual; the web service uses the same kind of modules as the VirtualBox RDP
server.

By default, after installation, the web service uses the VRDPAuth module that ships
with VirtualBox. This module uses PAM on Linux hosts to authenticate users. Any valid

19

1 Introduction

username,/password combination is accepted, it does not have to be the username and
password of the user running the webservice daemon. Unless vboxwebsrv runs as
root, PAM authentication can fail, because sometimes the file /etc/shadow, which
is used by PAM, is not readable. On most Linux distribution PAM uses a suid root
helper internally, so make sure you test this before deploying it. One can override
this behavior by setting the environment variable VBOX_PAM_ALLOW_INACTIVE which
will suppress failures when unable to read the shadow password file. Please use this
variable carefully, and only if you fully understand what you’re doing.

1.4.3 Solaris host: starting the web service via SMF

On Solaris hosts, the VirtualBox web service daemon is integrated into the SMF frame-
work. You can change the parameters, but don’t have to if the defaults below already
match your needs:

svccfg -s svc:/application/virtualbox/webservice:default setprop config/host=localhost
svccfg -s svc:/application/virtualbox/webservice:default setprop config/port=18083

svccfg -s svc:/application/virtualbox/webservice:default setprop config/user=root

If you made any change, don’t forget to run the following command to put the
changes into effect immediately:

svcadm refresh svc:/application/virtualbox/webservice:default

If you forget the above command then the previous settings will be used when
enabling the service. Check the current property settings with:

svcprop -p config svc:/application/virtualbox/webservice:default

When everything is configured correctly you can start the VirtualBox webservice
with the following command:

svcadm enable svc:/application/virtualbox/webservice:default

For more information about SMF, please refer to the Solaris documentation.

20

2 The object-oriented web service
(OOWS)

As explained in chapter 1.2, Two guises of the same “Main API”: the web service or
COM/XPCOM, page 15, VirtualBox ships with client-side libraries for Java and Python
that allow you to use the VirtualBox web service in an intuitive, object-oriented way.
These libraries shield you from the client-side complications of managed object refer-
ences and other implementation details that come with the VirtualBox web service. (If
you do want to use the web service directly, have a look at chapter 3, Using the raw
web service with any language, page 27).

We recommend that you start your experiments with the VirtualBox web service by
using our object-oriented client libraries for JAX-WS, a web service toolkit for Java,
which enables you to write code to interact with VirtualBox in the simplest manner
possible.

2.1 The object-oriented web service for JAX-WS

JAX-WS is a powerful toolkit by Sun Microsystems to build both server and client code
with Java. It is part of Java 6 (JDK 1.6), but can also be obtained separately for Java
5 (JDK 1.5). The VirtualBox SDK comes with precompiled OOWS bindings for both
Java 5 and 6.

The following sections explain how to get the JAX-WS sample code running and
explain a few common practices when using the JAX-WS object-oriented web service.

2.1.1 Preparations

Since JAX-WS is already integrated into Java 6, no additional preparations are needed
for Java 6.

If you are using Java 5 (JDK 1.5.x), you will first need to download and install
an external JAX-WS implementation, as Java 5 does not support JAX-WS out of the
box; for example, you can download one from here: https://jax-ws.dev.java.
net/2.1.4/JAXWS2.1.4-20080502.jar. Then perform the installation (java -jar
JAXWS2.1.4-20080502. jar).

2.1.2 Getting started: running the sample code

To run the OOWS for JAX-WS samples that we ship with the SDK, perform the follow-
ing steps:

21

https://jax-ws.dev.java.net/2.1.4/JAXWS2.1.4-20080502.jar
https://jax-ws.dev.java.net/2.1.4/JAXWS2.1.4-20080502.jar

2 The object-oriented web service (OOWS)

1. Open a terminal and change to the directory where the JAX-WS samples reside.!
Examine the header of Makefile to see if the supplied variables (Java compiler,
Java executable) and a few other details match your system settings.

2. To start the VirtualBox web service, open a second terminal and change to the
directory where the VirtualBox executables are located. Then type:

./vboxwebsrv -v

The web service now waits for connections and will run until you press Ctrl4-C
in this second terminal. The -v argument causes it to log all connections to the
terminal. (See chapter 1.4, Running the web service, page 18 for details on how
to run the web service.)

3. Back in the first terminal and still in the samples directory, to start a simple client
example just type:
make runl6
if you’re on a Java 6 system; on a Java 5 system, run make runl5 instead.

This should work on all Unix-like systems such as Linux and Solaris. For Win-
dows systems, use commands similar to what is used in the Makefile.

This will compile the clienttest.java code on the first call and then execute
the resulting clienttest class to show the locally installed VMs (see below).

The clienttest sample imitates a few typical command line tasks that
VBoxManage, VirtualBox’s regular command-line front-end, would provide (see the
VirtualBox User Manual for details). In particular, you can run:

e java clienttest show vms: show the virtual machines that are registered lo-
cally.

e java clienttest list hostinfo: show various information about the host
this VirtualBox installation runs on.

e java clienttest startvm <vmname|uuid>: start the given virtual machine.

The clienttest. java sample code illustrates common basic practices how to use
the VirtualBox OOWS for JAX-WS, which we will explain in more detail in the following
chapters.

2.1.3 Logging on to the web service

Before a web service client can do anything useful, two objects need to be created, as
can be seen in the clienttest constructor:

!In sdk/bindings/webservice/java/jax-ws/samples/.

22

2 The object-oriented web service (OOWS)

1. An instance of IWebsessionManager, which is an interface provided by the web
service to manage “web sessions” — that is, stateful connections to the web service
with persistent objects upon which methods can be invoked.

In the OOWS for JAX-WS, the IWebsessionManager class must be constructed
explicitly, and a URL must be provided in the constructor that specifies where
the web service (the server) awaits connections. The code in clienttest.java
connects to “http://localhost:18083/“, which is the default.

The port number, by default 18083, must match the port number given to the
vboxwebsrv command line; see chapter 1.4.1, Command line options of vboxweb-
srv, page 18.

2. After that, the code calls IWebsessionManager::logon(), which is the first call
that actually communicates with the server. This authenticates the client with
the web service and returns an instance of IVirtualBox, the most fundamental
interface of the VirtualBox web service, from which all other functionality can be
derived.

If logon doesn’t work, please take another look at chapter 1.4.2, Authenticating
at web service logon, page 19.

2.1.4 Obtaining basic machine information. Reading attributes

To enumerate virtual machines, one would look at the “machines” array attribute in
the IVirtualBox object returned by the logon() call mentioned above (see IVirtual-
Box::machines). This array contains all virtual machines currently registered with the
host, each of them being an instance of IMachine. From each such instance, one can
query additional information, such as the UUID, the name, memory, operating system
and more by looking at the attributes; see the attributes list in the IMachine documen-
tation.

Note that attributes are mapped to corresponding “get” and (if the attribute is
not read-only) “set” methods. So when the documentation says that IMachine has
a “name* attribute, this means you need to code something like the following to get
the machine’s name:

IMachine machine = ...;
String name = machine.getName();

Boolean attribute getters can sometimes be called isAttribute() due to JAX-WS
naming conventions.

2.1.5 Changing machine settings. Sessions

As said in the previous section, to read a machine’s attribute, one invokes the cor-
responding “get” method. One would think that to change settings of a machine, it

23

2 The object-oriented web service (OOWS)

would suffice to call the corresponding “set” method — for example, to set a VM’s mem-
ory to 1024 MB, one would call setMemorySize(1024). Try that, and you will get an
error: “The machine is not mutable.”

So unfortunately, things are not that easy. VirtualBox is a complicated environment
in which multiple processes compete for possibly the same resources, especially ma-
chine settings. As a result, machines must be “locked” before they can either be modi-
fied or started. This is to prevent multiple processes from making conflicting changes
to a machine: it should, for example, not be allowed to change the memory size of a
virtual machine while it is running. (You can’t add more memory to a real computer
while it is running either, at least not to an ordinary PC.) Also, two processes must not
change settings at the same time, or start a machine at the same time.

These requirements are implemented in the Main API by way of “sessions”, in partic-
ular, the ISession interface. Each process has its own instance of ISession. In the web
service, you cannot create such an object, but vboxwebsrv creates one for you when
you log on, which you can obtain by calling IWebsessionManager::getSessionObject().

This session object must then be used like a mutex semaphore in common program-
ming environments; in VirtualBox terminology, one must “open a direct session” on a
machine before it can be modified. This is done by calling IVirtualBox::openSession().

After the direct session has been opened, the ISession::machine attribute contains a
copy of the original IMachine object upon which the session was opened, but this copy
is “mutable”: you can invoke “set” methods on it.

Finally, it is important to never forget to close the session again, by calling ISes-
sion::close(). Otherwise, when the calling process end, the machine will receive the
state “aborted”, which can lead to loss of data.

So the sequence to change a machine’s memory to 1024 MB is something like this:

IWebsessionManager mgr ...;
IVirtualBox vbox = mgr.logon(user, pass);

IMachine machine = ...; // read-only machine
ISession session = mgr.getSessionObject();
vbox.openSession(session, machine.getId()); // machine is now locked

IMachine mutable = session.getMachine(); // obtain mutable machine
mutable.setMemorySize(1024);
mutable.saveSettings(); // write settings to XML

session.close();

2.1.6 Starting machines

To start a virtual machine, in VirtualBox terminology, one “opens a remote session”
for it by calling IVirtualBox::openRemoteSession(). In doing so, the caller instructs
the VirtualBox engine to start a new process with the virtual machine in it, since to
the host, each virtual machine looks like a single process, even if it has hundreds of
its own processes inside. (This new VM process in turn opens a direct session on the
machine, thus locking it to prevent access from other processes; this is why opening
another session will fail while the VM is running.)
Starting a machine looks something like this:

24

2 The object-oriented web service (OOWS)

IWebsessionManager mgr ...;
IVirtualBox vbox = mgr.logon(user, pass);

IMachine machine = ...; // read-only machine
IProgress prog = vbox.openRemoteSession(oSession,
machine.getId(),
"gui", // session type
") // possibly environment setting
prog.waitForCompletion(10000); // give the process 10 secs
if (prog.getResultCode() != 0) // check success
System.out.println("Session failed!")

Note that no in-process (local) session object is needed here since we instruct
VirtualBox to spawn a new process, which will have its own session object.

2.1.7 Object management

The current OOWS for JAX-WS has certain memory management related limitations.
When you no longer need an object, call its IManagedObjectRef::release() method ex-
plicitly, which frees appropriate managed reference, as is required by the raw webser-
vice; see chapter 3.3.3, Managed object references, page 31 for details. This limitation
may be reconsidered in a future version of the VirtualBox SDK.

2.2 The object-oriented web service for Python

VirtualBox comes with two flavors of a Python API: one for web service, discussed
here, and one for the COM/XPCOM API discussed in chapter 5.1, Python COM API,
page 36. The client code is mostly similar, except for the initialization part, so it is
up to the application developer to choose the appropriate technology. Moreover, a
common Python glue layer exists, abstracting out concrete platform access details, see
chapter 5.2, Common Python bindings layer, page 37.

As indicated in chapter 1.2, Two guises of the same “Main API”: the web service
or COM/XPCOM, page 15, the COM/XPCOM API gives better performance with-
out the SOAP overhead, enables certain features not possible via SOAP (e.g. call-
backs) and does not require a web server to be running. On the other hand, the
COM/XPCOM Python API requires a suitable Python bridge for your Python installa-
tion (VirtualBox ships the most important ones for each platform?), and you cannot
connect to VirtualBox remotely. On Windows, you can use the Main API from Python
if the Win32 extensions package for Python? is installed.

The VirtualBox OOWS for Python relies on the Python ZSI SOAP implementation
(see http://pywebsvcs.sourceforge.net/zsi.html), which you will need to in-
stall locally before trying the examples.

20n On Mac OS X only the Python versions bundled with the OS are officially supported. This means
Python 2.3 for 10.4, Python 2.5 for 10.5 and Python 2.5 and 2.6 for 10.6.
3See http://sourceforge.net/project/showfiles.php?group_id=78018

25

http://pywebsvcs.sourceforge.net/zsi.html
http://sourceforge.net/project/showfiles.php?group_id=78018

2 The object-oriented web service (OOWS)

To get started, open a terminal and change to the bindings/glue/python/sample
directory, which contains an example of a simple interactive shell able to control a
VirtualBox instance. The shell is written using the API layer, thereby hiding different
implementation details, so it is actually an example of code share among XPCOM,
MSCOM and web services. If you are interested in how to interact with the webservices
layer directly, have a look at install/vboxapi/__init__.py which contains the glue
layer for all target platforms (i.e. XPCOM, MSCOM and web services).

To start the shell, perform the following commands:

/opt/VirtualBox/vboxwebsrv -t 0
start webservice with object autocollection disabled
export VBOX_PROGRAM_PATH=/opt/VirtualBox
your VirtualBox installation directory
export VBOX_SDK_PATH=/home/youruser/vbox-sdk
where you’ve extracted the SDK
./vboxshell.py -w

See chapter 6, The VirtualBox shell, page 45 for more details on the shell’s function-
ality. For you, as a VirtualBox application developer, the vboxshell sample could be
interesting as an example of how to write code targeting both local and remote cases
(COM/XPCOM and SOAP). The common part of the shell is the same — the only dif-
ference is how it interacts with the invocation layer. You can use the connect shell
command to connect to remote VirtualBox servers; in this case you can skip starting
the local webserver.

2.3 The object-oriented web service for PHP

VirtualBox also comes with object-oriented web service (OOWS) wrappers for PHP5.
These wrappers rely on the PHP SOAP Extension*, which can be installed by configur-
ing PHP with - -enable-soap.

4See http://www.php.net/soap.

26

http://www.php.net/soap

3 Using the raw web service with any
language

The following examples show you how to use the raw web service, without the object-
oriented client-side code that was described in the previous chapter.

3.1 Raw web service example for Java with Axis

Axis is an older web service toolkit created by the Apache foundation. If your distribu-
tion does not have it installed, you can get a binary from http://www.apache.org.
The following examples assume that you have Axis 1.4 installed.

The VirtualBox SDK ships with an example for Axis that, again, is called
clienttest.java and that imitates a few of the commands of VBoxManage over
the wire.

Then perform the following steps:

1. Create a working directory somewhere. Under your VirtualBox installation di-
rectory, find the sdk/webservice/samples/java/axis/ directory and copy the
file clienttest.java to your working directory.

2. Open a terminal in your working directory. Execute the following command:
java org.apache.axis.wsdl.WSDL2Java /path/to/vboxwebService.wsdl
The vboxwebService.wsdl file should be located in the sdk/webservice/ di-
rectory.

If this fails, your Apache Axis may not be located on your system classpath, and
you may have to adjust the CLASSPATH environment variable. Something like
this:

export CLASSPATH="/path-to-axis-1_4/1ib/*":$CLASSPATH

Use the directory where the Axis JAR files are located. Mind the quotes so that
your shell passes the “*“ character to the java executable without expanding. Al-
ternatively, add a corresponding - classpath argument to the “java” call above.

If the command executes successfully, you should see an “org” directory with sub-
directories containing Java source files in your working directory. These classes
represent the interfaces that the VirtualBox web service offers, as described by
the WSDL file.

27

http://www.apache.org

3 Using the raw web service with any language

This is the bit that makes using web services so attractive to client developers: if
a language’s toolkit understands WSDL, it can generate large amounts of support
code automatically. Clients can then easily use this support code and can be done
with just a few lines of code.

. Next, compile the clienttest. java source:

javac clienttest.java

This should yield a “clienttest.class” file.

. To start the VirtualBox web service, open a second terminal and change to the
directory where the VirtualBox executables are located. Then type:

./vboxwebsrv -v

The web service now waits for connections and will run until you press Ctrl+C
in this second terminal. The -v argument causes it to log all connections to the
terminal. (See chapter 1.4, Running the web service, page 18 for details on how
to run the web service.)

. Back in the original terminal where you compiled the Java source, run the re-
sulting binary, which will then connect to the web service:

java clienttest

The client sample will connect to the web service (on localhost, but the code
could be changed to connect remotely if the web service was running on a dif-
ferent machine) and make a number of method calls. It will output the version
number of your VirtualBox installation and a list of all virtual machines that
are currently registered (with a bit of seemingly random data, which will be
explained later).

3.2 Raw web service example for Perl

We also ship a small sample for Perl. It uses the SOAP::Lite perl module to communi-
cate with the VirtualBox web service.

The sdk/bindings/webservice/perl/lib/ directory contains a pre-generated
Perl module that allows for communicating with the web service from Perl. You
can generate such a module yourself using the “stubmaker” tool that comes with
SOAP::Lite, but since that tool is slow as well as sometimes unreliable, we are shipping
a working module with the SDK for your convenience.

Perform the following steps:

. If SOAP::Lite is not yet installed on your system, you will need to install the pack-
age first. On Debian-based systems, the package is called 1ibsoap-lite-perl;
on Gentoo, it’s dev-perl/SOAP-Lite.

. Open a terminal in the sdk/bindings/webservice/perl/samples/ directory.

28

3.

3.3

3 Using the raw web service with any language

To start the VirtualBox web service, open a second terminal and change to the
directory where the VirtualBox executables are located. Then type:

./vboxwebsrv -v

The web service now waits for connections and will run until you press Ctrl+C
in this second terminal. The -v argument causes it to log all connections to the
terminal. (See chapter 1.4, Running the web service, page 18 for details on how
to run the web service.)

In the first terminal with the Perl sample, run the clienttest.pl script:
perl -I ../lib clienttest.pl

Programming considerations for the raw web
service

If you use the raw web service, you need to keep a number of things in mind, or you
will sooner or later run into issues that are not immediately obvious. By contrast, the
object-oriented client-side libraries described in chapter 2, The object-oriented web ser-
vice (OOWS), page 21 take care of these things automatically and thus greatly simplify
using the web service.

3.3.1 Fundamental conventions

If you are familiar with other web services, you may find the VirtualBox web service to
behave a bit differently to accommodate for the fact that VirtualBox web service more
or less maps the VirtualBox Main COM API. The following main differences had to be
taken care of:

Web services, as expressed by WSDL, are not object-oriented. Even worse, they
are normally stateless (or, in web services terminology, “loosely coupled”). Web
service operations are entirely procedural, and one cannot normally make as-
sumptions about the state of a web service between function calls.

In particular, this normally means that you cannot work on objects in one method
call that were created by another call.

By contrast, the VirtualBox Main API, being expressed in COM, is object-oriented
and works entirely on objects, which are grouped into public interfaces, which
in turn have attributes and methods associated with them.

For the VirtualBox web service, this results in three fundamental conventions:

1.

All function names in the VirtualBox web service consist of an interface name
and a method name, joined together by an underscore. This is because there are
only functions (“operations”) in WSDL, but no classes, interfaces, or methods.

29

3 Using the raw web service with any language

In addition, all calls to the VirtualBox web service (except for logon, see below)
take a managed object reference as the first argument, representing the object
upon which the underlying method is invoked. (Managed object references are
explained in detail below; see chapter 3.3.3, Managed object references, page 31.)

So, when one would normally code, in the pseudo-code of an object-oriented
language, to invoke a method upon an object:

IMachine machine;
result = machine.getName();

In the VirtualBox web service, this looks something like this (again, pseudo-
code):

IMachineRef machine;
result = IMachine_getName(machine);

2. To make the web service stateful, and objects persistent between method calls,
the VirtualBox web service introduces a session manager (by way of the IWeb-
sessionManager interface), which manages object references. Any client wishing
to interact with the web service must first log on to the session manager and in
turn receives a managed object reference to an object that supports the IVirtual-
Box interface (the basic interface in the Main API).

In other words, as opposed to other web services, the VirtualBox web service is
both object-oriented and stateful.

3.3.2 Example: A typical web service client session

A typical short web service session to retrieve the version number of the VirtualBox
web service (to be precise, the underlying Main API version number) looks like this:

1. A client logs on to the web service by calling IWebsessionManager::logon() with
a valid user name and password. See chapter 1.4.2, Authenticating at web service
logon, page 19 for details about how authentication works.

2. On the server side, vboxwebsrv creates a session, which persists until the client
calls IWebsessionManager::logoff() or the session times out after a configurable
period of inactivity (see chapter 1.4.1, Command line options of vboxwebsrv, page
18).

For the new session, the web service creates an instance of IVirtualBox. This
interface is the most central one in the Main API and allows access to all other
interfaces, either through attributes or method calls. For example, IVirtualBox
contains a list of all virtual machines that are currently registered (as they would
be listed on the left side of the VirtualBox main program).

The web service then creates a managed object reference for this instance of
IVirtualBox and returns it to the calling client, which receives it as the return
value of the logon call. Something like this:

30

3 Using the raw web service with any language

string oVirtualBox;
oVirtualBox = webservice.IWebsessionManager_logon("user", "pass");

(The managed object reference “oVirtualBox” is just a string consisting of dig-
its and dashes. However, it is a string with a meaning and will be checked
by the web service. For details, see below. As hinted above, IWebsessionMan-
ager::logon() is the only operation provided by the web service which does not
take a managed object reference as the first argument!)

3. The VirtualBox Main API documentation says that the IVirtualBox interface
has a version attribute, which is a string. For each attribute, there is a “get” and
a “set” method in COM, which maps to according operations in the web service.
So, to retrieve the “version” attribute of this IVirtualBox object, the web service
client does this:

string version;
version = webservice.IVirtualBox_getVersion(oVirtualBox);

print version;

And it will print “3.2.8”.

4. The web service client calls [WebsessionManager::logoff() with the VirtualBox
managed object reference. This will clean up all allocated resources.

3.3.3 Managed object references

To a web service client, a managed object reference looks like a string: two 64-bit
hex numbers separated by a dash. This string, however, represents a COM object that
“lives” in the web service process. The two 64-bit numbers encoded in the managed
object reference represent a session ID (which is the same for all objects in the same
web service session, i.e. for all objects after one logon) and a unique object ID within
that session.

Managed object references are created in two situations:

1. When a client logs on, by calling IWebsessionManager::logon().

Upon logon, the websession manager creates one instance of IVirtualBox and
another object of ISession representing the web service session. This can be
retrieved using [WebsessionManager::getSessionObject().

(Technically, there is always only one IVirtualBox object, which is shared be-
tween all sessions and clients, as it is a COM singleton. However, each session
receives its own managed object reference to it. The ISession object, however, is
created and destroyed for each session.)

2. Whenever a web service clients invokes an operation whose COM implementa-
tion creates COM objects.

31

3 Using the raw web service with any language

For example, IVirtualBox::createMachine() creates a new instance of IMachine;
the COM object returned by the COM method call is then wrapped into a man-
aged object reference by the web server, and this reference is returned to the
web service client.

Internally, in the web service process, each managed object reference is simply a
small data structure, containing a COM pointer to the “real” COM object, the web ses-
sion ID and the object ID. This structure is allocated on creation and stored efficiently
in hashes, so that the web service can look up the COM object quickly whenever a web
service client wishes to make a method call. The random session ID also ensures that
one web service client cannot intercept the objects of another.

Managed object references are not destroyed automatically and must be released
by explicitly calling IManagedObjectRef::release(). This is important, as otherwise
hundreds or thousands of managed object references (and corresponding COM objects,
which can consume much more memory!) can pile up in the web service process and
eventually cause it to deny service.

To reiterate: The underlying COM object, which the reference points to, is only freed
if the managed object reference is released. It is therefore vital that web service clients
properly clean up after the managed object references that are returned to them.

When a web service client calls IWebsessionManager::logoff(), all managed object
references created during the session are automatically freed. For short-lived sessions
that do not create a lot of objects, logging off may therefore be sufficient, although it
is certainly not “best practice”.

3.3.4 Some more detail about web service operation
3.3.4.1 SOAP messages

Whenever a client makes a call to a web service, this involves a complicated procedure
internally. These calls are remote procedure calls. Each such procedure call typically
consists of two “message” being passed, where each message is a plain-text HTTP
request with a standard HTTP header and a special XML document following. This
XML document encodes the name of the procedure to call and the argument names
and values passed to it.

To give you an idea of what such a message looks like, assuming that a web service
provides a procedure called “SayHello”, which takes a string “name” as an argument
and returns “Hello” with a space and that name appended, the request message could
look like this:

<?xml version="1.0" encoding="UTF-8"7>

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:test="http://test/">

<SOAP-ENV:Body>

32

3 Using the raw web service with any language

<test:SayHello>
<name>Peter</name>
</test:SayHello>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A similar message — the “response” message — would be sent back from the web service
to the client, containing the return value “Hello Peter”.

Most programming languages provide automatic support to generate such messages
whenever code in that programming language makes such a request. In other words,
these programming languages allow for writing something like this (in pseudo-C++
code):

webServiceClass service("localhost", 18083); // server and port
string result = service.SayHello("Peter"); // invoke remote procedure

and would, for these two pseudo-lines, automatically perform these steps:

1. prepare a connection to a web service running on port 18083 of “localhost”;

2. for the SayHello() function of the web service, generate a SOAP message like
in the above example by encoding all arguments of the remote procedure call
(which could involve all kinds of type conversions and complex marshalling for
arrays and structures);

3. connect to the web service via HTTP and send that message;
4. wait for the web service to send a response message;

5. decode that response message and put the return value of the remote procedure
into the “result” variable.

3.3.4.2 Service descriptions in WSDL

In the above explanations about SOAP, it was left open how the programming lan-
guage learns about how to translate function calls in its own syntax into proper SOAP
messages. In other words, the programming language needs to know what operations
the web service supports and what types of arguments are required for the operation’s
data in order to be able to properly serialize and deserialize the data to and from the
web service. For example, if a web service operation expects a number in “double”
floating point format for a particular parameter, the programming language cannot
send to it a string instead.

For this, the Web Service Definition Language (WSDL) was invented, another XML
substandard that describes exactly what operations the web service supports and, for
each operation, which parameters and types are needed with each request and re-
sponse message. WSDL descriptions can be incredibly verbose, and one of the few
good things that can be said about this standard is that it is indeed supported by most
programming languages.

33

3 Using the raw web service with any language

So, if it is said that a programming language “supports” web services, this typically
means that a programming language has support for parsing WSDL files and somehow
integrating the remote procedure calls into the native language syntax — for example,
like in the Java sample shown in chapter 3.1, Raw web service example for Java with
Axis, page 27.

For details about how programming languages support web services, please refer to
the documentation that comes with the individual languages. Here are a few pointers:

1. For C++, among many others, the gSOAP toolkit is a good option. Parts of
gSOAP are also used in VirtualBox to implement the VirtualBox web service.

2. For Java, there are several implementations already described in this document
(see chapter 2.1, The object-oriented web service for JAX-WS, page 21 and chapter
3.1, Raw web service example for Java with Axis, page 27).

3. Perl supports WSDL via the SOAP::Lite package. This in turn comes with a tool
called stubmaker.pl that allows you to turn any WSDL file into a Perl package
that you can import. (You can also import any WSDL file “live” by having it
parsed every time the script runs, but that can take a while.) You can then code
(again, assuming the above example):

my $result = servicename->sayHello("Peter");

A sample that uses SOAP::Lite was described in chapter 3.2, Raw web service
example for Perl, page 28.

34

4 Using the Main APl documentation
to write web service clients

7”7

As “interfaces”, “attributes” and “methods” are COM concepts, please read the doc-
umentation in chapter 9, Classes (interfaces), page 55 and chapter 10, Enumerations
(enums), page 275 with the following notes in mind.

The object-oriented web service for JAX-WS attempts to map the Main API as
closely as possible to the Java and Python languages. In other words, objects are
objects, interfaces become classes, and you can call methods on objects as you would
on local objects.

The main difference remains with attributes: to read an attribute, call a “getXXX”
method, with “XXX” being the attribute name with a capitalized first letter. So when
the Main API Reference says that IMachine has a “name” attribute, call getName()
on an IMachine object to obtain a machine’s name. Unless the attribute is marked as
read-only in the documentation, there will also be a corresponding “set” method.

With the raw webservice, due to the limitations of SOAP and WSDL lined out in
chapter 3.3.1, Fundamental conventions, page 29, things are more complicated:

1. Any COM method call becomes a plain function call in the raw web service,
with the object as an additional first parameter (before the “real” parame-
ters listed in the documentation). So when the documentation says that the
IVirtualBox interface supports the createMachine() method, the web service
operation is IVirtualBox_createMachine(), and a managed object reference
to an IVirtualBox object must be passed as the first argument.

2. For attributes in interfaces, there will be at least one “get” function; there will
also be a “set” function, unless the attribute is “readonly”. The attribute name
will be appended to the “get” or “set” prefix, with a capitalized first letter. So,
the “version” readonly attribute of the IVirtualBox interface can be retrieved
by calling IVirtualBox_getVersion().

3. Whenever the API documentation says that a method (or an attribute getter)
returns an object, it will returned a managed object reference in the web service
instead. As said above, managed object references should be released if the web
service client does not log off again immediately!

35

5 The VirtualBox COM/XPCOM API

If you do not require remote procedure calls such as those offered by the VirtualBox
web service, and if you know Python or C++ as well as COM, you might find it
preferable to program VirtualBox’s Main API directly via COM.

COM stands for “Component Object Model” and is a standard originally introduced
by Microsoft in the 1990s for Microsoft Windows. It allows for organizing software in
an object-oriented way and across processes; code in one process may access objects
that live in another process.

COM has several advantages: it is language-neutral, meaning that even though all
of VirtualBox is internally written in C+ +, programs written in other languages could
communicate with it. COM also cleanly separates interface from implementation, so
that external programs need not know anything about the messy and complicated
details of VirtualBox internals.

On a Windows host, all parts of VirtualBox will use the COM functionality that is
native to Windows. On other hosts (including Linux), VirtualBox comes with a built-in
implementation of XPCOM, as originally created by the Mozilla project, which we have
enhanced to support interprocess communication on a level comparable to Microsoft
COM. Internally, VirtualBox has an abstraction layer that allows the same VirtualBox
code to work both with native COM as well as our XPCOM implementation.

5.1 Python COM API

On Windows, Python scripts can use COM and VirtualBox interfaces to control almost
all aspects of virtual machine execution. As an example, use the following commands
to instantiate the VirtualBox object and start a VM:

vbox = win32com.client.Dispatch("VirtualBox.VirtualBox")
session = win32com.client.Dispatch("VirtualBox.Session")
uuid = "uuid of machine to start"

progress = vbox.openRemoteSession(session, uuid, "gui", "")
progress.waitForCompletion(-1)

Also, see /bindings/glue/python/samples/vboxshell.py for more advanced us-
age scenarious. However, unless you have specific requirements, we strongly recom-
mend to use the generic glue layer described in the next section to access MS COM
objects.

36

5 The VirtualBox COM/XPCOM API

5.2 Common Python bindings layer

As different wrappers ultimately provide access to the same underlying API, and to
simplify porting and development of Python application using the VirtualBox Main
API, we developed a common glue layer that abstracts out most platform-specific de-
tails from the application and allows the developer to focus on application logic. The
VirtualBox installer automatically sets up this glue layer for the system default Python
install. See below for details on how to set up the glue layer if you want to use a
different Python installation.

In this layer, the class VirtualBoxManager hides most platform-specific details. It
can be used to access both the local (COM) and the webservice-based API. The follow-
ing code can be used by an application to use the glue layer.

This code assumes vboxapi.py from VirtualBox distribution
being in PYTHONPATH, or installed system-wide
from vboxapi import VirtualBoxManager

This code initializes VirtualBox manager with default style
and parameters
virtualBoxManager = VirtualBoxManager(None, None)

Alternatively, one can be more verbose, and initialize

glue with webservice backend, and provide authentication

information

virtualBoxManager = VirtualBoxManager("WEBSERVICE",
{’url’:"http://myhost.com::18083/",
"user’:'me’,
"password’:’secret’})

We supply the VirtualBoxManager constructor with 2 arguments: style and pa-
rameters. Style defines which bindings style to use (could be “MSCOM”, “XPCOM”
or “WEBSERVICE”), and if set to None defaults to usable platform bindings (MS COM
on Windows, XPCOM on other platforms). The second argument defines parameters,
passed to the platform-specific module, as we do in the second example, where we
pass username and password to be used to authenticate against the web service.

After obtaining the VirtualBoxManager instance, one can perform operations on
the IVirtualBox class. For example, the following code will a start virtual machine by
name or ID:

vbox = virtualBoxManager.vbox
mgr = virtualBoxManager.mgr
print "Version is",vbox.version

def machById(id):
mach = None
for m in virtualBoxManager.getArray(vbox, ’'machines’):
if m.name == id or mach.id == id:
mach = m
break
return mach

37

5 The VirtualBox COM/XPCOM API

name = "Linux"

mach = machById(name)

if mach is None:
print "cannot find machine",name

else:
session = mgr.getSessionObject(vbox)
one can also start headless session with "vrdp" instead of "gui"
progress = vb.openRemoteSession(session, mach.id, "gui", "")
progress.waitForCompletion(-1)
session.close()

This code also shows cross-platform access to array properties (certain limita-
tions prevent one from using vbox.machines to access a list of available vir-
tual machines in case of XPCOM), and a mechanism of uniform session creation
(virtualBoxManager.mgr.getSessionObject()).

In case you want to use the glue layer with a different Python installation, use these
steps in a shell to add the necessary files:

cd VBOX_INSTALL_PATH/sdk/installer
PYTHON vboxapisetup.py install

5.3 C++ COM API

VirtualBox ships with sample programs that demonstrate how to use the Main API
to implement a number of tasks on your host platform. These samples can be found
in the /bindings/xpcom/samples directory for Linux, Mac OS X and Solaris and
/bindings/mscom/samples for Windows. The two samples are actually different,
because the one for Windows uses native COM, whereas the other uses our XPCOM
implementation, as described above.

Since COM and XPCOM are conceptually very similar but vary in the implementa-
tion details, we have created a “glue” layer that shields COM client code from these
differences. All VirtualBox uses is this glue layer, so the same code written once works
on both Windows hosts (with native COM) as well as on other hosts (with our XPCOM
implementation). It is recommended to always use this glue code instead of using
the COM and XPCOM APIs directly, as it is very easy to make your code completely
independent from the platform it is running on.

In order to encapsulate platform differences between Microsoft COM and XPCOM,
the following items should be kept in mind when using the glue layer:

1. Attribute getters and setters. COM has the notion of “attributes” in interfaces,
which roughly compare to C++ member variables in classes. The difference
is that for each attribute declared in an interface, COM automatically provides
a “get” method to return the attribute’s value. Unless the attribute has been
marked as “readonly”, a “set” attribute is also provided.

To illustrate, the IVirtualBox interface has a “version” attribute, which is read-
only and of the “wstring” type (the standard string type in COM). As a result,

38

5 The VirtualBox COM/XPCOM API

you can call the “get” method for this attribute to retrieve the version number of
VirtualBox.

Unfortunately, the implementation differs between COM and XPCOM. Microsoft
COM names the “get” method like this: get_Attribute(), whereas XPCOM
uses this syntax: GetAttribute() (and accordingly for “set” methods). To hide
these differences, the VirtualBox glue code provides the COMGETTER(attrib)
and COMSETTER(attrib) macros. So, COMGETTER (version) () (note, two pairs
of brackets) expands to get_Version() on Windows and GetVersion() on
other platforms.

2. Unicode conversions. While the rest of the modern world has pretty much
settled on encoding strings in UTF-8, COM, unfortunately, uses UCS-16 encoding.
This requires a lot of conversions, in particular between the VirtualBox Main API
and the Qt GUI, which, like the rest of Qt, likes to use UTF-8.

To facilitate these conversions, VirtualBox provides the com::Bstr and
com: :Utf8Str classes, which support all kinds of conversions back and forth.

3. COM autopointers. Possibly the greatest pain of using COM - reference count-
ing — is alleviated by the ComPtr<> template provided by the ptr.h file in the
glue layer.

5.4 Event queue processing

Both VirtualBox client programs and frontends should periodically perform processing
of the main event queue, and do that on the application’s main thread. In case of
a typical GUI Windows/Mac OS application this happens automatically in the GUI’s
dispatch loop. However, for CLI only application, the appropriate actions have to be
taken. For C+ + applications, the VirtualBox SDK provided glue method

int EventQueue::processEventQueue(uint32_t cMsTimeout)

can be used for both blocking and non-blocking operations. For the Python bindings,
a common layer provides the method

VirtualBoxManager.waitForEvents(ms)

with similar semantics.

Things get somewhat more complicated for situations where an application using
VirtualBox cannot directly control the main event loop and the main event queue is
separated from the event queue of the programming librarly (for example in case of
Qt on Unix platforms). In such a case, the application developer is advised to use a
platform/toolkit specific event injection mechanism to force event queue checks either

39

5 The VirtualBox COM/XPCOM API

based on periodical timer events delivered to the main thread, or by using custom plat-
form messages to notify the main thread when events are available. See the VBoxSDL
and Qt (VirtualBox) frontends as examples.

5.5 Visual Basic and Visual Basic Script (VBS) on
Windows hosts

On Windows hosts, one can control some of the VirtualBox Main API functionality

from VBS scripts, and pretty much everything from Visual Basic programs.!

VBS is scripting language available in any recent Windows environment. As an
example, the following VBS code will print VirtualBox version:

set vb = CreateObject("VirtualBox.VirtualBox")
Wscript.Echo "VirtualBox version " & vb.version

See bindings/mscom/vbs/sample/vboxinfo.vbs for the complete sample.
Visual Basic is a popular high level language capable of accessing COM objects. The
following VB code will iterate over all available virtual machines:

Dim vb As VirtualBox.IVirtualBox

vb = CreateObject("VirtualBox.VirtualBox")

machines = ""

For Each m In vb.Machines
m=mé&" " & m.Name

Next

See bindings/mscom/vb/sample/vboxinfo.vb for the complete sample.

5.6 C binding to XPCOM API

’ Note: This section currently applies to Linux hosts only.

Starting with version 2.2, VirtualBox offers a C binding for the XPCOM API.
The C binding provides a layer enabling object creation, method invocation and
attribute access from C.

IThe difference results from the way VBS treats COM safearrays, which are used to keep lists in the
Main APIL. VBS expects every array element to be a VARIANT, which is too strict a limitation for any
high performance API. We may lift this restriction for interface APIs in a future version, or alternatively
provide conversion APIs.

40

5 The VirtualBox COM/XPCOM API

5.6.1 Getting started

The following sections describe how to use the C binding in a C program.

For Linux, a sample program is provided which demonstrates use of the C binding
to initialize XPCOM, get handles for VirtualBox and Session objects, make calls to list
and start virtual machines, and uninitialize resources when done. The program uses
the VBoxGlue library to open the C binding layer during runtime.

The sample program tstXPCOMCGLlue is located in the bin directory and can be run
without arguments. It lists registered machines on the host along with some additional
information and ask for a machine to start. The source for this program is available in
sdk/bindings/xpcom/cbinding/samples/ directory. The source for the VBoxGlue
library is available in the sdk/bindings/xpcom/cbinding/ directory.

5.6.2 XPCOM initialization

Just like in C++, XPCOM needs to be initialized before it can be used. The
VBoxCAPI_v2_5.h header provides the interface to the C binding. Here’s how to ini-
tialize XPCOM:

#include "VBoxCAPI_v2_5.h"

PCVBOXXPCOM g_pVBoxFuncs

= NULL;

IVirtualBox *vbox = NULL;

ISession *session = NULL;
/%

* VBoxGetXPCOMCFunctions() is the only function exported by

* VBoxXPCOMC.so and the only one needed to make virtualbox

* work with C. This functions gives you the pointer to the

* function table (g_pVBoxFuncs).

*

* Once you get the function table, then how and which functions

* to use is explained below.

*

* g_pVBoxFuncs->pfnComInitialize does all the necessary startup

* action and provides us with pointers to vbox and session handles.
* It should be matched by a call to g_pVBoxFuncs->pfnComUninitialize()
* when done.

*
~

g_pVBoxFuncs = VBoxGetXPCOMCFunctions (VBOX_XPCOMC_VERSION);
g_pVBoxFuncs->pfnComInitialize(&vbox, &session);

If either vbox or session is still NULL, initialization failed and the XPCOM API
cannot be used.

5.6.3 XPCOM method invocation

Method invocation is straightforward. It looks pretty much like the C++ way, aug-
mented with an extra indirection due to accessing the vtable and passing a pointer to
the object as the first argument to serve as the this pointer.

41

5 The VirtualBox COM/XPCOM API

Using the C binding, all method invocations return a numeric result code.

If an interface is specified as returning an object, a pointer to a pointer to the ap-
propriate object must be passed as the last argument. The method will then store an
object pointer in that location.

In other words, to call an object’s method what you need is

IObject *object;
nsresult rc;

re

* Calling void IObject::method(arg, ...)
*/
rc = object->vtbl->Method(object, arg, ...);
IFoo *foo;
/%
* Calling IFoo IObject::method(arg, ...)
*/
rc = object->vtbl->Method(object, args, ..., &foo);

As areal-world example of a method invocation, let’s call IVirtualBox::openRemoteSession
which returns an IProgress object. Note again that the method name is capitalized.

IProgress x*progress;

rc = vbox->vtbl->0penRemoteSession(

vbox, /* this =/
session, /* arg 1 x/
id, /* arg 2 */
sessionType, /* arg 3 */
env, /x arg 4 x/
&progress /* 0ut */

5.6.4 XPCOM attribute access

A construct similar to calling non-void methods is used to access object attributes.
For each attribute there exists a getter method, the name of which is composed of
Get followed by the capitalized attribute name. Unless the attribute is read-only, an
analogous Set method exists. Let’s apply these rules to read the IVirtualBox::revision
attribute.

Using the IVirtualBox handle vbox obtained above, calling its GetRevision
method looks like this:

PRUint32 rev;
rc = vbox->vtbl->GetRevision(vbox, &rev);

if (NS_SUCCEEDED(rc))
{

printf("Revision: %u\n", (unsigned)rev);

42

5 The VirtualBox COM/XPCOM API

All objects with their methods and attributes are documented in chapter 9, Classes
(interfaces), page 55.

5.6.5 String handling

When dealing with strings you have to be aware of a string’s encoding and ownership.

Internally, XPCOM uses UTF-16 encoded strings. A set of conversion functions is
provided to convert other encodings to and from UTF-16. The type of a UTF-16 char-
acter is PRUnichar. Strings of UTF-16 characters are arrays of that type. Most string
handling functions take pointers to that type. Prototypes for the following conversion
functions are declared in VBoxCAPI_v2_5.h.

5.6.5.1 Conversion of UTF-16 to and from UTF-8

int (*pfnUtfl6ToUtf8) (const PRUnichar xpwszString, char xxppszString);
int (*pfnUtf8ToUtf1l6) (const char *pszString, PRUnichar *xppwszString);

5.6.5.2 Ownership

The ownership of a string determines who is responsible for releasing resources asso-
ciated with the string. Whenever XPCOM creates a string, ownership is transferred to
the caller. To avoid resource leaks, the caller should release resources once the string
is no longer needed.

5.6.6 XPCOM uninitialization

Uninitialization is performed by g_pVBoxFuncs->pfnComUninitialize(). If
your program can exit from more than one place, it is a good idea to install
this function as an exit handler with Standard C’s atexit() just after calling
g_pVBoxFuncs->pfnComInitialize() , e.g.

#include <stdlib.h>
#include <stdio.h>

/%

Make sure g_pVBoxFuncs->pfnComUninitialize() is called at exit, no
matter if we return from the initial call to main or call exit()
somewhere else. Note that atexit registered functions are not
called upon abnormal termination, i.e. when calling abort() or
signal(). Separate provisions must be taken for these cases.

I R

if (atexit(g_pVBoxFuncs->pfnComUninitialize()) != 0) {

43

5 The VirtualBox COM/XPCOM API

fprintf(stderr, "failed to register g_pVBoxFuncs->pfnComUninitialize()\n");
exit (EXIT_FAILURE);

Another idea would be to write your own void myexit(int status) function,
calling g_pVBoxFuncs->pfnComUninitialize() followed by the real exit(), and
use it instead of exit () throughout your program and at the end of main.

If you expect the program to be terminated by a signal (e.g. user types CTRL-C
sending SIGINT) you might want to install a signal handler setting a flag noting that
a signal was sent and then calling g_pVBoxFuncs->pfnComUninitialize() later on
(usually not from the handler itself .)

That said, if a client program forgets to call g_pVBoxFuncs->pfnComUninitialize()
before it terminates, there is a mechanism in place which will eventually release ref-
erences held by the client. You should not rely on this, however.

5.6.7 Compiling and linking

A program using the C binding has to open the library during runtime using the help
of glue code provided and as shown in the example tstXPCOMCGlue.c. Compilation
and linking can be achieved, e.g., with a makefile fragment similar to

Where is the XPCOM include directory?

INCS_XPCOM = -I../../include

Where is the glue code directory?
GLUE_DIR = ..

GLUE_INC = -I..

#Compile Glue Library
VBoxXPCOMCGlue.o: $(GLUE_DIR)/VBoxXPCOMCGlue.c
$(CC) $(CFLAGS) $(INCS_XPCOM) $(GLUE_INC) -0 $@ -c $<

Compile.
program.o: program.c VBoxCAPI_v2_5.h
$(CC) $(CFLAGS) $(INCS_XPCOM) $(GLUE_INC) -0 $@ -c $<

Link.

program: program.o VBoxXPCOMCGlue.o
$(CC) -0 %@ $~ -ldl

44

6 The VirtualBox shell

VirtualBox comes with an extensible shell, which allows you to control your virtual
machines from the command line. It is also a nontrivial example of how to use the
VirtualBox APIs from Python, for all three COM/XPCOM/WS styles of the API.

You can easily extend this shell with your own commands. Create a subdirectory
named .VirtualBox/shexts below your home directory and put a Python file imple-
menting your shell extension commands in this directory. This file must contain an
array named commands containing your command definitions:

commands = {

"cmdl’: [’'Command cmdl help’, cmdl],
"cmd2’: [’Command cmd2 help’, cmd2]
}

For example, to create a command for creating hard drive images, the following code
can be used:

def createHdd(ctx,args):
Show some meaningful error message on wrong input
if (len(args) < 3):
print "usage: createHdd sizeM location type"
return 0

Get arguments

size = int(args([1])

loc = args[2]

if len(args) > 3:
format = args[3]

else:
And provide some meaningful defaults
format = "vdi"

Call VirtualBox API, using context'’s fields

hdd = ctx['vb’].createHardDisk(format, loc)

Access constants using ctx[’global’].constants

progress = hdd.createBaseStorage(size, ctx[’global’].constants.HardDiskVariant_Standard)
use standard progress bar mechanism

ctx['progressBar’] (progress)

Report errors
if not hdd.id:
print "cannot create disk (file %s exist?)" %(loc)

45

6 The VirtualBox shell

return 0

Give user some feedback on success too
print "created HDD with id: %s" %(hdd.id)

0 means continue execution, other values mean exit from the interpreter
return 0

commands = {

"myCreateHDD’: [’'Create virtual HDD, createHdd size location type’, createHdd]
}

Just store the above text in the file createHdd (or any other meaningful name) in
.VirtualBox/shexts/. Start the VirtualBox shell, or just issue the reloadExts com-
mand, if the shell is already running. Your new command will now be available.

46

7 Main API change log

Generally, VirtualBox will maintain API compatibility within a major release; a ma-
jor release occurs when the first or the second of the three version components of
VirtualBox change (that is, in the x.y.z scheme, a major release is one where x or y
change, but not when only z changes).

In other words, updates like those from 2.0.0 to 2.0.2 will not come with API break-
ages.

Migration between major releases most likely will lead to API breakage, so please
make sure you updated code accordingly. The OOWS Java wrappers enforce that
mechanism by putting VirtualBox classes into version-specific packages such as
org.virtualbox_2_2. This approach allows for connecting to multiple VirtualBox
versions simultaneously from the same Java application.

The following sections list incompatible changes that the Main API underwent since
the original release of this SDK Reference with VirtualBox 2.0. A change is deemed
“incompatible” only if it breaks existing client code (e.g. changes in method param-
eter lists, renamed or removed interfaces and similar). In other words, the list does
not contain new interfaces, methods or attributes or other changes that do not affect
existing client code.

7.1 Incompatible API changes with version 3.2

e The following interfaces were renamed for consistency:

— IMachine::getCpuProperty() is now IMachine::getCPUProperty();

— IMachine::setCpuProperty() is now IMachine::setCPUProperty();

— IMachine::getCpuldLeaf() is now IMachine::getCPUIDLeaf();

— IMachine::setCpuldLeaf() is now IMachine::setCPUIDLeaf();

— IMachine::removeCpuldLeaf() is now IMachine::removeCPUIDLeaf();

— IMachine::removeAllCpuldLeafs() is now IMachine::removeAllCPUIDLeaves();
- the CpuPropertyType enum is now CPUPropertyType.

- IvirtualBoxCallback::onSnapshotDiscarded() is now IVirtualBoxCall-
back::onSnapshotDeleted ().

e When creating a VM configuration with IVirtualBox::createMachine) it is now
possible to ignore existing configuration files which would previously have
caused a failure. For this the override parameter was added.

47

7.2

7 Main API change log

Deleting snapshots via IConsole::deleteSnapshot() is now possible while the as-
sociated VM is running in almost all cases. The API is unchanged, but client code
that verifies machine states to determine whether snapshots can be deleted may
need to be adjusted.

The ToBackendType enumeration was replaced with a boolean flag (see IStor-
ageController::useHostIOCache).

To address multi-monitor support, the following APIs were extended to require
an additional screenId parameter:

— IMachine::querySavedThumbnailSize()

— IMachine::readSavedThumbnailToArray()

— IMachine::querySavedScreenshotPNGSize()

— IMachine::readSavedScreenshotPNGToArray()

The shape parameter of IConsoleCallback::onMousePointerShapeChange() was
changed from a implementation-specific pointer to a safearray, enabling scripting
languages to process pointer shapes.

Incompatible APl changes with version 3.1

Due to the new flexibility in medium attachments that was introduced with ver-
sion 3.1 (in particular, full flexibility with attaching CD/DVD drives to arbitrary
controllers), we seized the opportunity to rework all interfaces dealing with stor-
age media to make the API more flexible as well as logical. The IStorageCon-
troller, IMedium, IMediumAttachment and, IMachine interfaces were affected
the most. Existing code using them to configure storage and media needs to be
carefully checked.

All media (hard disks, floppies and CDs/DVDs) are now uniformly handled
through the IMedium interface. The device-specific interfaces (IHardDisk,
IDVDImage, IHostDVDDrive, IFloppyImage and IHostFloppyDrive) have
been merged into IMedium; CD/DVD and floppy media no longer need special
treatment. The device type of a medium determines in which context it can be
used. Some functionality was moved to the other storage-related interfaces.

IMachine: :attachHardDisk and similar methods have been renamed and gen-
eralized to deal with any type of drive and medium. IMachine::attachDevice()
is the API method for adding any drive to a storage controller. The floppy and
DVD/CD drives are no longer handled specially, and that means you can have
more than one of them. As before, drives can only be changed while the VM is
powered off. Mounting (or unmounting) removable media at runtime is possible
with IMachine::mountMedium().

Newly created virtual machines have no storage controllers associated with
them. Even the IDE Controller needs to be created explicitly. The floppy con-
troller is now visible as a separate controller, with a new storage bus type. For

48

7 Main API change log

each storage bus type you can query the device types which can be attached, so
that it is not necessary to hardcode any attachment rules.

This required matching changes e.g. in the callback interfaces (the medium
specific change notification was replaced by a generic medium change notifica-
tion) and removing associated enums (e.g. DriveState). In many places the
incorrect use of the plural form “media” was replaced by “medium”, to improve
consistency.

e Reading the IMedium::state attribute no longer automatically performs an acces-
sibility check; a new method IMedium::refreshState() does this. The attribute
only returns the state any more.

e There were substantial changes related to snapshots, triggered by the “branched
snapshots” functionality introduced with version 3.1. IConsole::discardSnapshot
was renamed to IConsole::deleteSnapshot(). IConsole::discardCurrentState
and IConsole::discardCurrentSnapshotAndState were removed; correspond-
ing new functionality is in IConsole::restoreSnapshot(). Also, when ICon-
sole::takeSnapshot() is called on a running virtual machine, a live snapshot
will be created. The old behavior was to temporarily pause the virtual machine
while creating an online snapshot.

e The IVRDPServer, IRemoteDisplaylnfo and IConsoleCallback interfaces were
changed to reflect VRDP server ability to bind to one of available ports from
a list of ports.

The IVRDPServer: :port attribute has been replaced with IVRDPServer::ports,
which is a comma-separated list of ports or ranges of ports.

An IRemoteDisplayInfo::port attribute has been added for querying the actual
port VRDP server listens on.

An IConsoleCallback::onRemoteDisplayInfoChange() notification callback has
been added.

e The parameter lists for the following functions were modified:

— IHost::removeHostOnlyNetworkInterface()
— IHost::removeUSBDeviceFilter()

e In the OOWS bindings for JAX-WS, the behavior of structures changed: for
one, we implemented natural structures field access so you can just call a “get”
method to obtain a field. Secondly, setters in structures were disabled as they
have no expected effect and were at best misleading.

7.3 Incompatible API changes with version 3.0

e In the object-oriented web service bindings for JAX-WS, proper inheritance has
been introduced for some classes, so explicit casting is no longer needed to call

49

7 Main API change log

methods from a parent class. In particular, [HardDisk and other classes now
properly derive from IMedium.

All object identifiers (machines, snapshots, disks, etc) switched from GUIDs to
strings (now still having string representation of GUIDs inside). As a result, no
particular internal structure can be assumed for object identifiers; instead, they
should be treated as opaque unique handles. This change mostly affects Java
and C+ + programs; for other languages, GUIDs are transparently converted to
strings.

The uses of NULL strings have been changed greatly. All out parameters now
use empty strings to signal a null value. For in parameters both the old NULL
and empty string is allowed. This change was necessary to support more client
bindings, especially using the webservice API. Many of them either have no spe-
cial NULL value or have trouble dealing with it correctly in the respective library
code.

Accidentally, the TSBool interface still appeared in 3.0.0, and was removed in
3.0.2. This is an SDK bug, do not use the SDK for VirtualBox 3.0.0 for developing
clients.

The type of IVirtualBoxErrorInfo::resultCode changed from result to long.
The parameter list of IVirtualBox::openHardDisk was changed.

The method IConsole::discardSavedState was renamed to IConsole::forgetSavedState,
and a parameter was added.

The method IConsole::powerDownAsync was renamed to IConsole::powerDown,
and the previous method with that name was deleted. So effectively a parameter
was added.

In the IFramebuffer interface, the following were removed:

— the operationSupported attribute;

(as a result, the FramebufferAccelerationOperation enum was no
longer needed and removed as well);

— the solidFill() method;
— the copyScreenBits () method.

In the IDisplay interface, the following were removed:

— the setupInternalFramebuffer() method;

— the lockFramebuffer() method;

— the unlockFramebuffer() method;

— the registerExternalFramebuffer() method.

50

7 Main API change log

7.4 Incompatible API changes with version 2.2

e Added explicit version number into JAX-WS Java package names, such as
org.virtualbox_2_2, allowing connect to multiple VirtualBox clients from sin-
gle Java application.

e The interfaces having a “2” suffix attached to them with version 2.1 were re-
named again to have that suffix removed. This time around, this change involves
only the name, there are no functional differences.

As a result, IDVDImage2 is now IDVDImage; IHardDisk2 is now IHardDisk;
[HardDisk2Attachment is now [HardDiskAttachment.

Consequentially, all related methods and attributes that had a “2” suffix have
been renamed; for example, IMachine::attachHardDisk2 now becomes IMa-
chine::attachHardDisk().

e IVirtualBox::openHardDisk() has an extra parameter for opening a disk
read/write or read-only.

e The remaining collections were replaced by more performant safe-arrays. This
affects the following collections:

— IGuestOSTypeCollection

— IHostDVDDriveCollection

- IHostFloppyDriveCollection

— IHostUSBDeviceCollection

— IHostUSBDeviceFilterCollection
— IProgressCollection

— ISharedFolderCollection

— ISnapshotCollection

— IUSBDeviceCollection

— IUSBDeviceFilterCollection

e Since “Host Interface Networking” was renamed to “bridged networking” and
host-only networking was introduced, all associated interfaces needed renaming
as well. In detail:

— The HostNetworkInterfaceType enum has been renamed to HostNetwork-
InterfaceMediumType

— The IHostNetworkInterface::type attribute has been renamed to IHostNet-
workInterface::mediumType

— INetworkAdapter::attachToHostInterface() has been renamed to INet-
workAdapter::attachToBridgedInterface()

— In the IHost interface, createHostNetworkInterface() has been renamed to
createHostOnlyNetworkInterface()

— Similarly, removeHostNetworkInterface() has been renamed to removeHos-
tOnlyNetworkInterface()

51

7 Main API change log

7.5 Incompatible API changes with version 2.1

e With VirtualBox 2.1, error codes were added to many error infos that give the
caller a machine-readable (numeric) feedback in addition to the error string that
has always been available. This is an ongoing process, and future versions of this
SDK reference will document the error codes for each method call.

e The hard disk and other media interfaces were completely redesigned. This was
necessary to account for the support of VMDK, VHD and other image types;
since backwards compatibility had to be broken anyway, we seized the moment
to redesign the interfaces in a more logical way.

— Previously, the old IHardDisk interface had several derivatives called
IVirtualDiskimage, IVMDKImage, IVHDImage, IISCSIHardDisk and ICus-
tomHardDisk for the various disk formats supported by VirtualBox. The
new I[HardDisk2 interface that comes with version 2.1 now supports all
hard disk image formats itself.

- IHardDiskFormat is a new interface to describe the available back-ends
for hard disk images (e.g. VDI, VMDK, VHD or iSCSI). The IHard-
Disk2::format attribute can be used to find out the back-end that is in use
for a particular hard disk image. ISystemProperties::hardDiskFormats[]
contains a list of all back-ends supported by the system. ISystemProper-
ties::defaultHardDiskFormat contains the default system format.

- In addition, the new IMedium interface is a generic interface for hard disk,
DVD and floppy images that contains the attributes and methods shared
between them. It can be considered a parent class of the more specific
interfaces for those images, which are now IHardDisk2, IDVDImage2 and
IFloppylmage2.

In each case, the “2” versions of these interfaces replace the earlier versions
that did not have the “2” suffix. Previously, the IDVDImage and IFloppyIm-
age interfaces were entirely unrelated to IHardDisk.

— As a result, all parts of the API that previously referenced IHardDisk, ID-
VDImage or IFloppylmage or any of the old subclasses are gone and will
have replacements that use IHardDisk2, IDVDImage2 and IFloppylmage2;
see, for example, IMachine::attachHardDisk2.

- In particular, the IVirtualBox::hardDisks2 array replaces the earlier IVirtu-
alBox::hardDisks collection.

e IGuestOSType was extended to group operating systems into families and for
64-bit support.

e The IHostNetworkInterface interface was completely rewritten to account for the
changes in how Host Interface Networking is now implemented in VirtualBox
2.1.

e The IVirtualBox::machines2[] array replaces the former IVirtualBox::machines
collection.

52

7 Main API change log

Added THost::getProcessorFeature() and ProcessorFeature enumeration.
The parameter list for IVirtualBox::createMachine() was modified.
Added IMachine::pushGuestProperty().

New attributes in IMachine: accelerate3DEnabled, HWVirtExVPIDEnabled,
guestPropertyNotificationPatterns, CPUCount.

Added IConsole::powerUpPaused () and IConsole::getGuestEnteredACPIMode().

Removed ResourceUsage enumeration.

53

8 License information

The sample code files shipped with the SDK are generally licensed liberally to make it
easy for anyone to use this code for their own application code.

The Java files under bindings/webservice/java/jax-ws/ (library files for the
object-oriented web service) are, by contrast, licensed under the GNU Lesser General
Public License (LGPL) V2.1.

See sdk/bindings/webservice/java/jax-ws/src/COPYING.LIB for the full text
of the LGPL 2.1.

When in doubt, please refer to the individual source code files shipped with this
SDK.

54

9 Classes (interfaces)

9.1 lAppliance

Represents a platform-independent appliance in OVF format. An instance of this is
returned by IVirtualBox::createAppliance(), which can then be used to import and
export virtual machines within an appliance with VirtualBox.

The OVF standard suggests two different physical file formats:

1. If the appliance is distributed as a set of files, there must be at least one XML
descriptor file that conforms to the OVF standard and carries an .ovf file ex-
tension. If this descriptor file references other files such as disk images, as OVF
appliances typically do, those additional files must be in the same directory as
the descriptor file.

2. If the appliance is distributed as a single file, it must be in TAR format and
have the .ova file extension. This TAR file must then contain at least the OVF
descriptor files and optionally other files.

At this time, VirtualBox does not not yet support the packed (TAR) variant; sup-
port will be added with a later version.

Importing an OVF appliance into VirtualBox as instances of IMachine involves the
following sequence of API calls:

1. Call IVirtualBox::createAppliance(). This will create an empty IAppliance object.

2. On the new object, call read() with the full path of the OVF file you would like
to import. So long as this file is syntactically valid, this will succeed and fill the
appliance object with the parsed data from the OVF file.

3. Next, call interpret(), which analyzes the OVF data and sets up the contents of
the IAppliance attributes accordingly. These can be inspected by a VirtualBox
front-end such as the GUI, and the suggestions can be displayed to the user. In
particular, the virtualSystemDescriptions[] array contains instances of IVirtual-
SystemDescription which represent the virtual systems (machines) in the OVF,
which in turn describe the virtual hardware prescribed by the OVF (network and
hardware adapters, virtual disk images, memory size and so on). The GUI can
then give the user the option to confirm and/or change these suggestions.

4. If desired, call IVirtualSystemDescription::setFinalValues() for each virtual sys-
tem (machine) to override the suggestions made by the interpret() routine.

55

9 Classes (interfaces)

5. Finally, call importMachines() to create virtual machines in VirtualBox as in-
stances of IMachine that match the information in the virtual system descrip-
tions.

Exporting VirtualBox machines into an OVF appliance involves the following steps:

1. As with importing, first call IVirtualBox::createAppliance() to create an empty
IAppliance object.

2. For each machine you would like to export, call IMachine::export() with the
IAppliance object you just created. Each such call creates one instance of IVirtu-
alSystemDescription inside the appliance.

3. If desired, call IVirtualSystemDescription::setFinalValues() for each virtual sys-
tem (machine) to override the suggestions made by the export() routine.

4. Finally, call write() with a path specification to have the OVF file written.

9.1.1 Attributes
9.1.1.1 path (read-only)

wstring IAppliance::path

Path to the main file of the OVF appliance, which is either the .ovf or the .ova file
passed to read() (for import) or write() (for export). This attribute is empty until one
of these methods has been called.

9.1.1.2 disks (read-only)

wstring IAppliance::disks[]

Array of virtual disk definitions. One such description exists for each disk definition
in the OVF; each string array item represents one such piece of disk information, with
the information fields separated by tab (\t) characters.

The caller should be prepared for additional fields being appended to this string in
future versions of VirtualBox and therefore check for the number of tabs in the strings
returned.

In the current version, the following eight fields are returned per string in the array:

1. Disk ID (unique string identifier given to disk)
2. Capacity (unsigned integer indicating the maximum capacity of the disk)

3. Populated size (optional unsigned integer indicating the current size of the disk;
can be approximate; -1 if unspecified)

4. Format (string identifying the disk format, typically “http://www.vmware.com/specifications/vmdk.html#

56

9 Classes (interfaces)
5. Reference (where to find the disk image, typically a file name; if empty, then the
disk should be created on import)

6. Image size (optional unsigned integer indicating the size of the image, which
need not necessarily be the same as the values specified above, since the image
may be compressed or sparse; -1 if not specified)

7. Chunk size (optional unsigned integer if the image is split into chunks; presently
unsupported and always -1)

8. Compression (optional string equalling “gzip” if the image is gzip-compressed)

9.1.1.3 virtualSystemDescriptions (read-only)

IVirtualSystemDescription IAppliance::virtualSystemDescriptions|[]

Array of virtual system descriptions. One such description is created for each virtual
system (machine) found in the OVF. This array is empty until either interpret() (for
import) or IMachine::export() (for export) has been called.

9.1.2 createVFSExplorer

IVFSExplorer IAppliance::createVFSExplorer(
[in] wstring aUri)

aUri The URI describing the file system to use.

Returns a IVFSExplorer object for the given URI.

9.1.3 getWarnings

wstring[] IAppliance::getWarnings()

Returns textual warnings which occured during execution of interpret().

9.1.4 importMachines

IProgress IAppliance::importMachines()

Imports the appliance into VirtualBox by creating instances of IMachine and other
interfaces that match the information contained in the appliance as closely as possible,
as represented by the import instructions in the virtualSystemDescriptions[] array.

Calling this method is the final step of importing an appliance into VirtualBox; see
IAppliance for an overview.

Since importing the appliance will most probably involve copying and converting
disk images, which can take a long time, this method operates asynchronously and
returns an IProgress object to allow the caller to monitor the progress.

57

9 Classes (interfaces)

9.1.5 interpret

void IAppliance::interpret()

Interprets the OVF data that was read when the appliance was constructed. After
calling this method, one can inspect the virtualSystemDescriptions[] array attribute,
which will then contain one IVirtualSystemDescription for each virtual machine found
in the appliance.

Calling this method is the second step of importing an appliance into VirtualBox;
see [Appliance for an overview.

After calling this method, one should call getWarnings() to find out if problems were
encountered during the processing which might later lead to errors.

9.1.6 read

IProgress IAppliance::read(
[in] wstring file)

file Name of appliance file to open (either with an .ovf or .ova extension, depend-
ing on whether the appliance is distributed as a set of files or as a single file,
respectively).

Reads an OVF file into the appliance object.

This method succeeds if the OVF is syntactically valid and, by itself, without errors.
The mere fact that this method returns successfully does not mean that VirtualBox
supports all features requested by the appliance; this can only be examined after a call
to interpret().

9.1.7 write

IProgress IAppliance::write(
[in] wstring format,
[in] wstring path)

format Output format, as a string. Currently supported formats are “ovf-0.9” and
“ovf-1.0”; future versions of VirtualBox may support additional formats.

path Name of appliance file to open (either with an .ovf or .ova extension, depend-
ing on whether the appliance is distributed as a set of files or as a single file,
respectively).

Writes the contents of the appliance exports into a new OVF file.

Calling this method is the final step of exporting an appliance from VirtualBox; see
[Appliance for an overview.

Since exporting the appliance will most probably involve copying and converting
disk images, which can take a long time, this method operates asynchronously and
returns an IProgress object to allow the caller to monitor the progress.

58

9 Classes (interfaces)

9.2 |AudioAdapter

The IAudioAdapter interface represents the virtual audio adapter of the virtual ma-
chine. Used in IMachine::audioAdapter.

9.2.1 Attributes
9.2.1.1 enabled (read/write)

boolean IAudioAdapter::enabled

Flag whether the audio adapter is present in the guest system. If disabled, the virtual
guest hardware will not contain any audio adapter. Can only be changed when the VM
is not running.

9.2.1.2 audioController (read/write)

AudioControllerType IAudioAdapter::audioController
The audio hardware we emulate.
9.2.1.3 audioDriver (read/write)

AudioDriverType IAudioAdapter::audioDriver

Audio driver the adapter is connected to. This setting can only be changed when
the VM is not running.

9.3 IBIOSSettings

The IBIOSSettings interface represents BIOS settings of the virtual machine. This is
used only in the IMachine::BIOSSettings attribute.

9.3.1 Attributes
9.3.1.1 logoFadeln (read/write)

boolean IBIOSSettings::logoFadeIn

Fade in flag for BIOS logo animation.

9.3.1.2 logoFadeOut (read/write)

boolean IBIOSSettings::logoFadeOut

Fade out flag for BIOS logo animation.

59

9 Classes (interfaces)

9.3.1.3 logoDisplayTime (read/write)

unsigned long IBIOSSettings::logoDisplayTime

BIOS logo display time in milliseconds (0 = default).

9.3.1.4 logolmagePath (read/write)

wstring IBIOSSettings::logoImagePath

Local file system path for external BIOS splash image. Empty string means the
default image is shown on boot.

9.3.1.5 bootMenuMode (read/write)

BIOSBootMenuMode IBIOSSettings::bootMenuMode

Mode of the BIOS boot device menu.

9.3.1.6 ACPIEnabled (read/write)

boolean IBIOSSettings::ACPIEnabled

ACPI support flag.

9.3.1.7 IOAPICEnabled (read/write)

boolean IBIOSSettings::IO0APICEnabled

I0 APIC support flag. If set, VirtualBox will provide an I0 APIC and support IRQs
above 15.

9.3.1.8 timeOffset (read/write)

long long IBIOSSettings::timeOffset

Offset in milliseconds from the host system time. This allows for guests running
with a different system date/time than the host. It is equivalent to setting the system
date/time in the BIOS except it is not an absolute value but a relative one. Guest
Additions time synchronization honors this offset.

9.3.1.9 PXEDebugEnabled (read/write)

boolean IBIOSSettings::PXEDebugEnabled

PXE debug logging flag. If set, VirtualBox will write extensive PXE trace information
to the release log.

60

9 Classes (interfaces)

9.4 IConsole

The IConsole interface represents an interface to control virtual machine execution.

The console object that implements the IConsole interface is obtained from a
session object after the session for the given machine has been opened using
one of IVirtualBox::openSession(), IVirtualBox::openRemoteSession() or IVirtual-
Box::openExistingSession() methods.

Methods of the IConsole interface allow the caller to query the current virtual ma-
chine execution state, pause the machine or power it down, save the machine state or
take a snapshot, attach and detach removable media and so on.

See also: ISession

9.4.1 Attributes
9.4.1.1 machine (read-only)

IMachine IConsole::machine

Machine object this console is sessioned with.

Note: This is a convenience property, it has the same value as ISes-
sion::machine of the corresponding session object.

9.4.1.2 state (read-only)

MachineState IConsole::state

Current execution state of the machine.

Note: This property always returns the same value as the corresponding prop-
erty of the IMachine object this console is sessioned with. For the process that
owns (executes) the VM, this is the preferable way of querying the VM state,
because no IPC calls are made.

9.4.1.3 guest (read-only)

IGuest IConsole::guest

Guest object.

61

9 Classes (interfaces)

9.4.1.4 keyboard (read-only)
IKeyboard IConsole::keyboard

Virtual keyboard object.

Note: If the machine is not running, any attempt to use the returned object
will result in an error.

9.4.1.5 mouse (read-only)
IMouse IConsole::mouse

Virtual mouse object.

Note: If the machine is not running, any attempt to use the returned object
will result in an error.

9.4.1.6 display (read-only)
IDisplay IConsole::display

Virtual display object.

Note: If the machine is not running, any attempt to use the returned object
will result in an error.

9.4.1.7 debugger (read-only)

IMachineDebugger IConsole::debugger

Note: This attribute is not supported in the web service.

Debugging interface.

9.4.1.8 USBDevices (read-only)
IUSBDevice IConsole::USBDevices]|]

Collection of USB devices currently attached to the virtual USB controller.

Note: The collection is empty if the machine is not running.

62

9 Classes (interfaces)

9.4.1.9 remoteUSBDevices (read-only)

IHostUSBDevice IConsole::remoteUSBDevices]]

List of USB devices currently attached to the remote VRDP client. Once a new device
is physically attached to the remote host computer, it appears in this list and remains
there until detached.

9.4.1.10 sharedFolders (read-only)

ISharedFolder IConsole::sharedFolders[]

Collection of shared folders for the current session. These folders are called tran-
sient shared folders because they are available to the guest OS running inside the
associated virtual machine only for the duration of the session (as opposed to IMa-
chine::sharedFolders[] which represent permanent shared folders). When the session
is closed (e.g. the machine is powered down), these folders are automatically dis-
carded.

New shared folders are added to the collection using createSharedFolder(). Existing
shared folders can be removed using removeSharedFolder().

9.4.1.11 remoteDisplaylnfo (read-only)

IRemoteDisplayInfo IConsole::remoteDisplayInfo

Interface that provides information on Remote Display (VRDP) connection.

9.4.2 adoptSavedState

void IConsole::adoptSavedState(
[in] wstring savedStateFile)

savedStateFile Path to the saved state file to adopt.

Associates the given saved state file to the virtual machine.

On success, the machine will go to the Saved state. Next time it is powered up, it
will be restored from the adopted saved state and continue execution from the place
where the saved state file was created.

The specified saved state file path may be absolute or relative to the folder the VM
normally saves the state to (usually, IMachine::snapshotFolder).

Note: It’s a caller’s responsibility to make sure the given saved state file is
compatible with the settings of this virtual machine that represent its virtual
hardware (memory size, storage disk configuration etc.). If there is a mis-
match, the behavior of the virtual machine is undefined.

63

9 Classes (interfaces)

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine state neither PoweredOff nor
Aborted.

9.4.3 attachUSBDevice

void IConsole::attachUSBDevice(
[in] uuid id)

id UUID of the host USB device to attach.

Attaches a host USB device with the given UUID to the USB controller of the virtual
machine.

The device needs to be in one of the following states: Busy, Available or Held,
otherwise an error is immediately returned.

When the device state is Busy, an error may also be returned if the host computer
refuses to release it for some reason.

See also: IUSBController::deviceFilters, USBDeviceState

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine state neither Running nor
Paused.

e VBOX_E_PDM_ERROR: Virtual machine does not have a USB controller.

9.4.4 createSharedFolder

void IConsole::createSharedFolder(
[in] wstring name,
[in] wstring hostPath,
[in] boolean writable)

name Unique logical name of the shared folder.
hostPath Full path to the shared folder in the host file system.
writable Whether the share is writable or readonly

Creates a transient new shared folder by associating the given logical name with the
given host path, adds it to the collection of shared folders and starts sharing it. Refer
to the description of ISharedFolder to read more about logical names.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine in Saved state or currently
changing state.

e VBOX_E_FILE_ERROR: Shared folder already exists or not accessible.

64

9 Classes (interfaces)

9.4.5 deleteSnapshot

IProgress IConsole::deleteSnapshot(
[in] uuid id)

id UUID of the snapshot to delete.

Starts deleting the specified snapshot asynchronously. See ISnapshot for an intro-
duction to snapshots.

The execution state and settings of the associated machine stored in the snapshot
will be deleted. The contents of all differencing media of this snapshot will be merged
with the contents of their dependent child media to keep the medium chain valid (in
other words, all changes represented by media being deleted will be propagated to
their child medium). After that, this snapshot’s differencing medium will be deleted.
The parent of this snapshot will become a new parent for all its child snapshots.

If the deleted snapshot is the current one, its parent snapshot will become a new
current snapshot. The current machine state is not directly affected in this case, except
that currently attached differencing media based on media of the deleted snapshot will
be also merged as described above.

If the deleted snapshot is the first or current snapshot, then the respective IMachine
attributes will be adjusted. Deleting the current snapshot will also implicitly call IMa-
chine::saveSettings() to make all current machine settings permanent.

Deleting a snapshot has the following preconditions:

e Child media of all normal media of the deleted snapshot must be accessible (see
IMedium::state) for this operation to succeed. In particular, this means that all
virtual machines, whose media are directly or indirectly based on the media of
deleted snapshot, must be powered off.

e You cannot delete the snapshot if a medium attached to it has more than once
child medium (differencing images) because otherwise merging would be im-
possible. This might be the case if there is more than one child snapshot or
differencing images were created for other reason (e.g. implicitly because of
multiple machine attachments).

The virtual machine’s state is changed to “DeletingSnapshot”, “DeletingSnapshotOn-
line” or “DeletingSnapshotPaused” while this operation is in progress.

Note: Merging medium contents can be very time and disk space consuming,
if these media are big in size and have many children. However, if the snap-
shot being deleted is the last (head) snapshot on the branch, the operation
will be rather quick.

If this method fails, the following error codes may be reported:

65

9 Classes (interfaces)

e VBOX_E_INVALID_VM_STATE: The running virtual machine prevents deleting
this snapshot. This happens only in very specific situations, usually snapshots
can be deleted without trouble while a VM is running. The error message text
explains the reason for the failure.

9.4.6 detachUSBDevice

IUSBDevice IConsole::detachUSBDevice(
[in] uuid id)

id UUID of the USB device to detach.

Detaches an USB device with the given UUID from the USB controller of the virtual
machine.

After this method succeeds, the VirtualBox server re-initiates all USB filters as if the
device were just physically attached to the host, but filters of this machine are ignored
to avoid a possible automatic re-attachment.

See also: IUSBController::deviceFilters, USBDeviceState

If this method fails, the following error codes may be reported:

e VBOX_E_PDM_ERROR: Virtual machine does not have a USB controller.

e E_INVALIDARG: USB device not attached to this virtual machine.

9.4.7 findUSBDeviceByAddress

IUSBDevice IConsole::findUSBDeviceByAddress (
[in] wstring name)

name Address of the USB device (as assigned by the host) to search for.

Searches for a USB device with the given host address.
See also: IUSBDevice::address
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Given name does not correspond to any USB de-
vice.

9.4.8 findUSBDeviceByld

IUSBDevice IConsole::findUSBDeviceById (
[in] uuid id)

id UUID of the USB device to search for.

Searches for a USB device with the given UUID.
See also: IUSBDevice::id
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Given id does not correspond to any USB device.

66

9 Classes (interfaces)

9.4.9 forgetSavedState

void IConsole::forgetSavedState(
[in] boolean remove)

remove If true remove the saved state file.

Forgets the saved state of the virtual machine previously created by saveState().
Next time the machine is powered up, a clean boot will occur. If remove is true the
saved state file is deleted.

Note: This operation is equivalent to resetting or powering off the machine
without doing a proper shutdown in the guest OS.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine not in state Saved.

9.4.10 getDeviceActivity

DeviceActivity IConsole::getDeviceActivity(
[in] DeviceType type)

type

Gets the current activity type of a given device or device group.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid device type.

9.4.11 getGuestEnteredACPIMode

boolean IConsole::getGuestEnteredACPIMode()

Checks if the guest entered the ACPI mode GO (working) or G1 (sleeping). If this
method returns false, the guest will most likely not respond to external ACPI events.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine notin Running state.

9.4.12 getPowerButtonHandled

boolean IConsole::getPowerButtonHandled()

Checks if the last power button event was handled by guest.
If this method fails, the following error codes may be reported:

e VBOX_E_PDM_ERROR: Checking if the event was handled by the guest OS failed.

67

9 Classes (interfaces)

9.4.13 pause

void IConsole::pause()

Pauses the virtual machine execution.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine notin Running state.

e VBOX_E_VM_ERROR: Virtual machine error in suspend operation.

9.4.14 powerButton

void IConsole::powerButton()

Sends the ACPI power button event to the guest.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID VM_STATE: Virtual machine notin Running state.

e VBOX_E_PDM_ERROR: Controlled power off failed.

9.4.15 powerDown

IProgress IConsole::powerDown()

Initiates the power down procedure to stop the virtual machine execution.

The completion of the power down procedure is tracked using the returned IProgress
object. After the operation is complete, the machine will go to the PoweredOff state.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine must be Running, Paused or
Stuck to be powered down.

9.4.16 powerUp

IProgress IConsole: :powerUp()

Starts the virtual machine execution using the current machine state (that is, its
current execution state, current settings and current storage devices).

If the machine is powered off or aborted, the execution will start from the beginning
(as if the real hardware were just powered on).

If the machine is in the Saved state, it will continue its execution the point where
the state has been saved.

If the machine IMachine::teleporterEnabled property is enabled on the machine
being powered up, the machine will wait for an incoming teleportation in the Tele-
portingln state. The returned progress object will have at least three operations where

68

9 Classes (interfaces)

the last three are defined as: (1) powering up and starting TCP server, (2) waiting
for incoming teleportations, and (3) perform teleportation. These operations will be
reflected as the last three operations of the progress objected returned by IVirtual-
Box::openRemoteSession() as well.

Note: Unless you are trying to write a new VirtualBox front-end that per-
forms direct machine execution (like the VirtualBox or VBoxSDL front-ends),
don’t call powerUp() in a direct session opened by IVirtualBox::openSession()
and use this session only to change virtual machine settings. If you sim-
ply want to start virtual machine execution using one of the existing front-
ends (for example the VirtualBox GUI or headless server), simply use IVir-
tualBox::openRemoteSession(); these front-ends will power up the machine
automatically for you.

See also: #saveState
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine already running.
e VBOX_E_HOST_ERROR: Host interface does not exist or name not set.

e VBOX_E_FILE_ERROR: Invalid saved state file.

9.4.17 powerUpPaused

IProgress IConsole::powerUpPaused()

Identical to powerUp except that the VM will enter the Paused state, instead of
Running.

See also: #powerUp

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine already running.
e VBOX_E_HOST_ERROR: Host interface does not exist or name not set.

e VBOX_E_FILE_ERROR: Invalid saved state file.

9.4.18 registerCallback

’ Note: This method is not supported in the web service.

void IConsole::registerCallback(
[in] IConsoleCallback callback)

69

9 Classes (interfaces)

callback

Registers a new console callback on this instance. The methods of the callback
interface will be called by this instance when the appropriate event occurs.

9.4.19 removeSharedFolder

void IConsole::removeSharedFolder(
[in] wstring name)

name Logical name of the shared folder to remove.

Removes a transient shared folder with the given name previously created by cre-
ateSharedFolder() from the collection of shared folders and stops sharing it.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID VM_STATE: Virtual machine in Saved state or currently
changing state.

e VBOX_E_FILE_ERROR: Shared folder does not exists.

9.4.20 reset

void IConsole::reset()

Resets the virtual machine.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine notin Running state.

e VBOX_E_VM_ERROR: Virtual machine error in reset operation.

9.4.21 restoreSnapshot

IProgress IConsole::restoreSnapshot(
[in] ISnapshot snapshot)

snapshot The snapshot to restore the VM state from.

Starts resetting the machine’s current state to the state contained in the given snap-
shot, asynchronously. All current settings of the machine will be reset and changes
stored in differencing media will be lost. See ISnapshot for an introduction to snap-
shots.

After this operation is successfully completed, new empty differencing media are
created for all normal media of the machine.

If the given snapshot is an online snapshot, the machine will go to the Saved, so
that the next time it is powered on, the execution state will be restored from the state
of the snapshot.

70

9 Classes (interfaces)

Note: The machine must not be running, otherwise the operation will fail.

Note: If the machine state is Saved prior to this operation, the saved state file
will be implicitly deleted (as if forgetSavedState() were called).

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID VM_STATE: Virtual machine is running.

9.4.22 resume

void IConsole::resume()

Resumes the virtual machine execution.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine not in Paused state.

e VBOX_E_VM_ERROR: Virtual machine error in resume operation.

9.4.23 saveState

IProgress IConsole::saveState()

Saves the current execution state of a running virtual machine and stops its execu-
tion.

After this operation completes, the machine will go to the Saved state. Next time it
is powered up, this state will be restored and the machine will continue its execution
from the place where it was saved.

This operation differs from taking a snapshot to the effect that it doesn’t create new
differencing media. Also, once the machine is powered up from the state saved using
this method, the saved state is deleted, so it will be impossible to return to this state
later.

Note: On success, this method implicitly calls IMachine::saveSettings() to
save all current machine settings (including runtime changes to the DVD
medium, etc.). Together with the impossibility to change any VM settings
when it is in the Saved state, this guarantees adequate hardware configura-
tion of the machine when it is restored from the saved state file.

Note: The machine must be in the Running or Paused state, otherwise the
operation will fail.

71

9 Classes (interfaces)

See also: takeSnapshot()
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine state neither Running nor
Paused.

e VBOX_E_FILE_ERROR: Failed to create directory for saved state file.

9.4.24 sleepButton

void IConsole::sleepButton()

Sends the ACPI sleep button event to the guest.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine not in Running state.

e VBOX_E_PDM_ERROR: Sending sleep button event failed.

9.4.25 takeSnapshot

IProgress IConsole::takeSnapshot(
[in] wstring name,
[in] wstring description)

name Short name for the snapshot.

description Optional description of the snapshot.

Saves the current execution state and all settings of the machine and creates differ-
encing images for all normal (non-independent) media. See ISnapshot for an intro-
duction to snapshots.

This method can be called for a PoweredOff, Saved (see saveState()), Running or
Paused virtual machine. When the machine is PoweredOff, an offline snapshot is cre-
ated. When the machine is Running a live snapshot is created, and an online snapshot
is is created when Paused.

The taken snapshot is always based on the current snapshot of the associated virtual
machine and becomes a new current snapshot.

Note: This method implicitly calls IMachine::saveSettings() to save all current
machine settings before taking an offline snapshot.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID VM_STATE: Virtual machine currently changing state.

72

9 Classes (interfaces)

9.4.26 teleport

IProgress IConsole::teleport(
[in] wstring hostname,
[in] unsigned long tcpport,
[in] wstring password,
[in] unsigned long maxDowntime)

hostname The name or IP of the host to teleport to.
tcpport The TCP port to connect to (1..65535).
password The password.

maxDowntime The maximum allowed downtime given as milliseconds. O is not a
valid value. Recommended value: 250 ms.

The higher the value is, the greater the chance for a successful teleportation.
A small value may easily result in the teleportation process taking hours and
eventually fail.

Note: The current implementation treats this a guideline, not as an absolute
rule.

Teleport the VM to a different host machine or process.
TODO explain the details.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine not running or paused.

9.4.27 unregisterCallback

Note: This method is not supported in the web service.

void IConsole::unregisterCallback(
[in] IConsoleCallback callback)

callback

Unregisters the console callback previously registered using registerCallback().
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Given callback handler is not registered.

73

9 Classes (interfaces)

9.5 IConsoleCallback

’ Note: This interface is not supported in the web service.

This interface is used by a client of the Main API that need to be notified of events.
For example, a graphical user interface can use this to learn about machine state
changes so they can update the list of virtual machines without having to rely on
polling.

Whenever relevant events occur in VirtualBox, the callbacks in objects of this in-
terface are called. In order for this to be useful, a client needs to create its own
subclass that implements this interface in which the methods for the relevant call-
backs are overridden. An instance of this subclass interface can then be passed to
IConsole::registerCallback().

9.5.1 onAdditionsStateChange

void IConsoleCallback::onAdditionsStateChange()

Notification when a Guest Additions property changes. Interested callees should
query IGuest attributes to find out what has changed.

9.5.2 onCPUChange

void IConsoleCallback: :onCPUChange(
[in] unsigned long cpu,
[in] boolean add)

cpu The CPU which changed
add Flag whether the CPU was added or removed

Notification when a CPU changes.
If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

9.5.3 onCanShowWindow

boolean IConsoleCallback::onCanShowWindow()

Notification when a call to IMachine::canShowConsoleWindow() is made by a front-
end to check if a subsequent call to IMachine::showConsoleWindow() can succeed.

The callee should give an answer appropriate to the current machine state in the
canShow argument. This answer must remain valid at least until the next machine
state change.

74

9 Classes (interfaces)

Note: This notification is not designed to be implemented by more than one
callback at a time. If you have multiple IConsoleCallback instances registered
on the given IConsole object, make sure you simply do nothing but return
true and S_OK from all but one of them that actually manages console win-
dow activation.

If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

9.5.4 onKeyboardLedsChange

void IConsoleCallback: :onKeyboardLedsChange(
[in] boolean numLock,
[in] boolean capsLock,
[in] boolean scrolllLock)

numLock
capsLock

scrollLock

Notification when the guest OS executes the KBD CMD_SET LEDS command to
alter the state of the keyboard LEDs.
If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

9.5.5 onMediumChange

void IConsoleCallback: :onMediumChange(
[in] IMediumAttachment mediumAttachment)

mediumAttachment Medium attachment that is subject to change.

Notification when a medium attachment changes.
If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

9.5.6 onMouseCapabilityChange

void IConsoleCallback: :onMouseCapabilityChange(
[in] boolean supportsAbsolute,
[in] boolean supportsRelative,
[in] boolean needsHostCursor)

75

9 Classes (interfaces)

supportsAbsolute
supportsRelative

needsHostCursor

Notification when the mouse capabilities reported by the guest have changed. The
new capabilities are passed.
If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

9.5.7 onMousePointerShapeChange

void IConsoleCallback: :onMousePointerShapeChange(
[in] boolean visible,
[in] boolean alpha,
[in] unsigned long xHot,
[in] unsigned long yHot,
[in] unsigned long width,
[in] unsigned long height,
[in] octet shape[])

visible Flag whether the pointer is visible.

alpha Flag whether the pointer has an alpha channel.
xHot The pointer hot spot x coordinate.

yHot The pointer hot spot y coordinate.

width Width of the pointer shape in pixels.

height Height of the pointer shape in pixels.

shape Shape buffer arrays.
The shape buffer contains a 1-bpp (bits per pixel) AND mask followed by a 32-
bpp XOR (color) mask.

For pointers without alpha channel the XOR mask pixels are 32 bit values:
(Isb)BGRO(msb). For pointers with alpha channel the XOR mask consists of
(Isb) BGRA (msb) 32 bit values.

An AND mask is used for pointers with alpha channel, so if the callback does not
support alpha, the pointer could be displayed as a normal color pointer.

The AND mask is a 1-bpp bitmap with byte aligned scanlines. The size of the
AND mask therefore is cbAnd = (width + 7) / 8 % height. The padding
bits at the end of each scanline are undefined.

76

9 Classes (interfaces)

The XOR mask follows the AND mask on the next 4-byte aligned offset: uint8_t
xpXor = pAnd + (cbAnd + 3) & 3. Bytes in the gap between the AND and
the XOR mask are undefined. The XOR mask scanlines have no gap between
them and the size of the XOR mask is: cXor = width * 4 x height.

Note: If shape is 0, only the pointer visibility is changed.

Notification when the guest mouse pointer shape has changed. The new shape data
is given.
If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

9.5.8 onNetworkAdapterChange

void IConsoleCallback::onNetworkAdapterChange(
[in] INetworkAdapter networkAdapter)

networkAdapter Network adapter that is subject to change.

Notification when a property of one of the virtual network adapters changes. Inter-
ested callees should use INetworkAdapter methods and attributes to find out what has
changed.

If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

9.5.9 onParallelPortChange

void IConsoleCallback::onParallelPortChange(
[in] IParallelPort parallelPort)

parallelPort Parallel port that is subject to change.

Notification when a property of one of the virtual parallel ports changes. Interested
callees should use ISerialPort methods and attributes to find out what has changed.
If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

9.5.10 onRemoteDisplaylnfoChange
void IConsoleCallback: :onRemoteDisplayInfoChange()

Notification when the status of the VRDP server changes. Interested callees should
use IRemoteDisplayInfo attributes to find out what is the current status.
If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

77

9 Classes (interfaces)

9.5.11 onRuntimeError

void IConsoleCallback: :onRuntimeError(
[in] boolean fatal,
[in] wstring id,
[in] wstring message)

fatal Whether the error is fatal or not
id Error identifier

message Optional error message

Notification when an error happens during the virtual machine execution.
There are three kinds of runtime errors:

e fatal
e non-fatal with retry

e non-fatal warnings

Fatal errors are indicated by the fatal parameter set to true. In case of fatal errors,
the virtual machine execution is always paused before calling this notification, and the
notification handler is supposed either to immediately save the virtual machine state
using IConsole::saveState() or power it off using IConsole::powerDown(). Resuming
the execution can lead to unpredictable results.

Non-fatal errors and warnings are indicated by the fatal parameter set to false.
If the virtual machine is in the Paused state by the time the error notification is re-
ceived, it means that the user can try to resume the machine execution after attempt-
ing to solve the problem that caused the error. In this case, the notification handler
is supposed to show an appropriate message to the user (depending on the value of
the id parameter) that offers several actions such as Retry, Save or Power Off. If the
user wants to retry, the notification handler should continue the machine execution
using the IConsole::resume() call. If the machine execution is not Paused during this
notification, then it means this notification is a warning (for example, about a fatal
condition that can happen very soon); no immediate action is required from the user,
the machine continues its normal execution.

Note that in either case the notification handler must not perform any action di-
rectly on a thread where this notification is called. Everything it is allowed to do
is to post a message to another thread that will then talk to the user and take the
corresponding action.

Currently, the following error identifiers are known:

e "HostMemoryLow"
e "HostAudioNotResponding"
e "VDIStorageFull"

78

9 Classes (interfaces)

e "3DSupportIncompatibleAdditions"

Note: This notification is not designed to be implemented by more than one
callback at a time. If you have multiple IConsoleCallback instances registered
on the given IConsole object, make sure you simply do nothing but return
S_OK from all but one of them that does actual user notification and performs
necessary actions.

If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

9.5.12 onSerialPortChange

void IConsoleCallback::onSerialPortChange(
[in] ISerialPort serialPort)

serialPort Serial port that is subject to change.

Notification when a property of one of the virtual serial ports changes. Interested
callees should use ISerialPort methods and attributes to find out what has changed.
If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

9.5.13 onSharedFolderChange

void IConsoleCallback::onSharedFolderChange(
[in] Scope scope)

scope Scope of the notification.

Notification when a shared folder is added or removed. The scope argument defines
one of three scopes: global shared folders (Global), permanent shared folders of the
machine (Machine) or transient shared folders of the machine (Session). Interested
callees should use query the corresponding collections to find out what has changed.

If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

79

9 Classes (interfaces)

9.5.14 onShowWindow

unsigned long long IConsoleCallback::onShowWindow()

Notification when a call to IMachine::showConsoleWindow() requests the console
window to be activated and brought to foreground on the desktop of the host PC.

This notification should cause the VM console process to perform the requested
action as described above. If it is impossible to do it at a time of this notification, this
method should return a failure.

Note that many modern window managers on many platforms implement some sort
of focus stealing prevention logic, so that it may be impossible to activate a window
without the help of the currently active application (which is supposedly an initiator
of this notification). In this case, this method must return a non-zero identifier that
represents the top-level window of the VM console process. The caller, if it represents
a currently active process, is responsible to use this identifier (in a platform-dependent
manner) to perform actual window activation.

This method must set winId to zero if it has performed all actions necessary to
complete the request and the console window is now active and in foreground, to
indicate that no further action is required on the caller’s side.

Note: This notification is not designed to be implemented by more than one
callback at a time. If you have multiple IConsoleCallback instances registered
on the given IConsole object, make sure you simply do nothing but return
S_OK from all but one of them that actually manages console window activa-
tion.

If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

9.5.15 onStateChange

void IConsoleCallback::onStateChange(
[in] MachineState state)

state

Notification when the execution state of the machine has changed. The new state
will be given.
If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

80

9 Classes (interfaces)

9.5.16 onStorageControllerChange

void IConsoleCallback::onStorageControllerChange()

Notification when a property of one of the virtual storage controllers changes. Inter-
ested callees should query the corresponding collections to find out what has changed.
If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

9.5.17 onUSBControllerChange

void IConsoleCallback::onUSBControllerChange()

Notification when a property of the virtual USB controller changes. Interested
callees should use IUSBController methods and attributes to find out what has
changed.

If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

9.5.18 onUSBDeviceStateChange

void IConsoleCallback: :onUSBDeviceStateChange(
[in] IUSBDevice device,
[in] boolean attached,
[in] IVirtualBoxErrorInfo error)

device Device that is subject to state change.
attached true if the device was attached and false otherwise.
error null on success or an error message object on failure.

Notification when a USB device is attached to or detached from the virtual USB
controller.

This notification is sent as a result of the indirect request to attach the device because
it matches one of the machine USB filters, or as a result of the direct request issued by
IConsole::attachUSBDevice() or IConsole::detachUSBDevice().

This notification is sent in case of both a succeeded and a failed request completion.
When the request succeeds, the error parameter is null, and the given device has
been already added to (when attached is true) or removed from (when attached is
false) the collection represented by IConsole::USBDevices[]. On failure, the collec-
tion doesn’t change and the error parameter represents the error message describing
the failure.

If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

81

9 Classes (interfaces)

9.5.19 onVRDPServerChange

void IConsoleCallback: :onVRDPServerChange()

Notification when a property of the VRDP server changes. Interested callees should
use IVRDPServer methods and attributes to find out what has changed.
If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

9.6 IDHCPServer

The IDHCPServer interface represents the vbox dhcp server configuration.
To enumerate all the dhecp servers on the host, use the IVirtualBox::DHCPServers[]
attribute.

9.6.1 Attributes
9.6.1.1 enabled (read/write)

boolean IDHCPServer::enabled

specifies if the dhcp server is enabled

9.6.1.2 IPAddress (read-only)

wstring IDHCPServer::IPAddress

specifies server IP

9.6.1.3 networkMask (read-only)

wstring IDHCPServer::networkMask

specifies server network mask

9.6.1.4 networkName (read-only)

wstring IDHCPServer::networkName

specifies internal network name the server is used for

9.6.1.5 lowerlP (read-only)

wstring IDHCPServer::lowerIP

specifies from IP adrres in server address range

82

9 Classes (interfaces)

9.6.1.6 upperlP (read-only)
wstring IDHCPServer::upperIP

specifies to IP adrres in server address range

9.6.2 setConfiguration

void IDHCPServer::setConfiguration(
[in] wstring IPAddress,
[in] wstring networkMask,
[in] wstring FromIPAddress,
[in] wstring ToIPAddress)

IPAddress server IP address

networkMask server network mask

FromIPAddress server From IP address for address range
TolPAddress server To IP address for address range

configures the server
If this method fails, the following error codes may be reported:

e E_INVALIDARG: invalid configuration supplied

9.6.3 start

void IDHCPServer::start(
[in] wstring networkName,
[in] wstring trunkName,
[in] wstring trunkType)

networkName Name of internal network DHCP server should attach to.
trunkName Name of internal network trunk.
trunkType Type of internal network trunk.

Starts DHCP server process.
If this method fails, the following error codes may be reported:

e E_FAIL: Failed to start the process.

9.6.4 stop
void IDHCPServer::stop()

Stops DHCP server process.
If this method fails, the following error codes may be reported:

e E_FAIL: Failed to stop the process.

83

9 Classes (interfaces)

9.7 IDisplay

The IDisplay interface represents the virtual machine’s display.

The object implementing this interface is contained in each IConsole::display at-
tribute and represents the visual output of the virtual machine.

The virtual display supports pluggable output targets represented by the IFrame-
buffer interface. Examples of the output target are a window on the host computer or
an RDP session’s display on a remote computer.

9.7.1 completeVHWACommand

’ Note: This method is not supported in the web service.

void IDisplay::completeVHWACommand (
[in] [ptr] octet command)

command Pointer to VBOXVHWACMD containing the completed command.

Signals that the Video HW Acceleration command has completed.

9.7.2 drawToScreen

Note: This method is not supported in the web service.

void IDisplay::drawToScreen(
[in] unsigned long screenId,
[in] [ptr] octet address,
[in] unsigned long x,
[in] unsigned long vy,
[in] unsigned long width,
[in] unsigned long height)
screenld
address
X Relative to the screen top left corner.
y Relative to the screen top left corner.
width

height

84

9 Classes (interfaces)

Draws a 32-bpp image of the specified size from the given buffer to the given point
on the VM display.
If this method fails, the following error codes may be reported:

e E_NOTIMPL: Feature not implemented.

e VBOX_E_IPRT_ERROR: Could not draw to screen.

9.7.3 getFramebuffer

’ Note: This method is not supported in the web service.

void IDisplay::getFramebuffer(
[in] unsigned long screenId,
[out] IFramebuffer framebuffer,
[out] long xOrigin,
[out] long yOrigin)

screenld

framebuffer

xOrigin

yOrigin

Queries the framebuffer for given screen.

9.7.4 getScreenResolution

void IDisplay::getScreenResolution(
[in] unsigned long screenId,
[out] unsigned long width,
[out] unsigned long height,
[out] unsigned long bitsPerPixel)

screenld
width
height
bitsPerPixel

Queries display width, height and color depth for given screen.

85

9 Classes (interfaces)

9.7.5 invalidateAndUpdate
void IDisplay::invalidateAndUpdate()

Does a full invalidation of the VM display and instructs the VM to update it.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Could not invalidate and update screen.

9.7.6 resizeCompleted

void IDisplay::resizeCompleted(
[in] unsigned long screenId)

screenld

Signals that a framebuffer has completed the resize operation.
If this method fails, the following error codes may be reported:

e VBOX_E_NOT_SUPPORTED: Operation only valid for external frame buffers.

9.7.7 setFramebuffer

Note: This method is not supported in the web service.

void IDisplay::setFramebuffer(
[in] unsigned long screenld,
[in] IFramebuffer framebuffer)

screenld
framebuffer

Sets the framebuffer for given screen.

9.7.8 setSeamlessMode

void IDisplay::setSeamlessMode (
[in] boolean enabled)

enabled

Enables or disables seamless guest display rendering (seamless desktop integration)
mode.

Note: Calling this method has no effect if IGuest::supportsSeamless returns
false.

86

9 Classes (interfaces)

9.7.9 setVideoModeHint

void IDisplay::setVideoModeHint(
[in] unsigned long width,
[in] unsigned long height,
[in] unsigned long bitsPerPixel,
[in] unsigned long display)

width
height
bitsPerPixel
display

Asks VirtualBox to request the given video mode from the guest. This is just a
hint and it cannot be guaranteed that the requested resolution will be used. Guest
Additions are required for the request to be seen by guests. The caller should issue the
request and wait for a resolution change and after a timeout retry.

Specifying 0 for either width, height or bitsPerPixel parameters means that
the corresponding values should be taken from the current video mode (i.e. left un-
changed).

If the guest OS supports multi-monitor configuration then the display parameter
specifies the number of the guest display to send the hint to: 0 is the primary display,
1 is the first secondary and so on. If the multi-monitor configuration is not supported,
display must be 0.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: The display is not associated with any monitor.

9.7.10 takeScreenShot

’ Note: This method is not supported in the web service.

void IDisplay::takeScreenShot(
[in] unsigned long screenId,
[in] [ptr] octet address,
[in] unsigned long width,
[in] unsigned long height)

screenld
address

width

87

9 Classes (interfaces)

height

Takes a screen shot of the requested size and copies it to the 32-bpp buffer allocated
by the caller and pointed to by address. A pixel consists of 4 bytes in order: B, G, R,
0.

Note: This API can be used only by the COM/XPCOM C+ + API as it requires
pointer support. Use takeScreenShotToArray() with other language bindings.

If this method fails, the following error codes may be reported:

e E_NOTIMPL: Feature not implemented.

e VBOX_E_IPRT_ERROR: Could not take a screenshot.

9.7.11 takeScreenShotToArray

octet[] IDisplay::takeScreenShotToArray(
[in] unsigned long screenId,
[in] unsigned long width,
[in] unsigned long height)

screenld Monitor to take screenshot from.
width Desired image width.

height Desired image height.

Takes a guest screen shot of the requested size and returns it as an array of bytes in
uncompressed 32-bit RGBA format. A pixel consists of 4 bytes in order: R, G, B, OxFF.

This API is slow, but could be the only option to get guest screenshot for scriptable
languages not allowed to manipulate with addresses directly.

If this method fails, the following error codes may be reported:

e E_NOTIMPL: Feature not implemented.

e VBOX_E_IPRT_ERROR: Could not take a screenshot.

9.8 IFramebuffer

’ Note: This interface is not supported in the web service.

88

9 Classes (interfaces)

9.8.1 Attributes
9.8.1.1 address (read-only)

octet IFramebuffer::address

Address of the start byte of the frame buffer.
9.8.1.2 width (read-only)
unsigned long IFramebuffer::width
Frame buffer width, in pixels.
9.8.1.3 height (read-only)
unsigned long IFramebuffer::height
Frame buffer height, in pixels.

9.8.1.4 bitsPerPixel (read-only)

unsigned long IFramebuffer::bitsPerPixel

Color depth, in bits per pixel. When pixelFormat is FOURCC_RGB, valid values are:

8,15, 16, 24 and 32.

9.8.1.5 bytesPerLine (read-only)

unsigned long IFramebuffer::bytesPerLine

Scan line size, in bytes. When pixelFormat is FOURCC_RGB, the size of the scan line

must be aligned to 32 bits.

9.8.1.6 pixelFormat (read-only)

unsigned long IFramebuffer::pixelFormat

Frame buffer pixel format. It’s either one of the values defined by FramebufferPix-

elFormat or a raw FOURCC code.

address points to must be always known.

Note: This attribute must never return Opaque — the format of the buffer

89

9 Classes (interfaces)

9.8.1.7 usesGuestVRAM (read-only)

boolean IFramebuffer::usesGuestVRAM

Defines whether this frame buffer uses the virtual video card’s memory buffer (guest
VRAM) directly or not. See requestResize() for more information.

9.8.1.8 heightReduction (read-only)

unsigned long IFramebuffer::heightReduction

Hint from the frame buffer about how much of the standard screen height it wants
to use for itself. This information is exposed to the guest through the VESA BIOS and
VMMDev interface so that it can use it for determining its video mode table. It is not
guaranteed that the guest respects the value.

9.8.1.9 overlay (read-only)

IFramebufferOverlay IFramebuffer::overlay

Note: This attribute is not supported in the web service.

An alpha-blended overlay which is superposed over the frame buffer. The initial
purpose is to allow the display of icons providing information about the VM state,
including disk activity, in front ends which do not have other means of doing that.
The overlay is designed to controlled exclusively by IDisplay. It has no locking of its
own, and any changes made to it are not guaranteed to be visible until the affected
portion of IFramebuffer is updated. The overlay can be created lazily the first time
it is requested. This attribute can also return null to signal that the overlay is not
implemented.

9.8.1.10 winld (read-only)

unsigned long long IFramebuffer::winld

Platform-dependent identifier of the window where context of this frame buffer is
drawn, or zero if there’s no such window.

9.8.2 getVisibleRegion

’ Note: This method is not supported in the web service.

90

9 Classes (interfaces)

unsigned long IFramebuffer::getVisibleRegion(
[in] [ptr] octet rectangles,
[in] unsigned long count)

rectangles Pointer to the RTRECT array to receive region data.
count Number of RTRECT elements in the rectangles array.

Returns the visible region of this frame buffer.

If the rectangles parameter is null then the value of the count parameter is
ignored and the number of elements necessary to describe the current visible region is
returned in countCopied.

If rectangles is not null but count is less than the required number of elements
to store region data, the method will report a failure. If count is equal or greater than
the required number of elements, then the actual number of elements copied to the
provided array will be returned in countCopied.

Note: The address of the provided array must be in the process space of this
IFramebuffer object.

’ Note: Method not yet implemented.

9.8.3 lock

void IFramebuffer::lock()

Locks the frame buffer. Gets called by the IDisplay object where this frame buffer is
bound to.

9.8.4 notifyUpdate

void IFramebuffer::notifyUpdate(
[in] unsigned long x,
[in] unsigned long vy,
[in] unsigned long width,
[in] unsigned long height)

X
y
width
height

Informs about an update. Gets called by the display object where this buffer is
registered.

91

9 Classes (interfaces)

9.8.5 processVHWACommand

’ Note: This method is not supported in the web service.

void IFramebuffer::processVHWACommand (
[in] [ptr] octet command)

command Pointer to VBOXVHWACMD containing the command to execute.

Posts a Video HW Acceleration Command to the frame buffer for processing. The
commands used for 2D video acceleration (DDraw surface creation/destroying, blit-
ting, scaling, color covnersion, overlaying, etc.) are posted from quest to the host to
be processed by the host hardware.

Note: The address of the provided command must be in the process space of
this IFramebuffer object.

9.8.6 requestResize

’ Note: This method is not supported in the web service.

boolean IFramebuffer::requestResize(
[in] unsigned long screenId,
[in] unsigned long pixelFormat,
[in] [ptr] octet VRAM,
[in] unsigned long bitsPerPixel,
[in] unsigned long bytesPerLine,
[in] unsigned long width,
[in] unsigned long height)

screenld Logical screen number. Must be used in the corresponding call to IDis-
play::resizeCompleted() if this call is made.

pixelFormat Pixel format of the memory buffer pointed to by VRAM. See also Frame-
bufferPixelFormat.

VRAM Pointer to the virtual video card’s VRAM (may be null).
bitsPerPixel Color depth, bits per pixel.
bytesPerLine Size of one scan line, in bytes.

width Width of the guest display, in pixels.

92

9 Classes (interfaces)

height Height of the guest display, in pixels.

Requests a size and pixel format change.

There are two modes of working with the video buffer of the virtual machine. The
indirect mode implies that the IFramebuffer implementation allocates a memory buffer
for the requested display mode and provides it to the virtual machine. In direct mode,
the IFramebuffer implementation uses the memory buffer allocated and owned by
the virtual machine. This buffer represents the video memory of the emulated video
adapter (so called guest VRAM). The direct mode is usually faster because the imple-
mentation gets a raw pointer to the guest VRAM buffer which it can directly use for
visualizing the contents of the virtual display, as opposed to the indirect mode where
the contents of guest VRAM are copied to the memory buffer provided by the imple-
mentation every time a display update occurs.

It is important to note that the direct mode is really fast only when the implemen-
tation uses the given guest VRAM bulffer directly, for example, by blitting it to the
window representing the virtual machine’s display, which saves at least one copy oper-
ation comparing to the indirect mode. However, using the guest VRAM buffer directly
is not always possible: the format and the color depth of this buffer may be not sup-
ported by the target window, or it may be unknown (opaque) as in case of text or
non-linear multi-plane VGA video modes. In this case, the indirect mode (that is al-
ways available) should be used as a fallback: when the guest VRAM contents are
copied to the implementation-provided memory buffer, color and format conversion is
done automatically by the underlying code.

The pixelFormat parameter defines whether the direct mode is available or not. If
pixelFormat is Opaque then direct access to the guest VRAM buffer is not available
— the VRAM, bitsPerPixel and bytesPerLine parameters must be ignored and the
implementation must use the indirect mode (where it provides its own buffer in one of
the supported formats). In all other cases, pixelFormat together with bitsPerPixel
and bytesPerLine define the format of the video memory buffer pointed to by the
VRAM parameter and the implementation is free to choose which mode to use. To
indicate that this frame buffer uses the direct mode, the implementation of the us-
esGuestVRAM attribute must return true and address must return exactly the same
address that is passed in the VRAM parameter of this method; otherwise it is assumed
that the indirect strategy is chosen.

The width and height parameters represent the size of the requested display mode
in both modes. In case of indirect mode, the provided memory buffer should be big
enough to store data of the given display mode. In case of direct mode, it is guaranteed
that the given VRAM buffer contains enough space to represent the display mode of the
given size. Note that this frame buffer’s width and height attributes must return exactly
the same values as passed to this method after the resize is completed (see below).

The finished output parameter determines if the implementation has finished re-
sizing the frame buffer or not. If, for some reason, the resize cannot be finished im-
mediately during this call, finished must be set to false, and the implementation
must call IDisplay::resizeCompleted() after it has returned from this method as soon

93

9 Classes (interfaces)

as possible. If finished is false, the machine will not call any frame buffer methods
until IDisplay::resizeCompleted() is called.

Note that if the direct mode is chosen, the bitsPerPixel, bytesPerLine and pixelFormat
attributes of this frame buffer must return exactly the same values as specified in the
parameters of this method, after the resize is completed. If the indirect mode is chosen,
these attributes must return values describing the format of the implementation’s own
memory buffer address points to. Note also that the bitsPerPixel value must always
correlate with pixelFormat. Note that the pixelFormat attribute must never return
Opaque regardless of the selected mode.

Note: This method is called by the IDisplay object under the lock() pro-
vided by this IFramebuffer implementation. If this method returns false
in finished, then this lock is not released until IDisplay::resizeCompleted()
is called.

9.8.7 setVisibleRegion

Note: This method is not supported in the web service.

void IFramebuffer::setVisibleRegion(
[in] [ptr] octet rectangles,
[in] unsigned long count)

rectangles Pointer to the RTRECT array.
count Number of RTRECT elements in the rectangles array.

Suggests a new visible region to this frame buffer. This region represents the area
of the VM display which is a union of regions of all top-level windows of the guest
operating system running inside the VM (if the Guest Additions for this system support
this functionality). This information may be used by the frontends to implement the
seamless desktop integration feature.

Note: The address of the provided array must be in the process space of this
IFramebuffer object.

Note: The IFramebuffer implementation must make a copy of the provided
array of rectangles.

Note: Method not yet implemented.

94

9 Classes (interfaces)

9.8.8 unlock

void IFramebuffer::unlock()

Unlocks the frame buffer. Gets called by the IDisplay object where this frame buffer
is bound to.

9.8.9 videoModeSupported

boolean IFramebuffer::videoModeSupported(
[in] unsigned long width,
[in] unsigned long height,
[in] unsigned long bpp)

width
height
bpp

Returns whether the frame buffer implementation is willing to support a given video
mode. In case it is not able to render the video mode (or for some reason not willing),
it should return false. Usually this method is called when the guest asks the VMM
device whether a given video mode is supported so the information returned is directly
exposed to the guest. It is important that this method returns very quickly.

9.9 IFramebufferOverlay

’ Note: This interface is not supported in the web service.

The IFramebufferOverlay interface represents an alpha blended overlay for display-
ing status icons above an IFramebuffer. It is always created not visible, so that it must
be explicitly shown. It only covers a portion of the IFramebuffer, determined by its
width, height and co-ordinates. It is always in packed pixel little-endian 32bit ARGB
(in that order) format, and may be written to directly. Do re-read the width though,
after setting it, as it may be adjusted (increased) to make it more suitable for the front
end.

9.9.1 Attributes
9.9.1.1 x (read-only)

unsigned long IFramebufferOverlay::x

X position of the overlay, relative to the frame bulffer.

95

9 Classes (interfaces)

9.9.1.2 y (read-only)

unsigned long IFramebufferOverlay::y

Y position of the overlay, relative to the frame buffer.

9.9.1.3 visible (read/write)

boolean IFramebufferOverlay::visible

Whether the overlay is currently visible.

9.9.1.4 alpha (read/write)

unsigned long IFramebufferOverlay::alpha

The global alpha value for the overlay. This may or may not be supported by a given
front end.

9.9.2 move

void IFramebufferOverlay: :move(
[in] unsigned long x,
[in] unsigned long y)

Changes the overlay’s position relative to the IFramebuffer.

9.10 IGuest

The IGuest interface represents information about the operating system running inside
the virtual machine. Used in IConsole::guest.

IGuest provides information about the guest operating system, whether Guest Addi-
tions are installed and other OS-specific virtual machine properties.

9.10.1 Attributes
9.10.1.1 OSTypeld (read-only)

wstring IGuest::0STypeld

Identifier of the Guest OS type as reported by the Guest Additions. You may use
IVirtualBox::getGuestOSType() to obtain an IGuestOSType object representing details
about the given Guest OS type.

96

9 Classes (interfaces)

Note: If Guest Additions are not installed, this value will be the same as
IMachine::OSTypeld.

9.10.1.2 additionsActive (read-only)

boolean IGuest::additionsActive

Flag whether the Guest Additions are installed and active in which case their version
will be returned by the additionsVersion property.

9.10.1.3 additionsVersion (read-only)

wstring IGuest::additionsVersion

Version of the Guest Additions (3 decimal numbers separated by dots) or empty
when the Additions are not installed. The Additions may also report a version but yet
not be active as the version might be refused by VirtualBox (incompatible) or other
failures occurred.

9.10.1.4 supportsSeamless (read-only)

boolean IGuest::supportsSeamless

Flag whether seamless guest display rendering (seamless desktop integration) is
supported.

9.10.1.5 supportsGraphics (read-only)

boolean IGuest::supportsGraphics

Flag whether the guest is in graphics mode. If it is not, then seamless rendering
will not work, resize hints are not immediately acted on and guest display resizes are
probably not initiated by the guest additions.

9.10.1.6 memoryBalloonSize (read/write)
unsigned long IGuest::memoryBalloonSize
Guest system memory balloon size in megabytes (transient property).
9.10.1.7 pageFusionEnabled (read/write)
boolean IGuest::pageFusionEnabled

Flag whether page fusion is enabled or not.

97

9 Classes (interfaces)

9.10.1.8 statisticsUpdatelnterval (read/write)

unsigned long IGuest::statisticsUpdateInterval

Interval to update guest statistics in seconds.

9.10.2 executeProcess

IProgress IGuest::executeProcess(
[in] wstring execName,
[in] unsigned long flags,
[in] wstring arguments[],
[in] wstring environment[],
[in] wstring userName,
[in] wstring password,
[in] unsigned long timeoutMS,
[out] unsigned long pid)

execName Full path name of the command to execute on the guest; the commands
has to exists in the guest VM in order to be executed.

flags Execution flags - currently not supported and therefore has to be set to 0.
arguments Array of arguments passed to the execution command.

environment Environment variables that can be set while the command is being ex-
ecuted, in form of “NAME=VALUE”; one pair per entry. To unset a variable just
set its name (“NAME”) without a value.

userName User name under which the command will be executed; has to exist and
have the appropriate rights to execute programs in the VM.

password Password of the user account specified.

timeoutMS The maximum timeout value (in msec) to wait for finished program exe-
cution. Pass O for an infinite timeout.

pid The PID (process ID) of the started command for later reference.

Executes an existing program inside the guest VM.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Could not execute process.

98

9 Classes (interfaces)

9.10.3 getProcessOutput

octet[] IGuest::getProcessOutput(
[in] unsigned long pid,
[in] unsigned long flags,
[in] unsigned long timeoutMS,
[in] unsigned long long size)

pid Process id returned by earlier executeProcess() call.
flags Flags describing which output to retrieve.

timeoutMS The maximum timeout value (in msec) to wait for output data. Pass O for
an infinite timeout.

size Size in bytes to read in the buffer.

Retrieves output of a formerly started process.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Could not retrieve output.

9.10.4 getProcessStatus

unsigned long IGuest::getProcessStatus(
[in] unsigned long pid,
[out] unsigned long exitcode,
[out] unsigned long flags)

pid Process id returned by earlier executeProcess() call.
exitcode The exit code (if available).

flags Additional flags of process status (not used at the moment).

Retrieves status, exit code and the exit reason of a formerly started process.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Process with specified PID was not found.

9.10.5 internalGetStatistics

void IGuest::internalGetStatistics(
[out] unsigned long cpuUser,
[out] unsigned long cpuKernel,
[out] unsigned long cpuldle,
[out] unsigned long memTotal,
[out] unsigned long memFree,
[out] unsigned long memBalloon,

99

9 Classes (interfaces)

[out] unsigned long memShared,

[out] unsigned long memCache,

[out] unsigned long pagedTotal,
[out] unsigned long memAllocTotal,
[out] unsigned long memFreeTotal,
[out] unsigned long memBalloonTotal,
[out] unsigned long memSharedTotal)

cpuUser Percentage of processor time spent in user mode as seen by the guest
cpuKernel Percentage of processor time spent in kernel mode as seen by the guest
cpuldle Percentage of processor time spent idling as seen by the guest
memTotal Total amount of physical guest RAM

memFree Free amount of physical guest RAM

memBalloon Amount of ballooned physical guest RAM

memShared Amount of shared physical guest RAM

memCache Total amount of guest (disk) cache memory

pagedTotal Total amount of space in the page file

memAllocTotal Total amount of memory allocated by the hypervisor
memFreeTotal Total amount of free memory available in the hypervisor
memBalloonTotal Total amount of memory ballooned by the hypervisor

memSharedTotal Total amount of shared memory in the hypervisor

Internal method; do not use as it might change at any time

9.10.6 setCredentials

void IGuest::setCredentials(
[in] wstring userName,
[in] wstring password,
[in] wstring domain,
[in] boolean allowInteractivelLogon)

userName User name string, can be empty
password Password string, can be empty

domain Domain name (guest logon scheme specific), can be empty

100

9 Classes (interfaces)

allowinteractiveLogon Flag whether the guest should alternatively allow the user to
interactively specify different credentials. This flag might not be supported by
all versions of the Additions.

Store login credentials that can be queried by guest operating systems with Addi-
tions installed. The credentials are transient to the session and the guest may also
choose to erase them. Note that the caller cannot determine whether the guest oper-
ating system has queried or made use of the credentials.

If this method fails, the following error codes may be reported:

e VBOX_E_VM_ERROR: VMM device is not available.

9.11 IGuestOSType

Note: With the web service, this interface is mapped to a structure. Attributes
that return this interface will not return an object, but a complete structure
containing the attributes listed below as structure members.

9.11.1 Attributes
9.11.1.1 familyld (read-only)

wstring IGuestOSType::familyId

Guest OS family identifier string.
9.11.1.2 familyDescription (read-only)
wstring IGuestOSType::familyDescription

Human readable description of the guest OS family.

9.11.1.3 id (read-only)

wstring IGuestOSType::id

Guest OS identifier string.

9.11.1.4 description (read-only)

wstring IGuestOSType::description

Human readable description of the guest OS.

101

9 Classes (interfaces)

9.11.1.5 is64Bit (read-only)

boolean IGuestOSType::is64Bit

Returns true if the given OS is 64-bit

9.11.1.6 recommendedIOAPIC (read-only)

boolean IGuest0SType::recommendedIOAPIC

Returns true if IO APIC recommended for this OS type.

9.11.1.7 recommendedVirtEx (read-only)

boolean IGuest0SType::recommendedVirtEx

Returns true if VI-x or AMD-V recommended for this OS type.

9.11.1.8 recommendedRAM (read-only)

unsigned long IGuestOSType: :recommendedRAM

Recommended RAM size in Megabytes.

9.11.1.9 recommendedVRAM (read-only)

unsigned long IGuestOSType::recommendedVRAM

Recommended video RAM size in Megabytes.

9.11.1.10 recommendedHDD (read-only)

unsigned long IGuestOSType: : recommendedHDD

Recommended hard disk size in Megabytes.

9.11.1.11 adapterType (read-only)

NetworkAdapterType IGuestOSType::adapterType

Returns recommended network adapter for this OS type.

9.11.1.12 recommendedPae (read-only)

boolean IGuest0SType::recommendedPae

Returns true if using PAE is recommended for this OS type.

102

9 Classes (interfaces)

9.11.1.13 recommendedDvdStorageController (read-only)

StorageControllerType IGuest0SType::recommendedDvdStorageController

Recommended storage controller type for DVD/CD drives.

9.11.1.14 recommendedDvdStorageBus (read-only)

StorageBus IGuestO0SType::recommendedDvdStorageBus

Recommended storage bus type for DVD/CD drives.

9.11.1.15 recommendedHdStorageController (read-only)

StorageControllerType IGuest0SType::recommendedHdStorageController

Recommended storage controller type for HD drives.

9.11.1.16 recommendedHdStorageBus (read-only)

StorageBus IGuestOSType::recommendedHdStorageBus

Recommended storage bus type for HD drives.

9.11.1.17 recommendedFirmware (read-only)

FirmwareType IGuest0SType::recommendedFirmware

Recommended firmware type.

9.11.1.18 recommendedUsbHid (read-only)

boolean IGuest0SType::recommendedUsbHid

Returns true if using USB Human Interface Devices, such as keyboard and mouse
recommended.

9.11.1.19 recommendedHpet (read-only)

boolean IGuest0SType::recommendedHpet

Returns true if using HPET is recommended for this OS type.

9.11.1.20 recommendedUsbTablet (read-only)

boolean IGuest0SType::recommendedUsbTablet

Returns true if using a USB Tablet is recommended.

103

9 Classes (interfaces)

9.11.1.21 recommendedRtcUseUtc (read-only)

boolean IGuest0SType::recommendedRtcUseUtc

Returns true if the RTC of this VM should be set to UTC

9.12 IHost

The IHost interface represents the physical machine that this VirtualBox installation
runs on.

An object implementing this interface is returned by the IVirtualBox::host attribute.
This interface contains read-only information about the host’s physical hardware (such
as what processors and disks are available, what the host operating system is, and so
on) and also allows for manipulating some of the host’s hardware, such as global USB
device filters and host interface networking.

9.12.1 Attributes
9.12.1.1 DVDDrives (read-only)

IMedium IHost::DVDDrives|]

List of DVD drives available on the host.

9.12.1.2 floppyDrives (read-only)

IMedium IHost::floppyDrives|[]

List of floppy drives available on the host.
9.12.1.3 USBDevices (read-only)
THostUSBDevice IHost::USBDevices[]

List of USB devices currently attached to the host. Once a new device is physically
attached to the host computer, it appears in this list and remains there until detached.

Note: If USB functionality is not available in the given edition of VirtualBox,
this method will set the result code to E_NOTIMPL.

104

9 Classes (interfaces)

9.12.1.4 USBDeviceFilters (read-only)

IHostUSBDeviceFilter IHost::USBDeviceFilters|[]

List of USB device filters in action. When a new device is physically attached to the
host computer, filters from this list are applied to it (in order they are stored in the
list). The first matched filter will determine the action performed on the device.

Unless the device is ignored by these filters, filters of all currently running virtual
machines (IUSBController::deviceFilters[]) are applied to it.

Note: If USB functionality is not available in the given edition of VirtualBox,
this method will set the result code to E_NOTIMPL.

See also: IHostUSBDeviceFilter, USBDeviceState

9.12.1.5 networkinterfaces (read-only)

IHostNetworkInterface IHost::networkInterfaces[]

List of host network interfaces currently defined on the host.

9.12.1.6 processorCount (read-only)

unsigned long IHost::processorCount

Number of (logical) CPUs installed in the host system.

9.12.1.7 processorOnlineCount (read-only)

unsigned long IHost::processorOnlineCount

Number of (logical) CPUs online in the host system.

9.12.1.8 processorCoreCount (read-only)

unsigned long IHost::processorCoreCount

Number of physical processor cores installed in the host system.

9.12.1.9 memorySize (read-only)

unsigned long IHost::memorySize

Amount of system memory in megabytes installed in the host system.

105

9 Classes (interfaces)

9.12.1.10 memoryAvailable (read-only)

unsigned long IHost::memoryAvailable

Available system memory in the host system.

9.12.1.11 operatingSystem (read-only)

wstring IHost::operatingSystem

Name of the host system’s operating system.

9.12.1.12 OSVersion (read-only)

wstring IHost::0SVersion

Host operating system’s version string.

9.12.1.13 UTCTime (read-only)

long long IHost::UTCTime

Returns the current host time in milliseconds since 1970-01-01 UTC.

9.12.1.14 Acceleration3DAvailable (read-only)

boolean IHost::Acceleration3DAvailable

Returns true when the host supports 3D hardware acceleration.

9.12.2 createHostOnlyNetworkinterface

IProgress IHost::createHostOnlyNetworkInterface(
[out] IHostNetworkInterface hostInterface)

hostinterface Created host interface object.

Creates a new adapter for Host Only Networking.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Host network interface name already exists.

106

9 Classes (interfaces)

9.12.3 createUSBDeviceFilter

IHostUSBDeviceFilter IHost::createUSBDeviceFilter(
[in] wstring name)

name Filter name. See IHostUSBDeviceFilter::name for more info.

Creates a new USB device filter. All attributes except the filter name are set to empty
(any match), active is false (the filter is not active).

The created filter can be added to the list of filters using insertUSBDeviceFilter().

See also: #USBDeviceFilters

9.12.4 findHostDVDDrive

IMedium IHost::findHostDVDDrive(
[in] wstring name)

name Name of the host drive to search for

Searches for a host DVD drive with the given name.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Given name does not correspond to any host
drive.

9.12.5 findHostFloppyDrive

IMedium IHost::findHostFloppyDrive(
[in] wstring name)

name Name of the host floppy drive to search for

Searches for a host floppy drive with the given name.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Given name does not correspond to any host
floppy drive.

9.12.6 findHostNetworkinterfaceByld

IHostNetworkInterface IHost::findHostNetworkInterfaceById(
[in] uuid id)

id GUID of the host network interface to search for.

Searches through all host network interfaces for an interface with the given GUID.

Note: The method returns an error if the given GUID does not correspond to
any host network interface.

107

9 Classes (interfaces)

9.12.7 findHostNetworkinterfaceByName

IHostNetworkInterface IHost::findHostNetworkInterfaceByName (
[in] wstring name)

name Name of the host network interface to search for.

Searches through all host network interfaces for an interface with the given name.

Note: The method returns an error if the given name does not correspond to
any host network interface.

9.12.8 findHostNetworkiInterfacesOfType

IHostNetworkInterface[] IHost::findHostNetworkInterfacesOfType(
[in] HostNetworkInterfaceType type)

type type of the host network interfaces to search for.

Searches through all host network interfaces and returns a list of interfaces of the
specified type
9.12.9 findUSBDeviceByAddress

IHostUSBDevice IHost::findUSBDeviceByAddress(
[in] wstring name)

name Address of the USB device (as assigned by the host) to search for.

Searches for a USB device with the given host address.
See also: IHostUSBDevice::address
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Given name does not correspond to any USB de-
vice.

9.12.10 findUSBDeviceByld

THostUSBDevice IHost::findUSBDeviceById (
[in] uuid id)

id UUID of the USB device to search for.

Searches for a USB device with the given UUID.
See also: THostUSBDevice::id
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Given id does not correspond to any USB device.

108

9 Classes (interfaces)

9.12.11 getProcessorCPUIDLeaf

void IHost::getProcessorCPUIDLeaf (
[in] unsigned long cpuld,
[in] unsigned long leaf,
[in] unsigned long sublLeaf,
[out] unsigned long valEax,
[out] unsigned long valEbx,
[out] unsigned long valEcx,
[out] unsigned long valEdx)

cpuld Identifier of the CPU. The CPU most be online.

Note: The current implementation might not necessarily return the descrip-
tion for this exact CPU.

leaf CPUID leaf index (eax).

subLeaf CPUID leaf sub index (ecx). This currently only applies to cache information
on Intel CPUs. Use 0 if retriving values for IMachine::setCPUIDLeaf().

valEax CPUID leaf value for register eax.
valEbx CPUID leaf value for register ebx.
valEcx CPUID leaf value for register ecx.

valEdx CPUID leaf value for register edx.

Returns the CPU cpuid information for the specified leaf.

9.12.12 getProcessorDescription

wstring IHost::getProcessorDescription(
[in] unsigned long cpuld)

cpuld Identifier of the CPU.

Note: The current implementation might not necessarily return the descrip-
tion for this exact CPU.

Query the model string of a specified host CPU.

109

9 Classes (interfaces)

9.12.13 getProcessorFeature

boolean IHost::getProcessorFeature(
[in] ProcessorFeature feature)

feature CPU Feature identifier.

Query whether a CPU feature is supported or not.

9.12.14 getProcessorSpeed

unsigned long IHost::getProcessorSpeed(
[in] unsigned long cpuld)

cpuld Identifier of the CPU.

Query the (approximate) maximum speed of a specified host CPU in Megahertz.

9.12.15 insertUSBDeviceFilter

void IHost::insertUSBDeviceFilter(
[in] unsigned long position,
[in] IHostUSBDeviceFilter filter)

position Position to insert the filter to.
filter USB device filter to insert.

Inserts the given USB device to the specified position in the list of filters.
Positions are numbered starting from 0. If the specified position is equal to or greater
than the number of elements in the list, the filter is added at the end of the collection.

Note: Duplicates are not allowed, so an attempt to insert a filter already in
the list is an error.

Note: If USB functionality is not available in the given edition of VirtualBox,
this method will set the result code to E_NOTIMPL.

See also: #USBDeviceFilters
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_OBJECT_STATE: USB device filter is not created within this
VirtualBox instance.

e E_INVALIDARG: USB device filter already in list.

110

9 Classes (interfaces)

9.12.16 removeHostOnlyNetworkinterface

IProgress IHost::removeHostOnlyNetworkInterface(
[in] uuid id)

id Adapter GUID.

Removes the given Host Only Networking interface.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: No host network interface matching id found.

9.12.17 removeUSBDeviceFilter

void IHost::removeUSBDeviceFilter(
[in] unsigned long position)

position Position to remove the filter from.

Removes a USB device filter from the specified position in the list of filters.
Positions are numbered starting from 0. Specifying a position equal to or greater
than the number of elements in the list will produce an error.

Note: If USB functionality is not available in the given edition of VirtualBox,
this method will set the result code to E_NOTIMPL.

See also: #USBDeviceFilters
If this method fails, the following error codes may be reported:

e E_INVALIDARG: USB device filter list empty or invalid position.

9.13 IHostNetworkinterface

Represents one of host’s network interfaces. IP V6 address and network mask are
strings of 32 hexdecimal digits grouped by four. Groups are separated by colons. For
example, fe80:0000:0000:0000:021e:c2ff:fed2:b030.

9.13.1 Attributes
9.13.1.1 name (read-only)

wstring IHostNetworkInterface::name

Returns the host network interface name.

111

9 Classes (interfaces)

9.13.1.2 id (read-only)

uuid IHostNetworkInterface::id

Returns the interface UUID.

9.13.1.3 networkName (read-only)

wstring IHostNetworkInterface::networkName

Returns the name of a virtual network the interface gets attached to.

9.13.1.4 dhcpEnabled (read-only)

boolean IHostNetworkInterface::dhcpEnabled

Specifies whether the DHCP is enabled for the interface.

9.13.1.5 IPAddress (read-only)

wstring IHostNetworkInterface::IPAddress

Returns the IP V4 address of the interface.

9.13.1.6 networkMask (read-only)

wstring IHostNetworkInterface::networkMask

Returns the network mask of the interface.

9.13.1.7 IPV6Supported (read-only)

boolean IHostNetworkInterface::IPV6Supported

Specifies whether the IP V6 is supported/enabled for the interface.

9.13.1.8 IPV6Address (read-only)

wstring IHostNetworkInterface::IPV6Address

Returns the IP V6 address of the interface.

9.13.1.9 IPV6NetworkMaskPrefixLength (read-only)

unsigned long IHostNetworkInterface::IPV6NetworkMaskPrefixLength

Returns the length IP V6 network mask prefix of the interface.

112

9 Classes (interfaces)

9.13.1.10 hardwareAddress (read-only)

wstring IHostNetworkInterface::hardwareAddress

Returns the hardware address. For Ethernet it is MAC address.

9.13.1.11 mediumType (read-only)

HostNetworkInterfaceMediumType IHostNetworkInterface::mediumType

Type of protocol encapsulation used.

9.13.1.12 status (read-only)

HostNetworkInterfaceStatus IHostNetworkInterface::status

Status of the interface.

9.13.1.13 interfaceType (read-only)

HostNetworkInterfaceType IHostNetworkInterface::interfaceType

specifies the host interface type.

9.13.2 dhcpRediscover

void IHostNetworkInterface::dhcpRediscover()

refreshes the IP configuration for dhcp-enabled interface.

9.13.3 enableDynamiclpConfig

void IHostNetworkInterface::enableDynamicIpConfig()

enables the dynamic IP configuration.

9.13.4 enableStaticlpConfig

void IHostNetworkInterface::enableStaticIpConfig(
[in] wstring IPAddress,
[in] wstring networkMask)

IPAddress IP address.

networkMask network mask.

sets and enables the static IP V4 configuration for the given interface.

113

9 Classes (interfaces)

9.13.5 enableStaticlpConfigV6

void IHostNetworkInterface::enableStaticIpConfigV6(
[in] wstring IPV6Address,
[in] unsigned long IPV6NetworkMaskPrefixLength)

IPV6Address IP address.
IPV6NetworkMaskPrefixLength network mask.

sets and enables the static IP V6 configuration for the given interface.

9.14 IHostUSBDevice

The THostUSBDevice interface represents a physical USB device attached to the host
computer.

Besides properties inherited from IUSBDevice, this interface adds the state property
that holds the current state of the USB device.

See also: IHost::USBDevices, IHost::USBDeviceFilters

9.14.1 Attributes
9.14.1.1 state (read-only)
USBDeviceState IHostUSBDevice::state

Current state of the device.

9.15 IHostUSBDeviceFilter

The IHostUSBDeviceFilter interface represents a global filter for a physical USB device
used by the host computer. Used indirectly in IHost::USBDeviceFilters[].

Using filters of this type, the host computer determines the initial state of the USB
device after it is physically attached to the host’s USB controller.

Note: The remote attribute is ignored by this type of filters, because it makes
sense only for machine USB filters.

See also: IHost::USBDeviceFilters

9.15.1 Attributes
9.15.1.1 action (read/write)
USBDeviceFilterAction IHostUSBDeviceFilter::action

Action performed by the host when an attached USB device matches this filter.

114

9 Classes (interfaces)

9.16 linternalMachineControl

’ Note: This interface is not supported in the web service.

9.16.1 adoptSavedState

void IInternalMachineControl::adoptSavedState(
[in] wstring savedStateFile)

savedStateFile Path to the saved state file to adopt.

Gets called by IConsole::adoptSavedState.
If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Invalid saved state file path.

9.16.2 autoCaptureUSBDevices

void IInternalMachineControl::autoCaptureUSBDevices()

Requests a capture all matching USB devices attached to the host. When the request
is completed, the VM process will get a IInternalSessionControl::onUSBDeviceAttach()
notification per every captured device.

9.16.3 beginPowerUp

void IInternalMachineControl::beginPowerUp(
[in] IProgress progress)

progress

Tells VBoxSVC that IConsole::powerUp() is under ways and gives it the progress ob-
ject that should be part of any pending IVirtualBox::openRemoteSession() operations.
The progress object may be called back to reflect an early cancelation, so some care
have to be taken with respect to any cancelation callbacks. The console object will call
endPowerUp() to signal the completion of the progress object.

9.16.4 beginSavingState

void IInternalMachineControl::beginSavingState(
[in] IProgress progress,
[out] wstring stateFilePath)

progress Progress object created by the VM process to wait until the state is saved.
stateFilePath File path the VM process must save the execution state to.

Called by the VM process to inform the server it wants to save the current state and
stop the VM execution.

115

9 Classes (interfaces)

9.16.5 beginTakingSnapshot

void IInternalMachineControl::beginTakingSnapshot(
[in] IConsole initiator,
[in] wstring name,
[in] wstring description,
[in] IProgress consoleProgress,
[in] boolean fTakingSnapshotOnline,
[out] wstring stateFilePath)

initiator The console object that initiated this call.
name Snapshot name.
description Snapshot description.

consoleProgress Progress object created by the VM process tracking the snapshot’s
progress. This has the following sub-operations:
e setting up (weight 1);
e one for each medium attachment that needs a differencing image (weight
1 each);
e another one to copy the VM state (if offline with saved state, weight is VM
memory size in MB);

e another one to save the VM state (if online, weight is VM memory size in
MB);
e finishing up (weight 1)

fTakingSnapshotOnline Whether this is an online snapshot (i.e. the machine is run-
ning).

stateFilePath File path the VM process must save the execution state to.

Called from the VM process to request from the server to perform the server-side
actions of creating a snapshot (creating differencing images and the snapshot object).
If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Settings file not accessible.
e VBOX_E_XML_ERROR: Could not parse the settings file.

9.16.6 captureUSBDevice

void IInternalMachineControl::captureUSBDevice(
[in] uuid id)

id

Requests a capture of the given host USB device. When the request is completed,
the VM process will get a IInternalSessionControl::onUSBDeviceAttach() notification.

116

9 Classes (interfaces)

9.16.7 deleteSnapshot

IProgress IInternalMachineControl::deleteSnapshot(
[in] IConsole initiator,
[in] uuid id,
[out] MachineState machineState)

initiator The console object that initiated this call.
id UUID of the snapshot to delete.
machineState New machine state after this operation is started.

Gets called by IConsole::deleteSnapshot.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_OBJECT_STATE: Snapshothas more than one child snapshot.

9.16.8 detachAllUSBDevices

void IInternalMachineControl::detachAllUSBDevices (
[in] boolean done)

done

Notification that a VM that is being powered down. The done parameter indicates
whether which stage of the power down we’re at. When done = false the VM is
announcing its intentions, while when done = true the VM is reporting what it has
done.

Note: In the done = true case, the server must run its own filters and filters
of all VMs but this one on all detach devices as if they were just attached to
the host computer.

9.16.9 detachUSBDevice

void IInternalMachineControl::detachUSBDevice(
[in] uuid id,
[in] boolean done)

id
done

Notification that a VM is going to detach (done = false) or has already detached
(done = true) the given USB device. When the done = true request is completed,
the VM process will get a IInternalSessionControl::onUSBDeviceDetach() notification.

117

9 Classes (interfaces)

Note: In the done = true case, the server must run its own filters and filters
of all VMs but this one on the detached device as if it were just attached to
the host computer.

9.16.10 endPowerUp

void IInternalMachineControl::endPowerUp(
[in] long result)

result

Tells VBoxSVC that IConsole::powerUp() has completed. This method may query
status information from the progress object it received in beginPowerUp() and copy
it over to any in progress IVirtualBox::openRemoteSession() call in order to complete
that progress object.

9.16.11 endSavingState

void IInternalMachineControl::endSavingState(
[in] boolean success)

success true to indicate success and false otherwise.

Called by the VM process to inform the server that saving the state previously re-
quested by #beginSavingState is either successfully finished or there was a failure.
If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Settings file not accessible.

e VBOX_E_XML_ERROR: Could not parse the settings file.

9.16.12 endTakingSnapshot

void IInternalMachineControl::endTakingSnapshot(
[in] boolean success)

success true to indicate success and false otherwise

Called by the VM process to inform the server that the snapshot previously requested
by #beginTakingSnapshot is either successfully taken or there was a failure.

118

9 Classes (interfaces)

9.16.13 finishOnlineMergeMedium

void IInternalMachineControl::finishOnlineMergeMedium(
[in] IMediumAttachment mediumAttachment,
[in] IMedium source,
[in] IMedium target,
[in] boolean mergeForward,
[in] IMedium parentForTarget,
[in] IMedium childrenToReparent[])

mediumAttachment The medium attachment which needs to be cleaned up.
source Merge source medium.

target Merge target medium.

mergeForward Merge direction.

parentForTarget For forward merges: new parent for target medium.

childrenToReparent For backward merges: list of media which need their parent
UUID updated.

Gets called by IConsole::onlineMergeMedium.

9.16.14 getlPCId

wstring IInternalMachineControl::getIPCId()

9.16.15 lockMedia

void IInternalMachineControl::lockMedia()

Locks all media attached to the machine for writing and parents of attached differ-
encing media (if any) for reading. This operation is atomic so that if it fails no media
is actually locked.

This method is intended to be called when the machine is in Starting or Restoring
state. The locked media will be automatically unlocked when the machine is powered
off or crashed.

9.16.16 onSessionEnd

IProgress IInternalMachineControl::onSessionEnd(
[in] ISession session)

session Session that is being closed

Triggered by the given session object when the session is about to close normally.

119

9 Classes (interfaces)

9.16.17 pullGuestProperties

void IInternalMachineControl::pullGuestProperties(
[out] wstring name[],
[out] wstring value[],
[out] unsigned long long timestamp[],
[out] wstring flags[])

name The names of the properties returned.

value The values of the properties returned. The array entries match the correspond-
ing entries in the name array.

timestamp The time stamps of the properties returned. The array entries match the
corresponding entries in the name array.

flags The flags of the properties returned. The array entries match the corresponding
entries in the name array.

Get the list of the guest properties matching a set of patterns along with their values,
time stamps and flags and give responsibility for managing properties to the console.

9.16.18 pushGuestProperty

void IInternalMachineControl::pushGuestProperty(
[in] wstring name,
[in] wstring value,
[in] unsigned long long timestamp,
[in] wstring flags)

name The name of the property to be updated.
value The value of the property.
timestamp The timestamp of the property.
flags The flags of the property.

Update a single guest property in IMachine.

9.16.19 restoreSnapshot

IProgress IInternalMachineControl::restoreSnapshot(
[in] IConsole initiator,
[in] ISnapshot snapshot,
[out] MachineState machineState)

initiator The console object that initiated this call.
snapshot The snapshot to restore the VM state from.
machineState New machine state after this operation is started.

Gets called by IConsole::RestoreSnapshot.

120

9 Classes (interfaces)

9.16.20 runUSBDeviceFilters

void IInternalMachineControl::runUSBDeviceFilters(
[in] IUSBDevice device,
[out] boolean matched,
[out] unsigned long maskedInterfaces)

device
matched
maskedInterfaces

Asks the server to run USB devices filters of the associated machine against the given
USB device and tell if there is a match.

Note: Intended to be used only for remote USB devices. Local ones don’t
require to call this method (this is done implicitly by the Host and USBProxy-
Service).

9.16.21 setRemoveSavedState

void IInternalMachineControl::setRemoveSavedState(
[in] boolean aRemove)

aRemove

Updates the flag whether saved state is removed on a machine state change from
Saved to PoweredOff.

9.16.22 unlockMedia

void IInternalMachineControl::unlockMedia()

Unlocks all media previously locked using lockMedia().
This method is intended to be used with teleportation so that it is possible to teleport
between processes on the same machine.

9.16.23 updateState

void IInternalMachineControl::updateState(
[in] MachineState state)

state

Updates the VM state.

121

9 Classes (interfaces)

Note: This operation will also update the settings file with the correct infor-
mation about the saved state file and delete this file from disk when appropri-
ate.

9.17 linternalSessionControl

’ Note: This interface is not supported in the web service.

9.17.1 accessGuestProperty

void IInternalSessionControl::accessGuestProperty(
[in] wstring name,
[in] wstring value,
[in] wstring flags,
[in] boolean isSetter,
[out] wstring retValue,
[out] unsigned long long retTimestamp,
[out] wstring retFlags)

name
value

flags

isSetter
retValue
retTimestamp

retFlags

Called by IMachine::getGuestProperty() and by IMachine::setGuestProperty() in or-
der to read and modify guest properties.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Machine session is not open.

e VBOX_E_INVALID_OBJECT_STATE: Session type is not direct.

122

9 Classes (interfaces)

9.17.2 assignMachine

void IInternalSessionControl::assignMachine(
[in] IMachine machine)

machine

Assigns the machine object associated with this direct-type session or informs the
session that it will be a remote one (if machine == null).
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

e VBOX_E_INVALID OBJECT_STATE: Session type prevents operation.

9.17.3 assignRemoteMachine

void IInternalSessionControl::assignRemoteMachine(
[in] IMachine machine,
[in] IConsole console)

machine
console

Assigns the machine and the (remote) console object associated with this remote-
type session.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

9.17.4 enumerateGuestProperties

void IInternalSessionControl::enumerateGuestProperties(
[in] wstring patterns,
[out] wstring keyl[],
[out] wstring value[],
[out] unsigned long long timestamp[],
[out] wstring flags[])

patterns The patterns to match the properties against as a comma-separated string.
If this is empty, all properties currently set will be returned.

key The key names of the properties returned.

value The values of the properties returned. The array entries match the correspond-
ing entries in the key array.

timestamp The time stamps of the properties returned. The array entries match the
corresponding entries in the key array.

123

9 Classes (interfaces)

flags The flags of the properties returned. The array entries match the corresponding
entries in the key array.

Return a list of the guest properties matching a set of patterns along with their
values, time stamps and flags.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Machine session is not open.

e VBOX_E_INVALID_OBJECT_STATE: Session type is not direct.

9.17.5 getPID

unsigned long IInternalSessionControl::getPID()

PID of the process that has created this Session object.

9.17.6 getRemoteConsole

IConsole IInternalSessionControl::getRemoteConsole()

Returns the console object suitable for remote control.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.
e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

9.17.7 onCPUChange

void IInternalSessionControl::onCPUChange(
[in] unsigned long cpu,
[in] boolean add)

cpu The CPU which changed

add Flag whether the CPU was added or removed

Notification when a CPU changes.

9.17.8 onMediumChange

void IInternalSessionControl::onMediumChange(
[in] IMediumAttachment mediumAttachment,
[in] boolean force)

mediumAttachment

124

9 Classes (interfaces)

force

Triggered when attached media of the associated virtual machine have changed.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.
e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

9.17.9 onNetworkAdapterChange

void IInternalSessionControl::onNetworkAdapterChange(
[in] INetworkAdapter networkAdapter,
[in] boolean changeAdapter)

networkAdapter
changeAdapter

Triggered when settings of a network adapter of the associated virtual machine have
changed.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

9.17.10 onParallelPortChange

void IInternalSessionControl::onParallelPortChange(
[in] IParallelPort parallelPort)

parallelPort

Triggered when settings of a parallel port of the associated virtual machine have
changed.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

125

9 Classes (interfaces)

9.17.11 onSerialPortChange

void IInternalSessionControl::onSerialPortChange(
[in] ISerialPort serialPort)

serialPort

Triggered when settings of a serial port of the associated virtual machine have
changed.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

9.17.12 onSharedFolderChange

void IInternalSessionControl::onSharedFolderChange(
[in] boolean global)

global

Triggered when a permanent (global or machine) shared folder has been created or
removed.

Note: We don’t pass shared folder parameters in this notification because the
order in which parallel notifications are delivered is not defined, therefore it
could happen that these parameters were outdated by the time of processing
this notification.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

9.17.13 onShowWindow

void IInternalSessionControl::onShowWindow(
[in] boolean check,
[out] boolean canShow,
[out] unsigned long long winId)

check
canShow

winid

126

9 Classes (interfaces)

Called by IMachine::canShowConsoleWindow () and by IMachine::showConsoleWindow ()
in order to notify console callbacks IConsoleCallback::onCanShowWindow() and
IConsoleCallback::onShowWindow().

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

9.17.14 onStorageControllerChange
void IInternalSessionControl::onStorageControllerChange()

Triggered when settings of a storage controller of the associated virtual machine
have changed.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.
e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

9.17.15 onUSBControllerChange

void IInternalSessionControl::onUSBControllerChange()

Triggered when settings of the USB controller object of the associated virtual ma-
chine have changed.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.
e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

9.17.16 onUSBDeviceAttach

void IInternalSessionControl::onUSBDeviceAttach(
[in] IUSBDevice device,
[in] IVirtualBoxErrorInfo error,
[in] unsigned long maskedInterfaces)

device
error
maskedInterfaces

Triggered when a request to capture a USB device (as a result of matched USB
filters or direct call to IConsole::attachUSBDevice()) has completed. A nullerror
object means success, otherwise it describes a failure.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.
e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

127

9 Classes (interfaces)

9.17.17 onUSBDeviceDetach

void IInternalSessionControl::onUSBDeviceDetach(
[in] uuid id,
[in] IVirtualBoxErrorInfo error)

id
error

Triggered when a request to release the USB device (as a result of machine termi-
nation or direct call to IConsole::detachUSBDevice()) has completed. A nullerror
object means success, otherwise it describes a failure.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

9.17.18 onVRDPServerChange

void IInternalSessionControl::onVRDPServerChange(
[in] boolean restart)

restart Flag whether the server must be restarted

Triggered when settings of the VRDP server object of the associated virtual machine
have changed.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.
e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

9.17.19 onlineMergeMedium

void IInternalSessionControl::onlineMergeMedium(
[in] IMediumAttachment mediumAttachment,
[in] unsigned long sourceldx,
[in] unsigned long targetIdx,
[in] IMedium source,
[in] IMedium target,
[in] boolean mergeForward,
[in] IMedium parentForTarget,
[in] IMedium childrenToReparent[],
[in] IProgress progress)

mediumAttachment The medium attachment to identify the medium chain.

128

9 Classes (interfaces)
sourceldx The index of the source image in the chain. Redundant, but drastically
reduces IPC.

targetldx The index of the target image in the chain. Redundant, but drastically
reduces IPC.

source Merge source medium.

target Merge target medium.

mergeForward Merge direction.

parentForTarget For forward merges: new parent for target medium.

childrenToReparent For backward merges: list of media which need their parent
UUID updated.

progress Progress object for this operation.

Triggers online merging of a hard disk. Used internally when deleting a snapshot
while a VM referring to the same hard disk chain is running.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Machine session is not open.
e VBOX_E_INVALID_OBJECT_STATE: Session type is not direct.

9.17.20 uninitialize
void IInternalSessionControl::uninitialize()

Uninitializes (closes) this session. Used by VirtualBox to close the corresponding
remote session when the direct session dies or gets closed.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

9.17.21 updateMachineState

void IInternalSessionControl::updateMachineState(
[in] MachineState aMachineState)

aMachineState

Updates the machine state in the VM process. Must be called only in certain cases
(see the method implementation).
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.
e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

129

9 Classes (interfaces)

9.18 IKeyboard

The IKeyboard interface represents the virtual machine’s keyboard. Used in ICon-
sole::keyboard.

Use this interface to send keystrokes or the Ctrl-Alt-Del sequence to the virtual ma-
chine.

9.18.1 putCAD

void IKeyboard::putCAD()

Sends the Ctrl-Alt-Del sequence to the keyboard. This function is nothing special, it
is just a convenience function calling putScancodes() with the proper scancodes.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Could not send all scan codes to virtual keyboard.

9.18.2 putScancode

void IKeyboard::putScancode(
[in] long scancode)

scancode

Sends a scancode to the keyboard.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Could not send scan code to virtual keyboard.

9.18.3 putScancodes

unsigned long IKeyboard: :putScancodes(
[in] long scancodes[])

scancodes

Sends an array of scancodes to the keyboard.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Could not send all scan codes to virtual keyboard.

130

9 Classes (interfaces)

9.19 ILocalOwner

’ Note: This interface is not supported in the web service.

The ILocalOwner interface allows to register local objects (created without COM
calls, but with new()). Once registered, calls to methods of such objects can be made
from remote COM processes. The main usecase is the event callback implementation
where API clients provide callback objects.

9.19.1 setLocalObject

void ILocalOwner::setLocalObject(
[in] $unknown object)

object Local object to forward requests to. If null, clears currently set local object.

Set local object.

9.20 IMachine

The IMachine interface represents a virtual machine, or guest, created in VirtualBox.

This interface is used in two contexts. First of all, a collection of objects implement-
ing this interface is stored in the IVirtualBox::machines[] attribute which lists all the
virtual machines that are currently registered with this VirtualBox installation. Also,
once a session has been opened for the given virtual machine (e.g. the virtual machine
is running), the machine object associated with the open session can be queried from
the session object; see ISession for details.

The main role of this interface is to expose the settings of the virtual machine and
provide methods to change various aspects of the virtual machine’s configuration. For
machine objects stored in the IVirtualBox::machines[] collection, all attributes are
read-only unless explicitly stated otherwise in individual attribute and method de-
scriptions. In order to change a machine setting, a session for this machine must be
opened using one of IVirtualBox::openSession(), IVirtualBox::openRemoteSession()
or IVirtualBox::openExistingSession() methods. After the session has been success-
fully opened, a mutable machine object needs to be queried from the session object
and then the desired settings changes can be applied to the returned object using
IMachine attributes and methods. See the ISession interface description for more in-
formation about sessions.

Note that IMachine does not provide methods to control virtual machine execution
(such as start the machine, or power it down) — these methods are grouped in a
separate interface called IConsole.

See also: ISession, IConsole

131

9 Classes (interfaces)

9.20.1 Attributes
9.20.1.1 parent (read-only)
IVirtualBox IMachine::parent

Associated parent object.

9.20.1.2 accessible (read-only)
boolean IMachine::accessible

Whether this virtual machine is currently accessible or not.

A machine is always deemed accessible unless it is registered and its settings file
cannot be read or parsed (either because the file itself is unavailable or has invalid
XML contents).

Every time this property is read, the accessibility state of this machine is re-
evaluated. If the returned value is false, the accessError property may be used to
get the detailed error information describing the reason of inaccessibility, including
XML error messages.

When the machine is inaccessible, only the following properties can be used on it:

e parent

e id

e settingsFilePath
e accessible

e accessError

An attempt to access any other property or method will return an error.

The only possible action you can perform on an inaccessible machine is to unregister
it using the IVirtualBox::unregisterMachine() call (or, to check for the accessibility
state once more by querying this property).

Note: In the current implementation, once this property returns true, the
machine will never become inaccessible later, even if its settings file cannot
be successfully read/written any more (at least, until the VirtualBox server is
restarted). This limitation may be removed in future releases.

9.20.1.3 accessError (read-only)
IVirtualBoxErrorInfo IMachine::accessError

Error information describing the reason of machine inaccessibility.

Reading this property is only valid after the last call to accessible returned false
(i.e. the machine is currently unaccessible). Otherwise, a null IVirtualBoxErrorInfo
object will be returned.

132

9 Classes (interfaces)

9.20.1.4 name (read/write)

wstring IMachine::name

Name of the virtual machine.

Besides being used for human-readable identification purposes everywhere in
VirtualBox, the virtual machine name is also used as a name of the machine’s set-
tings file and as a name of the subdirectory this settings file resides in. Thus, every
time you change the value of this property, the settings file will be renamed once you
call saveSettings() to confirm the change. The containing subdirectory will be also
renamed, but only if it has exactly the same name as the settings file itself prior to
changing this property (for backward compatibility with previous API releases). The
above implies the following limitations:

e The machine name cannot be empty.

e The machine name can contain only characters that are valid file name charac-
ters according to the rules of the file system used to store VirtualBox configura-
tion.

e You cannot have two or more machines with the same name if they use the same
subdirectory for storing the machine settings files.

e You cannot change the name of the machine if it is running, or if any file in the
directory containing the settings file is being used by another running machine or
by any other process in the host operating system at a time when saveSettings()
is called.

If any of the above limitations are hit, saveSettings() will return an appropriate error
message explaining the exact reason and the changes you made to this machine will
not be saved.

Note: For “legacy” machines created wusing the IVirtual-
Box::createLegacyMachine() call, the above naming limitations do not
apply because the machine name does not affect the settings file name.
The settings file name remains the same as it was specified during machine
creation and never changes.

9.20.1.5 description (read/write)

wstring IMachine::description

Description of the virtual machine.

The description attribute can contain any text and is typically used to describe the
hardware and software configuration of the virtual machine in detail (i.e. network
settings, versions of the installed software and so on).

133

9 Classes (interfaces)

9.20.1.6 id (read-only)

uuid IMachine::id

UUID of the virtual machine.

9.20.1.7 OSTypeld (read/write)

wstring IMachine: :0STypeld

User-defined identifier of the Guest OS type. You may use IVirtualBox::getGuestOSType()
to obtain an IGuestOSType object representing details about the given Guest OS type.

Note: This value may differ from the value returned by IGuest::OSTypeld if
Guest Additions are installed to the guest OS.

9.20.1.8 HardwareVersion (read/write)

wstring IMachine::HardwareVersion

Hardware version identifier. Internal use only for now.

9.20.1.9 hardwareUUID (read/write)

uuid IMachine: :hardwareUUID

The UUID presented to the guest via memory tables, hardware and guest properties.
For most VMs this is the same as the id, but for VMs which have been cloned or tele-
ported it may be the same as the source VM. This latter is because the guest shouldn’t
notice that it was cloned or teleported.

9.20.1.10 CPUCount (read/write)
unsigned long IMachine::CPUCount

Number of virtual CPUs in the VM.
9.20.1.11 CPUHotPlugEnabled (read/write)
boolean IMachine::CPUHotPlugEnabled

This setting determines whether VirtualBox allows CPU hotplugging for this ma-
chine.

134

9 Classes (interfaces)

9.20.1.12 memorySize (read/write)

unsigned long IMachine::memorySize

System memory size in megabytes.

9.20.1.13 memoryBalloonSize (read/write)

unsigned long IMachine::memoryBalloonSize

Memory balloon size in megabytes.

9.20.1.14 PageFusionEnabled (read/write)

boolean IMachine::PageFusionEnabled

This setting determines whether VirtualBox allows page fusion for this machine (64
bits host only).

9.20.1.15 VRAMSize (read/write)

unsigned long IMachine::VRAMSize

Video memory size in megabytes.

9.20.1.16 accelerate3DEnabled (read/write)

boolean IMachine::accelerate3DEnabled

This setting determines whether VirtualBox allows this machine to make use of the
3D graphics support available on the host.

9.20.1.17 accelerate2DVideoEnabled (read/write)

boolean IMachine::accelerate2DVideoEnabled

This setting determines whether VirtualBox allows this machine to make use of the
2D video acceleration support available on the host.

9.20.1.18 monitorCount (read/write)

unsigned long IMachine::monitorCount

Number of virtual monitors.

Note: Only effective on Windows XP and later guests with Guest Additions
installed.

135

9 Classes (interfaces)

9.20.1.19 BIOSSettings (read-only)

IBIOSSettings IMachine::BIOSSettings

Object containing all BIOS settings.

9.20.1.20 firmwareType (read/write)

FirmwareType IMachine::firmwareType

Type of firmware (such as legacy BIOS or EFI), used for initial bootstrap in this VM.

9.20.1.21 pointingHidType (read/write)
PointingHidType IMachine::pointingHidType

Type of pointing HID (such as mouse or tablet) used in this VM. The default is typi-
cally “PS2Mouse” but can vary depending on the requirements of the guest operating
system.

9.20.1.22 keyboardHidType (read/write)
KeyboardHidType IMachine::keyboardHidType

Type of keyboard HID used in this VM. The default is typically “PS2Keyboard” but
can vary depending on the requirements of the guest operating system.

9.20.1.23 hpetEnabled (read/write)

boolean IMachine::hpetEnabled

This attribute controls if High Precision Event Timer (HPET) is enabled in this VM.
Use this property if you want to provide guests with additional time source, or if guest
requires HPET to function correctly. Default is false.

9.20.1.24 snapshotFolder (read/write)

wstring IMachine::snapshotFolder

Full path to the directory used to store snapshot data (differencing media and saved
state files) of this machine.

The initial value of this property is <path_to_settings_file>/<machine_uuid>.

Currently, it is an error to try to change this property on a machine that has snap-
shots (because this would require to move possibly large files to a different location).
A separate method will be available for this purpose later.

Note: Setting this property to null or to an empty string will restore the
initial value.

136

9 Classes (interfaces)

Note: When setting this property, the specified path can be absolute (full
path) or relative to the directory where the machine settings file is located.
When reading this property, a full path is always returned.

Note: The specified path may not exist, it will be created when necessary.

9.20.1.25 VRDPServer (read-only)

IVRDPServer IMachine: :VRDPServer

VRDP server object.

9.20.1.26 mediumAttachments (read-only)

IMediumAttachment IMachine::mediumAttachments|[]

Array of media attached to this machine.

9.20.1.27 USBController (read-only)

IUSBController IMachine::USBController

Associated USB controller object.

Note: If USB functionality is not available in the given edition of VirtualBox,
this method will set the result code to E_NOTIMPL.

9.20.1.28 audioAdapter (read-only)

TAudioAdapter IMachine::audioAdapter

Associated audio adapter, always present.

9.20.1.29 storageControllers (read-only)

IStorageController IMachine::storageControllers]]

Array of storage controllers attached to this machine.

9.20.1.30 settingsFilePath (read-only)
wstring IMachine::settingsFilePath

Full name of the file containing machine settings data.

137

9 Classes (interfaces)

9.20.1.31 settingsModified (read-only)

boolean IMachine::settingsModified

Whether the settings of this machine have been modified (but neither yet saved nor
discarded).

Note: Reading this property is only valid on instances returned by ISes-
sion::machine and on new machines created by IVirtualBox::createMachine()
or opened by IVirtualBox::openMachine() but not yet registered, or on unreg-
istered machines after calling IVirtualBox::unregisterMachine(). For all other
cases, the settings can never be modified.

Note: For newly created unregistered machines, the value of this property is
always true until saveSettings() is called (no matter if any machine settings
have been changed after the creation or not). For opened machines the value
is set to false (and then follows to normal rules).

9.20.1.32 sessionState (read-only)

SessionState IMachine::sessionState

Current session state for this machine.

9.20.1.33 sessionType (read-only)

wstring IMachine::sessionType

Type of the session. If sessionState is SessionSpawning or SessionOpen, this at-
tribute contains the same value as passed to the IVirtualBox::openRemoteSession()
method in the type parameter. If the session was opened directly using IVirtual-
Box::openSession(), or if sessionState is SessionClosed, the value of this attribute is
an empty string.

9.20.1.34 sessionPid (read-only)

unsigned long IMachine::sessionPid

Identifier of the session process. This attribute contains the platform-dependent
identifier of the process that has opened a direct session for this machine using the
IVirtualBox::openSession() call. The returned value is only valid if sessionState is
SessionOpen or SessionClosing (i.e. a session is currently open or being closed) by the
time this property is read.

138

9 Classes (interfaces)

9.20.1.35 state (read-only)

MachineState IMachine::state

Current execution state of this machine.

9.20.1.36 lastStateChange (read-only)

long long IMachine::lastStateChange

Time stamp of the last execution state change, in milliseconds since 1970-01-01
UTC.

9.20.1.37 stateFilePath (read-only)

wstring IMachine::stateFilePath

Full path to the file that stores the execution state of the machine when it is in the
Saved state.

Note: When the machine is not in the Saved state, this attribute is an empty
string.

9.20.1.38 logFolder (read-only)

wstring IMachine::logFolder

Full path to the folder that stores a set of rotated log files recorded during machine
execution. The most recent log file is named VBox . log, the previous log file is named
VBox.log.1 and so on (up to VBox. log. 3 in the current version).

9.20.1.39 currentSnapshot (read-only)

ISnapshot IMachine::currentSnapshot

Current snapshot of this machine. This is null if the machine currently has no
snapshots. If it is not null, then it was set by one of Console::takeSnapshot, Con-
sole::deleteSnapshot or Console::restoreSnapshot, depending on which was called
last. See ISnapshot for details.

9.20.1.40 snapshotCount (read-only)

unsigned long IMachine::snapshotCount

Number of snapshots taken on this machine. Zero means the machine doesn’t have
any snapshots.

139

9 Classes (interfaces)

9.20.1.41 currentStateModified (read-only)

boolean IMachine::currentStateModified

Returns true if the current state of the machine is not identical to the state stored
in the current snapshot.

The current state is identical to the current snapshot only directly after one of the
following calls are made:

e IConsole::restoreSnapshot()

e IConsole::takeSnapshot() (issued on a “powered off” or “saved” machine, for
which settingsModified returns false)

e setCurrentSnapshot()

The current state remains identical until one of the following happens:

settings of the machine are changed

the saved state is deleted

the current snapshot is deleted

an attempt to execute the machine is made

Note: For machines that don’t have snapshots, this property is always false.

9.20.1.42 sharedFolders (read-only)

ISharedFolder IMachine::sharedFolders[]

Collection of shared folders for this machine (permanent shared folders). These
folders are shared automatically at machine startup and available only to the guest OS
installed within this machine.

New shared folders are added to the collection using createSharedFolder(). Existing
shared folders can be removed using removeSharedFolder().
9.20.1.43 clipboardMode (read/write)

ClipboardMode IMachine::clipboardMode

Synchronization mode between the host OS clipboard and the guest OS clipboard.

140

9 Classes (interfaces)

9.20.1.44 guestPropertyNotificationPatterns (read/write)

wstring IMachine::guestPropertyNotificationPatterns

A comma-separated list of simple glob patterns. Changes to guest proper-
ties whose name matches one of the patterns will generate an IVirtualBoxCall-
back::onGuestPropertyChange() signal.

9.20.1.45 teleporterEnabled (read/write)

boolean IMachine::teleporterEnabled

When set to true, the virtual machine becomes a target teleporter the next time it is
powered on. This can only set to true when the VM is in the Powered0ff or Aborted
state.

9.20.1.46 teleporterPort (read/write)

unsigned long IMachine::teleporterPort

The TCP port the target teleporter will listen for incoming teleportations on.
0 means the port is automatically selected upon power on. The actual value can be
read from this property while the machine is waiting for incoming teleportations.

9.20.1.47 teleporterAddress (read/write)

wstring IMachine::teleporterAddress

The address the target teleporter will listen on. If set to an empty string, it will listen
on all addresses.

9.20.1.48 teleporterPassword (read/write)

wstring IMachine::teleporterPassword

The password the to check for on the target teleporter. This is just a very basic
measure to prevent simple hacks and operators accidentally beaming a virtual machine
to the wrong place.

9.20.1.49 RTCUseUTC (read/write)

boolean IMachine::RTCUseUTC

When set to true, the RTC device of the virtual machine will run in UTC time,
otherwise in local time. Especially Unix guests prefer the time in UTC.

141

9 Classes (interfaces)

9.20.1.50 ioCacheEnabled (read/write)

boolean IMachine::ioCacheEnabled

When set to true, the builtin I/0 cache of the virtual machine will be enabled.

9.20.1.51 ioCacheSize (read/write)

unsigned long IMachine::ioCacheSize

Maximum size of the I/0 cache in MB.

9.20.1.52 ioBandwidthMax (read/write)

unsigned long IMachine::ioBandwidthMax

The maximum number of MB the VM is allowed to transfer per second. 0 means
unlimited bandwidth.

9.20.2 addStorageController

IStorageController IMachine::addStorageController(
[in] wstring name,
[in] StorageBus connectionType)

name

connectionType

Adds a new storage controller (SCSI, SAS or SATA controller) to the machine and
returns it as an instance of IStorageController.

name identifies the controller for subsequent calls such as getStorageController-
ByName(), getStorageControllerByInstance(), removeStorageController(), attachDe-
vice() or mountMedium().

After the controller has been added, you can set its exact type by setting the IStor-
ageController::controllerType.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_IN_USE: A storage controller with given name exists already.

e E_INVALIDARG: Invalid controllerType.

142

9 Classes (interfaces)

9.20.3 attachDevice

void IMachine::attachDevice(
[in] wstring name,
[in] long controllerPort,
[in] long device,
[in] DeviceType type,
[in] uuid id)

name Name of the storage controller to attach the device to.

controllerPort Port to attach the device to. For an IDE controller, O specifies the
primary controller and 1 specifies the secondary controller. For a SCSI controller,
this must range from 0 to 15; for a SATA controller, from 0 to 29; for an SAS
controller, from O to 7.

device Device slot in the given port to attach the device to. This is only relevant for
IDE controllers, for which 0 specifies the master device and 1 specifies the slave
device. For all other controller types, this must be 0.

type Device type of the attached device.

id UUID of the medium to mount. Zero UUID means do not mount any medium.

Attaches a device and optionally mounts a medium to the given storage controller
(IStorageController, identified by name), at the indicated port and device.

This method is intended for managing storage devices in general (it works for both
fixed and removable media). For storage devices supporting removable media (such
as DVDs and floppies), you can also use IMedium::mountMedium for changing the
media while the machine is running.

In a VM’s default configuration of virtual machines, the secondary master of the IDE
controller is used for a CD/DVD drive.

For fixed media such as hard disks, the given medium identifier cannot be a zero
UUID. It may be a zero UUID for removable media such as DVDs and floppies.

After calling this returns successfully, a new instance of IMediumAttachment will
appear in the machine’s list of medium attachments (mediumAttachments[]).

The specified device slot must not have a device attached to it, or this method will
fail.

See IMedium and IMediumAttachment for more information about attaching media.

Note: You cannot attach a device to a running machine. Also, you cannot
attach a device to a newly created machine until this machine’s settings are
saved to disk using saveSettings().

143

9 Classes (interfaces)

Note: If the medium is being attached indirectly, a new differencing medium
will implicitly be created for it and attached instead. If the changes made to
the machine settings (including this indirect attachment) are later cancelled
using discardSettings(), this implicitly created differencing medium will im-
plicitly be deleted.

If this method fails, the following error codes may be reported:
e E_INVALIDARG: SATA device, SATA port, IDE port or IDE slot out of range.

e VBOX_E_INVALID_OBJECT_STATE: Attempt to attach medium to an unregis-
tered virtual machine.

e VBOX_E_INVALID_VM_STATE: Invalid machine state.

e VBOX_E_OBJECT_IN_USE: Hard disk already attached to this or another virtual
machine.

9.20.4 canShowConsoleWindow
boolean IMachine::canShowConsoleWindow()

Returns true if the VM console process can activate the console window and bring
it to foreground on the desktop of the host PC.

Note: This method will fail if a session for this machine is not currently open.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Machine session is not open.

9.20.5 createSharedFolder

void IMachine::createSharedFolder(
[in] wstring name,
[in] wstring hostPath,
[in] boolean writable)

name Unique logical name of the shared folder.
hostPath Full path to the shared folder in the host file system.
writable Whether the share is writable or readonly

Creates a new permanent shared folder by associating the given logical name with
the given host path, adds it to the collection of shared folders and starts sharing it.
Refer to the description of ISharedFolder to read more about logical names.

If this method fails, the following error codes may be reported:

144

9 Classes (interfaces)

e VBOX_E_OBJECT_IN_USE: Shared folder already exists.

e VBOX_E_FILE_ERROR: Shared folder hostPath not accessible.

9.20.6 deleteSettings

void IMachine::deleteSettings()

Deletes the settings file of this machine from disk. The machine must not be regis-
tered in order for this operation to succeed.

Note: settingsModified will return true after this method successfully re-
turns.

Note: Calling this method is only valid on instances returned by ISes-
sion::machine and on new machines created by IVirtualBox::createMachine()
or opened by IVirtualBox::openMachine() but not yet registered, or on unreg-
istered machines after calling IVirtualBox::unregisterMachine().

Note: The deleted machine settings file can be restored (saved again) by
calling saveSettings().

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM STATE: Cannot delete settings of a registered machine
or machine not mutable.

e VBOX_E_IPRT_ERROR: Could not delete the settings file.

9.20.7 detachDevice

void IMachine::detachDevice(

[in] wstring name,

[in] long controllerPort,

[in] long device)
name Name of the storage controller to detach the medium from.
controllerPort Port number to detach the medium from.

device Device slot number to detach the medium from.

145

9 Classes (interfaces)

Detaches the device attached to a device slot of the specified bus.

Detaching the device from the virtual machine is deferred. This means that the
medium remains associated with the machine when this method returns and gets ac-
tually de-associated only after a successful saveSettings() call. See IMedium for more
detailed information about attaching media.

Note: You cannot detach a device from a running machine.

Note: Detaching differencing media implicitly created by attachDevice() for
the indirect attachment using this method will not implicitly delete them.
The IMedium::deleteStorage() operation should be explicitly performed by
the caller after the medium is successfully detached and the settings are saved
with saveSettings(), if it is the desired action.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID VM_STATE: Attempt to detach medium from a running vir-
tual machine.

e VBOX_E_OBJECT_NOT_FOUND: No medium attached to given slot/bus.
e VBOX_E_NOT_SUPPORTED: Medium format does not support storage deletion.

9.20.8 discardSettings

void IMachine::discardSettings()

Discards any changes to the machine settings made since the session has been
opened or since the last call to saveSettings() or discardSettings().

Note: Calling this method is only valid on instances returned by ISes-
sion::machine and on new machines created by IVirtualBox::createMachine()
or opened by IVirtualBox::openMachine() but not yet registered, or on unreg-
istered machines after calling IVirtualBox::unregisterMachine().

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine is not mutable.

146

9 Classes (interfaces)

9.20.9 enumerateGuestProperties

void IMachine::enumerateGuestProperties(
[in] wstring patterns,
[out] wstring name[],
[out] wstring value[],
[out] unsigned long long timestamp[],
[out] wstring flags[])

patterns The patterns to match the properties against, separated by ’|’ characters. If
this is empty or null, all properties will match.

name The names of the properties returned.

value The values of the properties returned. The array entries match the correspond-
ing entries in the name array.

timestamp The time stamps of the properties returned. The array entries match the
corresponding entries in the name array.

flags The flags of the properties returned. The array entries match the corresponding
entries in the name array.

Return a list of the guest properties matching a set of patterns along with their
values, time stamps and flags.

9.20.10 export

IVirtualSystemDescription IMachine::export(
[in] IAppliance aAppliance)

aAppliance Appliance to export this machine to.

Exports the machine to an OVF appliance. See IAppliance for the steps required to
export VirtualBox machines to OVF.

9.20.11 findSnapshot

ISnapshot IMachine::findSnapshot(
[in] wstring name)

name Name of the snapshot to find

Returns a snapshot of this machine with the given name.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Virtual machine has no snapshots or snapshot
not found.

147

9 Classes (interfaces)

9.20.12 getBootOrder

DeviceType IMachine::getBootOrder(
[in] unsigned long position)

position Position in the boot order (1 to the total number of devices the machine can
boot from, as returned by ISystemProperties::maxBootPosition).

Returns the device type that occupies the specified position in the boot order.

@todo [remove?] If the machine can have more than one device of the returned
type (such as hard disks), then a separate method should be used to retrieve the
individual device that occupies the given position.

If here are no devices at the given position, then Null is returned.

@todo getHardDiskBootOrder(), getNetworkBootOrder()

If this method fails, the following error codes may be reported:

e E_INVALIDARG: Boot position out of range.

9.20.13 getCPUIDLeaf

void IMachine::getCPUIDLeaf (
[in] unsigned long id,
[out] unsigned long valEax,
[out] unsigned long valEbx,
[out] unsigned long valEcx,
[out] unsigned long valEdx)

id CPUID leaf index.

valEax CPUID leaf value for register eax.
valEbx CPUID leaf value for register ebx.
valEcx CPUID leaf value for register ecx.

valEdx CPUID leaf value for register edx.

Returns the virtual CPU cpuid information for the specified leaf.

Currently supported index values for cpuid: Standard CPUID leafs: 0 - 0xA Extended
CPUID leafs: 0x80000000 - 0x8000000A

See the Intel and AMD programmer’s manuals for detailed information about the
cpuid instruction and its leafs.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid id.

148

9 Classes (interfaces)

9.20.14 getCPUProperty

boolean IMachine::getCPUProperty(
[in] CPUPropertyType property)

property Property type to query.

Returns the virtual CPU boolean value of the specified property.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid property.

9.20.15 getCPUStatus

boolean IMachine::getCPUStatus(
[in] unsigned long cpu)

cpu The CPU id to check for.

Returns the current status of the given CPU.

9.20.16 getExtraData

wstring IMachine::getExtraData(
[in] wstring key)

key Name of the data key to get.

Returns associated machine-specific extra data.

If the requested data key does not exist, this function will succeed and return an
empty string in the value argument.

If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Settings file not accessible.

e VBOX_E_XML_ERROR: Could not parse the settings file.

9.20.17 getExtraDataKeys

wstring[] IMachine::getExtraDataKeys()

Returns an array representing the machine-specific extra data keys which currently
have values defined.

149

9 Classes (interfaces)

9.20.18 getGuestProperty

void IMachine::getGuestProperty(
[in] wstring name,
[out] wstring value,
[out] unsigned long long timestamp,
[out] wstring flags)

name The name of the property to read.
value The value of the property. If the property does not exist then this will be empty.

timestamp The time at which the property was last modified, as seen by the server
process.

flags Additional property parameters, passed as a comma-separated list of
“name=value” type entries.

Reads an entry from the machine’s guest property store.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID VM_STATE: Machine session is not open.

9.20.19 getGuestPropertyTimestamp

unsigned long long IMachine::getGuestPropertyTimestamp (
[in] wstring property)

property The name of the property to read.

Reads a property timestamp from the machine’s guest property store.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Machine session is not open.

9.20.20 getGuestPropertyValue

wstring IMachine::getGuestPropertyValue(
[in] wstring property)

property The name of the property to read.

Reads a value from the machine’s guest property store.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Machine session is not open.

150

9 Classes (interfaces)

9.20.21 getHWVirtExProperty

boolean IMachine::getHWVirtExProperty/(
[in] HWVirtExPropertyType property)

property Property type to query.

Returns the value of the specified hardware virtualization boolean property.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid property.

9.20.22 getMedium

IMedium IMachine::getMedium(
[in] wstring name,
[in] long controllerPort,
[in] long device)

name Name of the storage controller the medium is attached to.
controllerPort Port to query.
device Device slot in the given port to query.

Returns the virtual medium attached to a device slot of the specified bus.

Note that if the medium was indirectly attached by mountMedium() to the given
device slot then this method will return not the same object as passed to the
mountMedium() call. See IMedium for more detailed information about mounting
a medium.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: No medium attached to given slot/bus.

9.20.23 getMediumAttachment

IMediumAttachment IMachine::getMediumAttachment (
[in] wstring name,
[in] long controllerPort,
[in] long device)

name
controllerPort
device

Returns a medium attachment which corresponds to the controller with the given
name, on the given port and device slot.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: No attachment exists for the given con-
troller/port/device combination.

151

9 Classes (interfaces)

9.20.24 getMediumAttachmentsOfController

IMediumAttachment[] IMachine::getMediumAttachmentsOfController(
[in] wstring name)

name

Returns an array of medium attachments which are attached to the the controller
with the given name.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: A storage controller with given name doesn’t ex-
ist.

9.20.25 getNetworkAdapter

INetworkAdapter IMachine::getNetworkAdapter(
[in] unsigned long slot)

slot

Returns the network adapter associated with the given slot. Slots are numbered se-
quentially, starting with zero. The total number of adapters per machine is defined by
the ISystemProperties::networkAdapterCount property, so the maximum slot number
is one less than that property’s value.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid slot number.

9.20.26 getParallelPort

IParallelPort IMachine::getParallelPort(
[in] unsigned long slot)

slot

Returns the parallel port associated with the given slot. Slots are numbered sequen-
tially, starting with zero. The total number of parallel ports per machine is defined
by the ISystemProperties::parallelPortCount property, so the maximum slot number is
one less than that property’s value.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid slot number.

152

9 Classes (interfaces)

9.20.27 getSerialPort

ISerialPort IMachine::getSerialPort(
[in] unsigned long slot)

slot

Returns the serial port associated with the given slot. Slots are numbered sequen-
tially, starting with zero. The total number of serial ports per machine is defined by
the ISystemProperties::serialPortCount property, so the maximum slot number is one
less than that property’s value.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid slot number.

9.20.28 getSnapshot

ISnapshot IMachine::getSnapshot(
[in] uuid id)

id UUID of the snapshot to get

Returns a snapshot of this machine with the given UUID. A null UUID can be used
to obtain the first snapshot taken on this machine. This is useful if you want to traverse
the whole tree of snapshots starting from the root.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Virtual machine has no snapshots or snapshot

not found.

9.20.29 getStorageControllerBylnstance

IStorageController IMachine::getStorageControllerByInstance(
[in] unsigned long instance)

instance

Returns a storage controller with the given instance number.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: A storage controller with given instance number
doesn’t exist.

153

9 Classes (interfaces)

9.20.30 getStorageControllerByName

IStorageController IMachine::getStorageControllerByName (
[in] wstring name)

name

Returns a storage controller with the given name.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: A storage controller with given name doesn’t ex-
ist.

9.20.31 hotPlugCPU

void IMachine::hotPlugCPU(
[in] unsigned long cpu)

cpu The CPU id to insert.

Plugs a CPU into the machine.

9.20.32 hotUnplugCPU

void IMachine::hotUnplugCPU(
[in] unsigned long cpu)

cpu The CPU id to remove.

Removes a CPU from the machine.

9.20.33 mountMedium

void IMachine: :mountMedium(
[in] wstring name,
[in] long controllerPort,
[in] long device,
[in] uuid medium,
[in] boolean force)

name Name of the storage controller to attach the medium to.
controllerPort Port to attach the medium to.
device Device slot in the given port to attach the medium to.

medium UUID of the medium to attach. A zero UUID means unmount the currently
mounted medium.

154

9 Classes (interfaces)

force Allows to force unmount/mount of a medium which is locked by theDevice slot
in the given port to attach the medium to.

Mounts a medium (IMedium, identified by the given UUID id) to the given storage
controller (IStorageController, identified by name), at the indicated port and device.
The device must already exist; see attachDevice() for how to attach a new device.

This method is intended only for managing removable media, where the device is
fixed but media is changeable at runtime (such as DVDs and floppies). It cannot be
used for fixed media such as hard disks.

The controllerPort and device parameters specify the device slot and have have
the same meaning as with attachDevice().

The specified device slot can have a medium mounted, which will be unmounted
first. Specifying a zero UUID (or an empty string) for medium does just an unmount.

See IMedium for more detailed information about attaching media.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: SATA device, SATA port, IDE port or IDE slot out of range.

e VBOX_E_INVALID OBJECT_STATE: Attempt to attach medium to an unregis-
tered virtual machine.

e VBOX_E_INVALID VM_STATE: Invalid machine state.

e VBOX_E_OBJECT_IN_USE: Medium already attached to this or another virtual
machine.

9.20.34 passthroughDevice

void IMachine::passthroughDevice(
[in] wstring name,
[in] long controllerPort,
[in] long device,
[in] boolean passthrough)

name Name of the storage controller.
controllerPort Storage controller port.

device Device slot in the given port.

passthrough New value for the passthrough setting.

Sets the passthrough mode of an existing DVD device. Changing the setting while
the VM is running is forbidden. The setting is only used if at VM start the device is
configured as a host DVD drive, in all other cases it is ignored. The device must already
exist; see attachDevice() for how to attach a new device.

The controllerPort and device parameters specify the device slot and have have
the same meaning as with attachDevice().

If this method fails, the following error codes may be reported:

155

9 Classes (interfaces)

e E_INVALIDARG: SATA device, SATA port, IDE port or IDE slot out of range.

e VBOX_E_INVALID_ OBJECT_STATE: Attempt to modify an unregistered virtual
machine.

e VBOX_E_INVALID_VM_STATE: Invalid machine state.

9.20.35 queryLogFilename

wstring IMachine::queryLogFilename(
[in] unsigned long idx)

idx Which log file name to query. O=current log file.

Queries for the VM log file name of an given index. Returns an empty string if a log
file with that index doesn’t exists.

9.20.36 querySavedScreenshotPNGSize

void IMachine::querySavedScreenshotPNGSize(
[in] unsigned long screenId,
[out] unsigned long size,
[out] unsigned long width,
[out] unsigned long height)

screenld Saved guest screen to query info from.

size Size of buffer required to store the PNG binary data.
width Image width.

height Image height.

Returns size in bytes and dimensions of a saved PNG image of screenshot from saved
state.

9.20.37 querySavedThumbnailSize

void IMachine::querySavedThumbnailSize(
[in] unsigned long screenId,
[out] unsigned long size,
[out] unsigned long width,
[out] unsigned long height)

screenld Saved guest screen to query info from.
size Size of buffer required to store the bitmap.

width Bitmap width.

156

9 Classes (interfaces)

height Bitmap height.

Returns size in bytes and dimensions in pixels of a saved thumbnail bitmap from
saved state.

9.20.38 readlLog

octet[] IMachine::readLog(
[in] unsigned long idx,
[in] unsigned long long offset,
[in] unsigned long long size)

idx Which log file to read. O=current log file.
offset Offset in the log file.

size Chunk size to read in the log file.

Reads the VM log file. The chunk size is limited, so even if you ask for a big piece
there might be less data returned.

9.20.39 readSavedScreenshotPNGToArray

octet[] IMachine::readSavedScreenshotPNGToArray (
[in] unsigned long screenId,
[out] unsigned long width,
[out] unsigned long height)

screenld Saved guest screen to read from.
width Image width.
height Image height.

Screenshot in PNG format is retrieved to an array of bytes.

9.20.40 readSavedThumbnailToArray

octet[] IMachine::readSavedThumbnailToArray (
[in] unsigned long screenId,
[in] boolean BGR,
[out] unsigned long width,
[out] unsigned long height)

screenld Saved guest screen to read from.

BGR How to order bytes in the pixel. A pixel consists of 4 bytes. If this parameter
is true, then bytes order is: B, G, R, OxFF. If this parameter is false, then bytes
order is: R, G, B, OxFF.

157

9 Classes (interfaces)

width Bitmap width.
height Bitmap height.

Thumbnail is retrieved to an array of bytes in uncompressed 32-bit BGRA or RGBA
format.

9.20.41 removeAllICPUIDLeaves

void IMachine::removeAllCPUIDLeaves()

Removes all the virtual CPU cpuid leaves

9.20.42 removeCPUIDLeaf

void IMachine::removeCPUIDLeaf (
[in] unsigned long id)

id CPUID leaf index.

Removes the virtual CPU cpuid leaf for the specified index
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid id.

9.20.43 removeSharedFolder

void IMachine::removeSharedFolder(
[in] wstring name)

name Logical name of the shared folder to remove.

Removes the permanent shared folder with the given name previously created by
createSharedFolder() from the collection of shared folders and stops sharing it.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine is not mutable.
e VBOX_E_OBJECT_NOT_FOUND: Shared folder name does not exist.

9.20.44 removeStorageController

void IMachine::removeStorageController(
[in] wstring name)

name

Removes a storage controller from the machine.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: A storage controller with given name doesn’t ex-
ist.

158

9 Classes (interfaces)

9.20.45 saveSettings

void IMachine::saveSettings()

Saves any changes to machine settings made since the session has been opened or
a new machine has been created, or since the last call to saveSettings() or discardSet-
tings(). For registered machines, new settings become visible to all other VirtualBox
clients after successful invocation of this method.

Note: The method sends IVirtualBoxCallback::onMachineDataChange() no-
tification event after the configuration has been successfully saved (only for
registered machines).

Note: Calling this method is only valid on instances returned by ISes-
sion::machine and on new machines created by IVirtualBox::createMachine()
but not yet registered, or on unregistered machines after calling IVirtual-
Box::unregisterMachine().

If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Settings file not accessible.
e VBOX_E_XML_ERROR: Could not parse the settings file.

e E_ACCESSDENIED: Modification request refused.

9.20.46 setBootOrder

void IMachine::setBootOrder(
[in] unsigned long position,
[in] DeviceType device)

position Position in the boot order (1 to the total number of devices the machine can
boot from, as returned by ISystemProperties::maxBootPosition).

device The type of the device used to boot at the given position.

Puts the given device to the specified position in the boot order.

To indicate that no device is associated with the given position, Null should be used.
@todo setHardDiskBootOrder(), setNetworkBootOrder()

If this method fails, the following error codes may be reported:

e E_INVALIDARG: Boot position out of range.

e E_NOTIMPL: Booting from USB device currently not supported.

159

9 Classes (interfaces)

9.20.47 setCPUIDLeaf

void IMachine::setCPUIDLeaf (
[in] unsigned long id,
[in] unsigned long valEax,
[in] unsigned long valEbx,
[in] unsigned long valEcx,
[in] unsigned long valEdx)

id CPUID leaf index.

valEax CPUID leaf value for register eax.
valEbx CPUID leaf value for register ebx.
valEcx CPUID leaf value for register ecx.

valEdx CPUID leaf value for register edx.

Sets the virtual CPU cpuid information for the specified leaf. Note that these values
are not passed unmodified. VirtualBox clears features that it doesn’t support.

Currently supported index values for cpuid: Standard CPUID leafs: 0 - 0xA Extended
CPUID leafs: 0x80000000 - 0x8000000A

See the Intel and AMD programmer’s manuals for detailed information about the
cpuid instruction and its leafs.

Do not use this method unless you know exactly what you're doing. Misuse can lead
to random crashes inside VMs.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid id.

9.20.48 setCPUProperty

void IMachine::setCPUProperty(
[in] CPUPropertyType property,
[in] boolean value)

property Property type to query.
value Property value.

Sets the virtual CPU boolean value of the specified property.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid property.

160

9 Classes (interfaces)

9.20.49 setCurrentSnapshot

void IMachine::setCurrentSnapshot(
[in] uuid id)

id UUID of the snapshot to set as the current snapshot.

Sets the current snapshot of this machine.

Note: In the current implementation, this operation is not implemented.

9.20.50 setExtraData

void IMachine::setExtraData(
[in] wstring key,
[in] wstring value)

key Name of the data key to set.

value Value to assign to the key.

Sets associated machine-specific extra data.
If you pass null or an empty string as a key value, the given key will be deleted.

Note: Before performing the actual data change, this method will ask all
registered callbacks using the IVirtualBoxCallback::onExtraDataCanChange()
notification for a permission. If one of the callbacks refuses the new value,
the change will not be performed.

Note: On success, the IVirtualBoxCallback::onExtraDataChange() notifica-
tion is called to inform all registered callbacks about a successful data change.

Note: This method can be called outside the machine session and therefore
it’s a caller’s responsibility to handle possible race conditions when several
clients change the same key at the same time.

If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Settings file not accessible.

e VBOX_E_XML_ERROR: Could not parse the settings file.

161

9 Classes (interfaces)

9.20.51 setGuestProperty

void IMachine::setGuestProperty(
[in] wstring property,
[in] wstring value,
[in] wstring flags)

property The name of the property to set, change or delete.

value The new value of the property to set, change or delete. If the property does not
yet exist and value is non-empty, it will be created. If the value is null or empty,
the property will be deleted if it exists.

flags Additional property parameters, passed as a comma-separated list of
“name=value” type entries.

Sets, changes or deletes an entry in the machine’s guest property store.
If this method fails, the following error codes may be reported:

e E_ACCESSDENIED: Property cannot be changed.
e E_INVALIDARG: Invalid flags.

e VBOX_E_INVALID_VM_STATE: Virtual machine is not mutable or session not
open.

e VBOX_E_INVALID_OBJECT_STATE: Cannot set transient property when ma-
chine not running.

9.20.52 setGuestPropertyValue

void IMachine::setGuestPropertyValue(
[in] wstring property,
[in] wstring value)

property The name of the property to set, change or delete.

value The new value of the property to set, change or delete. If the property does not
yet exist and value is non-empty, it will be created. If the value is null or empty,
the property will be deleted if it exists.

Sets, changes or deletes a value in the machine’s guest property store. The flags
field will be left unchanged or created empty for a new property.
If this method fails, the following error codes may be reported:

e E_ACCESSDENIED: Property cannot be changed.

e VBOX_E_INVALID_VM_STATE: Virtual machine is not mutable or session not
open.

e VBOX_E_INVALID_OBJECT_STATE: Cannot set transient property when ma-
chine not running.

162

9 Classes (interfaces)

9.20.53 setHWVirtExProperty

void IMachine::setHWVirtExProperty(
[in] HWVirtExPropertyType property,
[in] boolean value)

property Property type to set.

value New property value.

Sets a new value for the specified hardware virtualization boolean property.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid property.

9.20.54 showConsoleWindow

unsigned long long IMachine::showConsoleWindow()

Activates the console window and brings it to foreground on the desktop of the host
PC. Many modern window managers on many platforms implement some sort of focus
stealing prevention logic, so that it may be impossible to activate a window without
the help of the currently active application. In this case, this method will return a
non-zero identifier that represents the top-level window of the VM console process.
The calley, if it represents a currently active process, is responsible to use this identifier
(in a platform-dependent manner) to perform actual window activation.

Note: This method will fail if a session for this machine is not currently open.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID VM_STATE: Machine session is not open.

9.21 IMachineDebugger

’ Note: This interface is not supported in the web service.

9.21.1 Attributes
9.21.1.1 singlestep (read/write)

boolean IMachineDebugger::singlestep

Switch for enabling singlestepping.

163

9 Classes (interfaces)

9.21.1.2 recompileUser (read/write)

boolean IMachineDebugger::recompileUser

Switch for forcing code recompilation for user mode code.

9.21.1.3 recompileSupervisor (read/write)

boolean IMachineDebugger: :recompileSupervisor

Switch for forcing code recompilation for supervisor mode code.

9.21.1.4 PATMEnabled (read/write)

boolean IMachineDebugger: :PATMEnabled

Switch for enabling and disabling the PATM component.

9.21.1.5 CSAMEnabled (read/write)

boolean IMachineDebugger: :CSAMEnabled

Switch for enabling and disabling the CSAM component.

9.21.1.6 logEnabled (read/write)

boolean IMachineDebugger::logEnabled

Switch for enabling and disabling logging.

9.21.1.7 HWVirtExEnabled (read-only)

boolean IMachineDebugger: :HWVirtExEnabled

Flag indicating whether the VM is currently making use of CPU hardware virtualiza-
tion extensions.

9.21.1.8 HWVirtExNestedPagingEnabled (read-only)

boolean IMachineDebugger: :HWVirtExNestedPagingEnabled

Flag indicating whether the VM is currently making use of the nested paging CPU
hardware virtualization extension.

9.21.1.9 HWVirtExVPIDEnabled (read-only)

boolean IMachineDebugger: :HWVirtExVPIDEnabled

Flag indicating whether the VM is currently making use of the VPID VT-x extension.

164

9 Classes (interfaces)

9.21.1.10 PAEEnabled (read-only)

boolean IMachineDebugger::PAEEnabled
Flag indicating whether the VM is currently making use of the Physical Address

Extension CPU feature.

9.21.1.11 virtualTimeRate (read/write)

unsigned long IMachineDebugger::virtualTimeRate
The rate at which the virtual time runs expressed as a percentage. The accepted
range is 2% to 20000%.

9.21.1.12 VM (read-only)

unsigned long long IMachineDebugger::VM

Gets the VM handle. This is only for internal use while we carve the details of this
interface.

9.21.2 dumpStats

void IMachineDebugger: :dumpStats(
[in] wstring pattern)

pattern The selection pattern. A bit similar to filename globbing.

Dumps VM statistics.

9.21.3 getStats

void IMachineDebugger: :getStats/(
[in] wstring pattern,
[in] boolean withDescriptions,
[out] wstring stats)

pattern The selection pattern. A bit similar to filename globbing.
withDescriptions Whether to include the descriptions.
stats The XML document containing the statistics.

Get the VM statistics in a XMLish format.

9.21.4 injectNMI

void IMachineDebugger::injectNMI()

Inject an NMI into a running VT-x/AMD-V VM.

165

9 Classes (interfaces)

9.21.5 resetStats

void IMachineDebugger: :resetStats(
[in] wstring pattern)

pattern The selection pattern. A bit similar to filename globbing.

Reset VM statistics.

9.22 IManagedObjectRef

’ Note: This interface is supported in the web service only, not in COM/XPCOM.

Managed object reference.

Only within the webservice, a managed object reference (which is really an opaque
number) allows a webservice client to address an object that lives in the address space
of the webservice server.

Behind each managed object reference, there is a COM object that lives in the web-
service server’s address space. The COM object is not freed until the managed object
reference is released, either by an explicit call to release() or by logging off from the
webservice (IWebsessionManager::logoff()), which releases all objects created during
the webservice session.

Whenever a method call of the VirtualBox API returns a COM object, the webservice
representation of that method will instead return a managed object reference, which
can then be used to invoke methods on that object.

9.22.1 getinterfaceName

wstring IManagedObjectRef::getInterfaceName()

Returns the name of the interface that this managed object represents, for example,
“IMachine”, as a string.

9.22.2 release

void IManagedObjectRef::release()

Releases this managed object reference and frees the resources that were allocated
for it in the webservice server process. After calling this method, the identifier of the
reference can no longer be used.

166

9 Classes (interfaces)

9.23 IMedium

The IMedium interface represents virtual storage for a machine’s hard disks, CD/DVD
or floppy drives. It will typically represent a disk image on the host, for example a
VDI or VMDX file representing a virtual hard disk, or an ISO or RAW file representing
virtual removable media, but can also point to a network location (e.g. for iSCSI
targets).

Instances of IMedium are connected to virtual machines by way of medium attach-
ments (see IMediumAttachment), which link the storage medium to a particular device
slot of a storage controller of the virtual machine. In the VirtualBox API, virtual storage
is therefore always represented by the following chain of object links:

e IMachine::storageControllers[] contains an array of storage controllers (IDE,
SATA, SCSI, SAS or a floppy controller; these are instances of IStorageCon-
troller).

e IMachine::mediumAttachments[] contains an array of medium attachments (in-
stances of IMediumAttachment), each containing a storage controller from the
above array, a port/device specification, and an instance of IMedium represent-
ing the medium storage (image file).

For removable media, the storage medium is optional; a medium attachment
with no medium represents a CD/DVD or floppy drive with no medium inserted.
By contrast, hard disk attachments will always have an IMedium object attached.

e Each IMedium in turn points to a storage unit (such as a file on the host computer
or a network resource) that holds actual data. This location is represented by the
location attribute.

Existing media are opened using the following methods, depending on the media
type:

e IVirtualBox::openHardDisk()
e IVirtualBox::openDVDImage()
e IVirtualBox::openFloppylmage()

New hard disk media can be created with the VirtualBox API using the IVirtual-
Box::createHardDisk() method.

CD/DVD and floppy images (ISO and RAW files) are usually created outside
VirtualBox, e.g. by storing a copy of the real medium of the corresponding type in
a regular file.

Only for CD/DVDs and floppies, an IMedium instance can also represent a host
drive; in that case the id attribute contains the UUID of one of the drives in
IHost::DVDDrives[] or IHost::floppyDrives[].

Known media

167

9 Classes (interfaces)

When an existing medium is opened for the first time, it is automatically remem-
bered by the given VirtualBox installation or, in other words, becomes a known
medium. Known media are stored in the media registry transparently maintained by
VirtualBox and stored in settings files so that this registry is preserved when VirtualBox
is not running.

Newly created virtual media are remembered only when the associated storage unit
is actually created.

All known media can be enumerated using IVirtualBox::hardDisks[], IVirtual-
Box::DVDImages[] and IVirtualBox::floppylmages[] attributes. Individual media can
be quickly found by UUID using IVirtualBox::getHardDisk() and similar methods or by
location using IVirtualBox::findHardDisk() and similar methods.

Only known media can be attached to virtual machines.

Removing known media from the media registry is performed when the given
medium is closed using the close() method or when its associated storage unit is
deleted.

Accessibility checks

VirtualBox defers media accessibility checks until the refreshState() method is called
explicitly on a medium. This is done to make the VirtualBox object ready for serving
requests as fast as possible and let the end-user application decide if it needs to check
media accessibility right away or not.

As a result, when VirtualBox starts up (e.g. the VirtualBox object gets created for
the first time), all known media are in the “Inaccessible” state, but the value of the
lastAccessError attribute is an empty string because no actual accessibility check has
been made yet.

After calling refreshState(), a medium is considered accessible if its storage unit can
be read. In that case, the state attribute has a value of “Created”. If the storage
unit cannot be read (for example, because it is located on a disconnected network
resource, or was accidentally deleted outside VirtualBox), the medium is considered
inaccessible, which is indicated by the “Inaccessible” state. The exact reason why the
medium is inaccessible can be obtained by reading the lastAccessError attribute.

Medium types

There are four types of medium behavior (see MediumType): “normal”, “im-
mutable”, “writethrough” and “shareable”, represented by the type attribute. The type
of the medium defines how the medium is attached to a virtual machine and what
happens when a ISnapshot of the virtual machine with the attached medium is taken.
At the moment DVD and floppy media are always of type “writethrough”.

All media can be also divided in two groups: base media and differencing media. A
base medium contains all sectors of the medium data in its own storage and therefore
can be used independently. In contrast, a differencing mediun is a “delta” to some
other medium and contains only those sectors which differ from that other medium,
which is then called a parent. The differencing medium is said to be linked to that
parent. The parent may be itself a differencing medium, thus forming a chain of
linked media. The last element in that chain must always be a base medium. Note
that several differencing media may be linked to the same parent medium.

168

9 Classes (interfaces)

Differencing media can be distinguished from base media by querying the parent
attribute: base media do not have parents they would depend on, so the value of this
attribute is always null for them. Using this attribute, it is possible to walk up the
medium tree (from the child medium to its parent). It is also possible to walk down
the tree using the children[] attribute.

Note that the type of all differencing media is “normal”; all other values are mean-
ingless for them. Base media may be of any type.

Creating hard disks

New base hard disks are created using IVirtualBox::createHardDisk(). Existing hard
disks are opened using IVirtualBox::openHardDisk(). Differencing hard disks are usu-
ally implicitly created by VirtualBox when needed but may also be created explicitly
using createDiffStorage().

After the hard disk is successfully created (including the storage unit) or opened,
it becomes a known hard disk (remembered in the internal media registry).
Known hard disks can be attached to a virtual machine, accessed through IVirtu-
alBox::getHardDisk() and IVirtualBox::findHardDisk() methods or enumerated using
the IVirtualBox::hardDisks[] array (only for base hard disks).

The following methods, besides close(), automatically remove the hard disk from
the media registry:

e deleteStorage()
e mergeTo()

If the storage unit of the hard disk is a regular file in the host’s file system then the
rules stated in the description of the location attribute apply when setting its value. In
addition, a plain file name without any path may be given, in which case the default
hard disk folder will be prepended to it.

Automatic composition of the file name part

Another extension to the location attribute is that there is a possibility to cause
VirtualBox to compose a unique value for the file name part of the location using the
UUID of the hard disk. This applies only to hard disks in NotCreated state, e.g. before
the storage unit is created, and works as follows. You set the value of the location
attribute to a location specification which only contains the path specification but not
the file name part and ends with either a forward slash or a backslash character. In
response, VirtualBox will generate a new UUID for the hard disk and compose the file
name using the following pattern:

<path>/{<uuid>}.<ext>

where <path> is the supplied path specification, <uuid> is the newly generated
UUID and <ext> is the default extension for the storage format of this hard disk. After
that, you may call any of the methods that create a new hard disk storage unit and
they will use the generated UUID and file name.

Attaching Hard Disks

169

9 Classes (interfaces)

Hard disks are attached to virtual machines using the IMachine::attachDevice()
method and detached using the IMachine::detachDevice() method. Depending on
their type, hard disks are attached either directly or indirectly.

When a hard disk is being attached directly, it is associated with the virtual ma-
chine and used for hard disk operations when the machine is running. When a hard
disk is being attached indirectly, a new differencing hard disk linked to it is implic-
itly created and this differencing hard disk is associated with the machine and used
for hard disk operations. This also means that if IMachine::attachDevice() performs
a direct attachment then the same hard disk will be returned in response to the sub-
sequent IMachine::getMedium() call; however if an indirect attachment is performed
then IMachine::getMedium() will return the implicitly created differencing hard disk,
not the original one passed to IMachine::attachDevice(). In detail:

e Normal base hard disks that do not have children (i.e. differencing hard disks
linked to them) and that are not already attached to virtual machines in snap-
shots are attached directly. Otherwise, they are attached indirectly because
having dependent children or being part of the snapshot makes it impossible to
modify hard disk contents without breaking the integrity of the dependent party.
The readOnly attribute allows to quickly determine the kind of the attachment
for the given hard disk. Note that if a normal base hard disk is to be indirectly at-
tached to a virtual machine with snapshots then a special procedure called smart
attachment is performed (see below).

e Normal differencing hard disks are like normal base hard disks: they are at-
tached directly if they do not have children and are not attached to virtual ma-
chines in snapshots, and indirectly otherwise. Note that the smart attachment
procedure is never performed for differencing hard disks.

e Immutable hard disks are always attached indirectly because they are designed
to be non-writable. If an immutable hard disk is attached to a virtual machine
with snapshots then a special procedure called smart attachment is performed
(see below).

e Writethrough hard disks are always attached directly, also as designed. This
also means that writethrough hard disks cannot have other hard disks linked to
them at all.

e Shareable hard disks are always attached directly, also as designed. This also
means that shareable hard disks cannot have other hard disks linked to them at
all. They behave almost like writethrough hard disks, except that shareable hard
disks can be attached to several virtual machines which are running, allowing
concurrent accesses. You need special cluster software running in the virtual
machines to make use of such disks.

Note that the same hard disk, regardless of its type, may be attached to more than
one virtual machine at a time. In this case, the machine that is started first gains

170

9 Classes (interfaces)

exclusive access to the hard disk and attempts to start other machines having this hard
disk attached will fail until the first machine is powered down.

Detaching hard disks is performed in a deferred fashion. This means that the
given hard disk remains associated with the given machine after a successful IMa-
chine::detachDevice() call until IMachine::saveSettings() is called to save all changes
to machine settings to disk. This deferring is necessary to guarantee that the hard disk
configuration may be restored at any time by a call to IMachine::discardSettings()
before the settings are saved (committed).

Note that if IMachine::discardSettings() is called after indirectly attaching some
hard disks to the machine but before a call to IMachine::saveSettings() is made,
it will implicitly delete all differencing hard disks implicitly created by IMa-
chine::attachDevice() for these indirect attachments. Such implicitly created hard
disks will also be immediately deleted when detached explicitly using the IMa-
chine::detachDevice() call if it is made before IMachine::saveSettings(). This implicit
deletion is safe because newly created differencing hard disks do not contain any user
data.

However, keep in mind that detaching differencing hard disks that were implicitly
created by IMachine::attachDevice() before the last IMachine::saveSettings() call will
not implicitly delete them as they may already contain some data (for example, as a
result of virtual machine execution). If these hard disks are no more necessary, the
caller can always delete them explicitly using deleteStorage() after they are actually
de-associated from this machine by the IMachine::saveSettings() call.

Smart Attachment

When normal base or immutable hard disks are indirectly attached to a virtual ma-
chine then some additional steps are performed to make sure the virtual machine will
have the most recent “view” of the hard disk being attached. These steps include walk-
ing through the machine’s snapshots starting from the current one and going through
ancestors up to the first snapshot. Hard disks attached to the virtual machine in all
of the encountered snapshots are checked whether they are descendants of the given
normal base or immutable hard disk. The first found child (which is the differencing
hard disk) will be used instead of the normal base or immutable hard disk as a parent
for creating a new differencing hard disk that will be actually attached to the machine.
And only if no descendants are found or if the virtual machine does not have any snap-
shots then the normal base or immutable hard disk will be used itself as a parent for
this differencing hard disk.

It is easier to explain what smart attachment does using the following example:

BEFORE attaching B.vdi: AFTER attaching B.vdi:
Snapshot 1 (B.vdi) Snapshot 1 (B.vdi)
Snapshot 2 (D1->B.vdi) Snapshot 2 (D1->B.vdi)
Snapshot 3 (D2->D1.vdi) Snapshot 3 (D2->D1.vdi)
Snapshot 4 (none) Snapshot 4 (none)
CurState (none) CurState (D3->D2.vdi)
NOT

171

9 Classes (interfaces)

CurState (D3->B.vdi)

The first column is the virtual machine configuration before the base hard disk
B.vdi is attached, the second column shows the machine after this hard disk is at-
tached. Constructs like D1->B.vdi and similar mean that the hard disk that is actually
attached to the machine is a differencing hard disk, D1.vdi, which is linked to (based
on) another hard disk, B.vdi.

As we can see from the example, the hard disk B.vdi was detached from the ma-
chine before taking Snapshot 4. Later, after Snapshot 4 was taken, the user decides to
attach B.vdi again. B.vdi has dependent child hard disks (D1.vdi, D2.vdi), there-
fore it cannot be attached directly and needs an indirect attachment (i.e. implicit
creation of a new differencing hard disk). Due to the smart attachment procedure,
the new differencing hard disk (D3.vdi) will be based on D2.vdi, not on B.vdi itself,
since D2.vdi is the most recent view of B.vdi existing for this snapshot branch of the
given virtual machine.

Note that if there is more than one descendant hard disk of the given base hard disk
found in a snapshot, and there is an exact device, channel and bus match, then this
exact match will be used. Otherwise, the youngest descendant will be picked up.

There is one more important aspect of the smart attachment procedure which
is not related to snapshots at all. Before walking through the snapshots as de-
scribed above, the backup copy of the current list of hard disk attachment is searched
for descendants. This backup copy is created when the hard disk configuration is
changed for the first time after the last IMachine::saveSettings() call and used by IMa-
chine::discardSettings() to undo the recent hard disk changes. When such a descen-
dant is found in this backup copy, it will be simply re-attached back, without creating
a new differencing hard disk for it. This optimization is necessary to make it possi-
ble to re-attach the base or immutable hard disk to a different bus, channel or device
slot without losing the contents of the differencing hard disk actually attached to the
machine in place of it.

9.23.1 Attributes
9.23.1.1 id (read-only)
uuid IMedium::id

UUID of the medium. For a newly created medium, this value is a randomly gener-
ated UUID.

Note: For media in one of MediumState NotCreated, MediumState Creating
or MediumState Deleting states, the value of this property is undefined and
will most likely be an empty UUID.

172

9 Classes (interfaces)

9.23.1.2 description (read/write)

wstring IMedium::description

Optional description of the medium. For a newly created medium the value of this
attribute is an empty string.

Medium types that don’t support this attribute will return E NOTIMPL in attempt to
get or set this attribute’s value.

Note: For some storage types, reading this attribute may return an outdated
(last known) value when state is Inaccessible or LockedWrite because the
value of this attribute is stored within the storage unit itself. Also note that
changing the attribute value is not possible in such case, as well as when the
medium is the LockedRead state.

9.23.1.3 state (read-only)

MediumState IMedium::state

Returns the current medium state, which is the last state set by the accessibility
check performed by refreshState(). If that method has not yet been called on the
medium, the state is “Inaccessible”; as opposed to truly inaccessible media, the value
of lastAccessError will be an empty string in that case.

Note: As of version 3.1, this no longer performs an accessibility check auto-
matically; call refreshState() for that.

9.23.1.4 location (read/write)

wstring IMedium::location

Location of the storage unit holding medium data.

The format of the location string is medium type specific. For medium types using
regular files in a host’s file system, the location string is the full file name.

Some medium types may support changing the storage unit location by simply
changing the value of this property. If this operation is not supported, the imple-
mentation will return E_ NOTIMPL in attempt to set this attribute’s value.

When setting a value of the location attribute which is a regular file in the host’s
file system, the given file name may be either relative to the VirtualBox home folder
or absolute. Note that if the given location specification does not contain the file
extension part then a proper default extension will be automatically appended by the
implementation depending on the medium type.

173

9 Classes (interfaces)

9.23.1.5 name (read-only)

wstring IMedium::name

Name of the storage unit holding medium data.

The returned string is a short version of the location attribute that is suitable for
representing the medium in situations where the full location specification is too long
(such as lists and comboboxes in GUI frontends). This string is also used by frontends
to sort the media list alphabetically when needed.

For example, for locations that are regular files in the host’s file system, the value of
this attribute is just the file name (+ extension), without the path specification.

Note that as opposed to the location attribute, the name attribute will not necessary
be unique for a list of media of the given type and format.

9.23.1.6 deviceType (read-only)

DeviceType IMedium::deviceType

Kind of device (DVD/Floppy/HardDisk) which is applicable to this medium.

9.23.1.7 hostDrive (read-only)

boolean IMedium::hostDrive

True if this corresponds to a drive on the host.

9.23.1.8 size (read-only)

unsigned long long IMedium::size

Physical size of the storage unit used to hold medium data (in bytes).

Note: For media whose state is Inaccessible, the value of this property is the
last known size. For NotCreated media, the returned value is zero.

9.23.1.9 format (read-only)

wstring IMedium::format

Storage format of this medium.

The value of this attribute is a string that specifies a backend used to store medium
data. The storage format is defined when you create a new medium or automatically
detected when you open an existing medium, and cannot be changed later.

The list of all storage formats supported by this VirtualBox installation can be ob-
tained using ISystemProperties::mediumFormats[].

174

9 Classes (interfaces)

9.23.1.10 mediumFormat (read-only)

IMediumFormat IMedium::mediumFormat

Storage medium format object corresponding to this medium.

The value of this attribute is a reference to the medium format object that specifies
the backend properties used to store medium data. The storage format is defined
when you create a new medium or automatically detected when you open an existing
medium, and cannot be changed later.

Note: null is returned if there is no associated medium format object. This
can e.g. happen for medium objects representing host drives and other special
medium objects.

9.23.1.11 type (read/write)

MediumType IMedium::type

Type (role) of this medium.
The following constraints apply when changing the value of this attribute:

e If a medium is attached to a virtual machine (either in the current state or in one
of the snapshots), its type cannot be changed.

e As long as the medium has children, its type cannot be set to Writethrough.

e The type of all differencing media is Normal and cannot be changed.

The type of a newly created or opened medium is set to Normal, except for DVD and
floppy media, which have a type of Writethrough.

9.23.1.12 parent (read-only)

IMedium IMedium::parent

Parent of this medium (the medium this medium is directly based on).
Only differencing media have parents. For base (non-differencing) media, null is
returned.

9.23.1.13 children (read-only)

IMedium IMedium::children[]

Children of this medium (all differencing media directly based on this medium). A
null array is returned if this medium does not have any children.

175

9 Classes (interfaces)

9.23.1.14 base (read-only)
IMedium IMedium::base

Base medium of this medium.

If this is a differencing medium, its base medium is the medium the given medium
branch starts from. For all other types of media, this property returns the medium
object itself (i.e. the same object this property is read on).

9.23.1.15 readOnly (read-only)

boolean IMedium::readOnly

Returns true if this medium is read-only and false otherwise.

A medium is considered to be read-only when its contents cannot be modified with-
out breaking the integrity of other parties that depend on this medium such as its child
media or snapshots of virtual machines where this medium is attached to these ma-
chines. If there are no children and no such snapshots then there is no dependency
and the medium is not read-only.

The value of this attribute can be used to determine the kind of the attachment that
will take place when attaching this medium to a virtual machine. If the value is false
then the medium will be attached directly. If the value is true then the medium will
be attached indirectly by creating a new differencing child medium for that. See the
interface description for more information.

Note that all Immutable media are always read-only while all Writethrough media
are always not.

Note: The read-only condition represented by this attribute is related to the
medium type and usage, not to the current medium state and not to the read-
only state of the storage unit.

9.23.1.16 logicalSize (read-only)
unsigned long long IMedium::logicalSize

Logical size of this medium (in megabytes), as reported to the guest OS running
inside the virtual machine this medium is attached to. The logical size is defined when
the medium is created and cannot be changed later.

Note: Reading this property on a differencing medium will return the size of
its base medium.

Note: For media whose state is state is Inaccessible, the value of this property
is the last known logical size. For :: media, the returned value is zero.

176

9 Classes (interfaces)

9.23.1.17 autoReset (read/write)

boolean IMedium::autoReset

Whether this differencing medium will be automatically reset each time a virtual
machine it is attached to is powered up. This attribute is automatically set to true for
the last differencing image of an “immutable” medium (see MediumType).

See reset() for more information about resetting differencing media.

Note: Reading this property on a base (non-differencing) medium will always
false. Changing the value of this property in this case is not supported.

9.23.1.18 lastAccessError (read-only)

wstring IMedium::lastAccessError

Text message that represents the result of the last accessibility check performed by
refreshState().

An empty string is returned if the last accessibility check was successful or has not
yet been called. As a result, if state is “Inaccessible” and this attribute is empty, then
refreshState() has yet to be called; this is the default value of media after VirtualBox
initialization. A non-empty string indicates a failure and should normally describe a
reason of the failure (for example, a file read error).

9.23.1.19 machinelds (read-only)

uuid IMedium::machinelds]]

Array of UUIDs of all machines this medium is attached to.
A null array is returned if this medium is not attached to any machine or to any
machine’s snapshot.

Note: The returned array will include a machine even if this medium is not
attached to that machine in the current state but attached to it in one of the
machine’s snapshots. See getSnapshotlds() for details.

9.23.2 cloneTo

IProgress IMedium::cloneTo(
[in] IMedium target,
[in] MediumVariant variant,
[in] IMedium parent)

177

9 Classes (interfaces)

target Target medium.
variant Exact image variant which should be created.

parent Parent of the cloned medium.

Starts creating a clone of this medium in the format and at the location defined by
the target argument.

The target medium must be either in NotCreated state (i.e. must not have an existing
storage unit) or in Created state (i.e. created and not locked, and big enough to hold
the data or else the copy will be partial). Upon successful completion, the cloned
medium will contain exactly the same sector data as the medium being cloned, except
that in the first case a new UUID for the clone will be randomly generated, and in the
second case the UUID will remain unchanged.

The parent argument defines which medium will be the parent of the clone. Pass-
ing a null reference indicates that the clone will be a base image, i.e. completely
independent. It is possible to specify an arbitrary medium for this parameter, includ-
ing the parent of the medium which is being cloned. Even cloning to a child of the
source medium is possible. Note that when cloning to an existing image, the parent
irgument is ignored.

After the returned progress object reports that the operation is successfully com-
plete, the target medium gets remembered by this VirtualBox installation and may be
attached to virtual machines.

Note: This medium will be placed to LockedRead state for the duration of this
operation.

If this method fails, the following error codes may be reported:

e E_NOTIMPL: The specified cloning variant is not supported at the moment.

9.23.3 close

void IMedium::close()

Closes this medium.

The medium must not be attached to any known virtual machine and must not have
any known child media, otherwise the operation will fail.

When the medium is successfully closed, it gets removed from the list of remem-
bered media, but its storage unit is not deleted. In particular, this means that this
medium can be later opened again using the IVirtualBox::openHardDisk() call.

Note that after this method successfully returns, the given medium object becomes
uninitialized. This means that any attempt to call any of its methods or attributes will
fail with the "Object not ready" (E_ACCESSDENIED) error.

If this method fails, the following error codes may be reported:

178

9 Classes (interfaces)

VBOX_E_INVALID_OBJECT_STATE: Invalid medium state (other than not cre-
ated, created or inaccessible).

VBOX_E_OBJECT_IN_USE: Medium attached to virtual machine.

VBOX_E_FILE_ERROR: Settings file not accessible.

e VBOX_E_XML_ERROR: Could not parse the settings file.

9.23.4 compact

IProgress IMedium::compact()

Starts compacting of this medium. This means that the medium is transformed into
a possibly more compact storage representation. This potentially creates temporary
images, which can require a substantial amount of additional disk space.

This medium will be placed to LockedWrite state and all its parent media (if any)
will be placed to LockedRead state for the duration of this operation.

Please note that the results can be either returned straight away, or later as the result
of the background operation via the object returned via the progress parameter.

If this method fails, the following error codes may be reported:

e VBOX_E_NOT_SUPPORTED: Medium format does not support compacting (but
potentially needs it).

9.23.5 createBaseStorage

IProgress IMedium::createBaseStorage(
[in] unsigned long long logicalSize,
[in] MediumVariant variant)

logicalSize Maximum logical size of the medium in megabytes.

variant Exact image variant which should be created.

Starts creating a hard disk storage unit (fixed/dynamic, according to the variant
flags) in in the background. The previous storage unit created for this object, if any,
must first be deleted using deleteStorage(), otherwise the operation will fail.

Before the operation starts, the medium is placed in Creating state. If the create
operation fails, the medium will be placed back in NotCreated state.

After the returned progress object reports that the operation has successfully com-
pleted, the medium state will be set to Created, the medium will be remembered by
this VirtualBox installation and may be attached to virtual machines.

If this method fails, the following error codes may be reported:

e VBOX_E_NOT_SUPPORTED: The variant of storage creation operation is not sup-
ported. See IMediumFormat::capabilities.

179

9 Classes (interfaces)

9.23.6 createDiffStorage

IProgress IMedium::createDiffStorage(
[in] IMedium target,
[in] MediumVariant variant)

target Target medium.

variant Exact image variant which should be created.

Starts creating an empty differencing storage unit based on this medium in the
format and at the location defined by the target argument.

The target medium must be in NotCreated state (i.e. must not have an existing
storage unit). Upon successful completion, this operation will set the type of the target
medium to Normal and create a storage unit necessary to represent the differencing
medium data in the given format (according to the storage format of the target object).

After the returned progress object reports that the operation is successfully com-
plete, the target medium gets remembered by this VirtualBox installation and may be
attached to virtual machines.

Note: The medium will be set to LockedRead state for the duration of this
operation.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_IN_USE: Medium notin NotCreated state.

9.23.7 deleteStorage

IProgress IMedium::deleteStorage()

Starts deleting the storage unit of this medium.

The medium must not be attached to any known virtual machine and must not have
any known child media, otherwise the operation will fail. It will also fail if there is no
storage unit to delete or if deletion is already in progress, or if the medium is being in
use (locked for read or for write) or inaccessible. Therefore, the only valid state for
this operation to succeed is Created.

Before the operation starts, the medium is placed in Deleting state and gets removed
from the list of remembered hard disks (media registry). If the delete operation fails,
the medium will be remembered again and placed back to Created state.

After the returned progress object reports that the operation is complete, the
medium state will be set to NotCreated and you will be able to use one of the storage
creation methods to create it again.

See also: #close()

180

9 Classes (interfaces)

Note: If the deletion operation fails, it is not guaranteed that the storage unit
still exists. You may check the state value to answer this question.

If this method fails, the following error codes may be reported:
e VBOX_E_OBJECT_IN_USE: Medium is attached to a virtual machine.

e VBOX_E_NOT_SUPPORTED: Storage deletion is not allowed because neither of
storage creation operations are supported. See IMediumFormat::capabilities.

9.23.8 getProperties

wstring[] IMedium::getProperties(
[in] wstring names,
[out] wstring returnNames[])

names Names of properties to get.

returnNames Names of returned properties.

Returns values for a group of properties in one call.

The names of the properties to get are specified using the names argument which is
a list of comma-separated property names or an empty string if all properties are to be
returned. Note that currently the value of this argument is ignored and the method
always returns all existing properties.

The list of all properties supported by the given medium format can be obtained
with IMediumFormat::describeProperties().

The method returns two arrays, the array of property names corresponding to the
names argument and the current values of these properties. Both arrays have the same
number of elements with each elemend at the given index in the first array corresponds
to an element at the same index in the second array.

Note that for properties that do not have assigned values, an empty string is returned
at the appropriate index in the returnValues array.

9.23.9 getProperty

wstring IMedium::getProperty(
[in] wstring name)

name Name of the property to get.

Returns the value of the custom medium property with the given name.

The list of all properties supported by the given medium format can be obtained
with IMediumFormat::describeProperties().

Note that if this method returns an empty string in value, the requested property is
supported but currently not assigned any value.

If this method fails, the following error codes may be reported:

181

9 Classes (interfaces)

e VBOX_E_OBJECT_NOT_FOUND: Requested property does not exist (not sup-
ported by the format).

e E_INVALIDARG: name is null or empty.

9.23.10 getSnapshotids

uuid[] IMedium::getSnapshotIds(
[in] uuid machineld)

machineld UUID of the machine to query.

Returns an array of UUIDs of all snapshots of the given machine where this medium
is attached to.

If the medium is attached to the machine in the current state, then the first element
in the array will always be the ID of the queried machine (i.e. the value equal to the
machineId argument), followed by snapshot IDs (if any).

If the medium is not attached to the machine in the current state, then the array will
contain only snapshot IDs.

The returned array may be null if this medium is not attached to the given machine
at all, neither in the current state nor in one of the snapshots.

9.23.11 lockRead

MediumState IMedium::lockRead()

Locks this medium for reading.

A read lock is shared: many clients can simultaneously lock the same medium for
reading unless it is already locked for writing (see lockWrite()) in which case an error
is returned.

When the medium is locked for reading, it cannot be modified from within
VirtualBox. This means that any method that changes the properties of this medium
or contents of the storage unit will return an error (unless explicitly stated otherwise).
That includes an attempt to start a virtual machine that wants to write to the the
medium.

When the virtual machine is started up, it locks for reading all media it uses in read-
only mode. If some medium cannot be locked for reading, the startup procedure will
fail. A medium is typically locked for reading while it is used by a running virtual ma-
chine but has a depending differencing image that receives the actual write operations.
This way one base medium can have multiple child differencing images which can be
written to simultaneously. Read-only media such as DVD and floppy images are also
locked for reading only (so they can be in use by multiple machines simultaneously).

A medium is also locked for reading when it is the source of a write operation such
as cloneTo() or mergeTo().

182

9 Classes (interfaces)

The medium locked for reading must be unlocked using the unlockRead() method.
Calls to lockRead() can be nested and must be followed by the same number of paired
unlockRead() calls.

This method sets the medium state (see state) to “LockedRead” on success. The
medium’s previous state must be one of “Created”, “Inaccessible” or “LockedRead”.

Locking an inaccessible medium is not an error; this method performs a logical lock
that prevents modifications of this medium through the VirtualBox API, not a physical
file-system lock of the underlying storage unit.

This method returns the current state of the medium before the operation.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID OBJECT_STATE: Invalid medium state (e.g. not created,
locked, inaccessible, creating, deleting).

9.23.12 lockWrite

MediumState IMedium::lockWrite()

Locks this medium for writing.

A write lock, as opposed to lockRead(), is exclusive: there may be only one client
holding a write lock, and there may be no read locks while the write lock is held. As a
result, read-locking fails if a write lock is held, and write-locking fails if either a read
or another write lock is held.

When a medium is locked for writing, it cannot be modified from within VirtualBox,
and it is not guaranteed that the values of its properties are up-to-date. Any method
that changes the properties of this medium or contents of the storage unit will return
an error (unless explicitly stated otherwise).

When a virtual machine is started up, it locks for writing all media it uses to write
data to. If any medium could not be locked for writing, the startup procedure will fail.
If a medium has differencing images, then while the machine is running, only the last
(“leaf”) differencing image is locked for writing, whereas its parents are locked for
reading only.

A medium is also locked for writing when it is the target of a write operation such
as cloneTo() or mergeTo().

The medium locked for writing must be unlocked using the unlockWrite() method.
Write locks cannot be nested.

This method sets the medium state (see state) to “LockedWrite” on success. The
medium’s previous state must be either “Created” or “Inaccessible”.

Locking an inaccessible medium is not an error; this method performs a logical lock
that prevents modifications of this medium through the VirtualBox API, not a physical
file-system lock of the underlying storage unit.

For both, success and failure, this method returns the current state of the medium
before the operation.

If this method fails, the following error codes may be reported:

183

9 Classes (interfaces)

e VBOX_E_INVALID_OBJECT_STATE: Invalid medium state (e.g. not created,
locked, inaccessible, creating, deleting).

9.23.13 mergeTo

IProgress IMedium::mergeTo(
[in] IMedium target)

target Target medium.

Starts merging the contents of this medium and all intermediate differencing media
in the chain to the given target medium.

The target medium must be either a descendant of this medium or its ancestor
(otherwise this method will immediately return a failure). It follows that there are two
logical directions of the merge operation: from ancestor to descendant (forward merge)
and from descendant to ancestor (backward merge). Let us consider the following
medium chain:

Base <- Diff_1 <- Diff_2

Here, calling this method on the Base medium object with Diff_2 as an argument
will be a forward merge; calling it on Diff_2 with Base as an argument will be a
backward merge. Note that in both cases the contents of the resulting medium will be
the same, the only difference is the medium object that takes the result of the merge
operation. In case of the forward merge in the above example, the result will be
written to Diff_2; in case of the backward merge, the result will be written to Base.
In other words, the result of the operation is always stored in the target medium.

Upon successful operation completion, the storage units of all media in the chain
between this (source) medium and the target medium, including the source medium
itself, will be automatically deleted and the relevant medium objects (including this
medium) will become uninitialized. This means that any attempt to call any of their
methods or attributes will fail with the "Object not ready" (E_ACCESSDENIED) er-
ror. Applied to the above example, the forward merge of Base to Diff_2 will delete
and uninitialize both Base and Diff_1 media. Note that Diff_2 in this case will
become a base medium itself since it will no longer be based on any other medium.

Considering the above, all of the following conditions must be met in order for the
merge operation to succeed:

e Neither this (source) medium nor any intermediate differencing medium in the
chain between it and the target medium is attached to any virtual machine.

e Neither the source medium nor the target medium is an Immutable medium.

e The part of the medium tree from the source medium to the target medium is a
linear chain, i.e. all medium in this chain have exactly one child which is the next
medium in this chain. The only exception from this rule is the target medium in
the forward merge operation; it is allowed to have any number of child media

184

9 Classes (interfaces)

because the merge operation will not change its logical contents (as it is seen by
the guest OS or by children).

e None of the involved media are in LockedRead or LockedWrite state.

Note: This (source) medium and all intermediates will be placed to Deleting
state and the target medium will be placed to LockedWrite state and for the
duration of this operation.

9.23.14 refreshState

MediumState IMedium::refreshState()

If the current medium state (see MediumState) is one of “Created”, “Inaccessible”
or “LockedRead”, then this performs an accessibility check on the medium and sets the
value of the state attribute accordingly; that value is also returned for convenience.

For all other state values, this does not perform a refresh but returns the state only.

The refresh, if performed, may take a long time (several seconds or even minutes,
depending on the storage unit location and format) because it performs an accessibility
check of the storage unit. This check may cause a significant delay if the storage unit
of the given medium is, for example, a file located on a network share which is not
currently accessible due to connectivity problems. In that case, the call will not return
until a timeout interval defined by the host OS for this operation expires. For this
reason, it is recommended to never read this attribute on the main UI thread to avoid
making the UI unresponsive.

If the last known state of the medium is “Created” and the accessibility check fails,
then the state would be set to “Inaccessible”, and lastAccessError may be used to get
more details about the failure. If the state of the medium is “LockedRead”, then it
remains the same, and a non-empty value of lastAccessError will indicate a failed
accessibility check in this case.

Note that not all medium states are applicable to all medium types.

9.23.15 reset

IProgress IMedium::reset()

Starts erasing the contents of this differencing medium.

This operation will reset the differencing medium to its initial state when it does
not contain any sector data and any read operation is redirected to its parent medium.
This automatically gets called during VM power-up for every medium whose autoReset
attribute is true.

The medium will be write-locked for the duration of this operation (see lockWrite()).

If this method fails, the following error codes may be reported:

185

9 Classes (interfaces)

e VBOX_E_NOT_SUPPORTED: This is not a differencing medium.

e VBOX_E_INVALID_OBJECT_STATE: Medium is not in Created or Inaccessible
state.

9.23.16 resize

IProgress IMedium::resize(
[in] unsigned long long logicalSize)

logicalSize New nominal capacity of the medium in megabytes.

Starts resizing this medium. This means that the nominal size of the medium is set
to the new value. Both increasing and decreasing the size is possible, and there are
no safety checks, since VirtualBox does not make any assumptions about the medium
contents.

Resizing usually needs additional disk space, and possibly also some temporary disk
space. Note that resize does not create a full temporary copy of the medium, so the
additional disk space requirement is usually much lower than using the clone opera-
tion.

This medium will be placed to LockedWrite state for the duration of this operation.

Please note that the results can be either returned straight away, or later as the result
of the background operation via the object returned via the progress parameter.

If this method fails, the following error codes may be reported:

e VBOX_E_NOT_SUPPORTED: Medium format does not support resizing.

9.23.17 setProperties

void IMedium::setProperties(
[in] wstring names[],
[in] wstring values[])

names Names of properties to set.

values Values of properties to set.

Sets values for a group of properties in one call.

The names of the properties to set are passed in the names array along with the new
values for them in the values array. Both arrays have the same number of elements
with each elemend at the given index in the first array corresponding to an element at
the same index in the second array.

If there is at least one property name in names that is not valid, the method will fail
before changing the values of any other properties from the names array.

Using this method over setProperty() is preferred if you need to set several proper-
ties at once since it will result into less IPC calls.

186

9 Classes (interfaces)

The list of all properties supported by the given medium format can be obtained
with IMediumFormat::describeProperties().

Note that setting the property value to null or an empty string is equivalent to
deleting the existing value. A default value (if it is defined for this property) will be
used by the format backend in this case.

9.23.18 setProperty

void IMedium::setProperty(
[in] wstring name,
[in] wstring value)

name Name of the property to set.

value Property value to set.

Sets the value of the custom medium property with the given name.

The list of all properties supported by the given medium format can be obtained
with IMediumFormat::describeProperties().

Note that setting the property value to null or an empty string is equivalent to
deleting the existing value. A default value (if it is defined for this property) will be
used by the format backend in this case.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Requested property does not exist (not sup-
ported by the format).

e E_INVALIDARG: name is null or empty.

9.23.19 unlockRead

MediumState IMedium::unlockRead()

Cancels the read lock previously set by lockRead().

For both success and failure, this method returns the current state of the medium
after the operation.

See lockRead () for more details.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_OBJECT_STATE: Medium not locked for reading.

9.23.20 unlockWrite

MediumState IMedium::unlockWrite()

187

9 Classes (interfaces)

Cancels the write lock previously set by lockWrite().

For both success and failure, this method returns the current state of the medium
after the operation.

See lockWrite() for more details.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID OBJECT_STATE: Medium not locked for writing.

9.24 IMediumAttachment

Note: With the web service, this interface is mapped to a structure. Attributes
that return this interface will not return an object, but a complete structure
containing the attributes listed below as structure members.

The IMediumAttachment interface represents the attachment of a storage medium
to a virtual machine. Each machine contains an array of its medium attachments in
IMachine::mediumAttachments[].

Each medium attachment specifies a storage controller as well as a port and de-
vice number. Fixed media (hard disks) will always also specify an instance of
IMedium in medium, referring to the hard disk medium. For removeable media,
the IMedia instance is optional; it can be null if no media is mounted (see IMa-
chine::mountMedium()).

9.24.1 Attributes
9.24.1.1 medium (read-only)

IMedium IMediumAttachment::medium

Medium object associated with this attachment; it can be null for removable de-
vices.

9.24.1.2 controller (read-only)

wstring IMediumAttachment::controller

Name of the storage controller of this attachment; this refers to one of the controllers
in IMachine::storageControllers[] by name.

9.24.1.3 port (read-only)

long IMediumAttachment::port

Port number of this attachment. See IMachine::attachDevice() for the meaning of
this value for the different controller types.

188

9 Classes (interfaces)

9.24.1.4 device (read-only)
long IMediumAttachment::device

Device slot number of this attachment. See IMachine::attachDevice() for the mean-
ing of this value for the different controller types.

9.24.1.5 type (read-only)
DeviceType IMediumAttachment::type

Device type of this attachment.

9.24.1.6 passthrough (read-only)
boolean IMediumAttachment::passthrough

Pass I/0 requests through to a device on the host.

9.25 IMediumFormat

The IMediumFormat interface represents a medium format.

Each medium format has an associated backend which is used to handle media
stored in this format. This interface provides information about the properties of the
associated backend.

Each medium format is identified by a string represented by the id attribute. This
string is used in calls like IVirtualBox::createHardDisk() to specify the desired format.

The list of all supported medium formats can be obtained using ISystemProper-
ties::mediaFormats.

See also: IMedium

9.25.1 Attributes
9.25.1.1 id (read-only)
wstring IMediumFormat::id

Identifier of this format.
The format identifier is a non-null non-empty ASCII string. Note that this string is
case-insensitive. This means that, for example, all of the following strings:

"\WpI"
nydi®
ngI"

refer to the same medium format.
This string is used in methods of other interfaces where it is necessary to specify a
medium format, such as IVirtualBox::createHardDisk().

189

9 Classes (interfaces)

9.25.1.2 name (read-only)
wstring IMediumFormat::name

Human readable description of this format.
Mainly for use in file open dialogs.

9.25.1.3 fileExtensions (read-only)
wstring IMediumFormat::fileExtensions[]

Array of strings containing the supported file extensions.

The first extension in the array is the extension preferred by the backend. It is
recommended to use this extension when specifying a location of the storage unit for
a new medium.

Note that some backends do not work on files, so this array may be empty.

See also: IMediumFormat::capabilities

9.25.1.4 capabilities (read-only)
unsigned long IMediumFormat::capabilities

Capabilities of the format as a set of bit flags.
For the meaning of individual capability flags see MediumFormatCapabilities.

9.25.2 describeProperties

void IMediumFormat::describeProperties(
[out] wstring names[],
[out] wstring description[],
[out] DataType types[],
[out] unsigned long flagsI[],
[out] wstring defaults[])

names Array of property names.
description Array of property descriptions.
types Array of property types.

flags Array of property flags.

defaults Array of default property values.

Returns several arrays describing the properties supported by this format.

An element with the given index in each array describes one property. Thus, the
number of elements in each returned array is the same and corresponds to the number
of supported properties.

The returned arrays are filled in only if the Properties flag is set. All arguments must
be non-null.

See also: DataTypeSee also: DataFlags

190

9 Classes (interfaces)

9.26 IMouse

The IMouse interface represents the virtual machine’s mouse. Used in ICon-
sole::mouse.
Through this interface, the virtual machine’s virtual mouse can be controlled.

9.26.1 Attributes
9.26.1.1 absoluteSupported (read-only)

boolean IMouse::absoluteSupported

Whether the guest OS supports absolute mouse pointer positioning or not.

Note: You can use the IConsoleCallback::onMouseCapabilityChange() call-
back to be instantly informed about changes of this attribute during virtual
machine execution.

See also: putMouseEventAbsolute()

9.26.1.2 relativeSupported (read-only)

boolean IMouse::relativeSupported

Whether the guest OS supports relative mouse pointer positioning or not.

Note: You can use the IConsoleCallback::onMouseCapabilityChange() call-
back to be instantly informed about changes of this attribute during virtual
machine execution.

See also: putMouseEvent()

9.26.1.3 needsHostCursor (read-only)

boolean IMouse: :needsHostCursor

Whether the guest OS can currently switch to drawing it’s own mouse cursor on
demand.

Note: You can use the IConsoleCallback::onMouseCapabilityChange() call-
back to be instantly informed about changes of this attribute during virtual
machine execution.

See also: putMouseEvent()

191

9 Classes (interfaces)

9.26.2 putMouseEvent

void IMouse: :putMouseEvent(
[in] long dx,
[in] long dy,
[in] long dz,
[in] long dw,
[in] long buttonState)

dx Amount of pixels the mouse should move to the right. Negative values move the
mouse to the left.

dy Amount of pixels the mouse should move downwards. Negative values move the
mouse upwards.

dz Amount of mouse wheel moves. Positive values describe clockwise wheel rotations,
negative values describe counterclockwise rotations.

dw Amount of horizontal mouse wheel moves. Positive values describe a movement
to the left, negative values describe a movement to the right.

buttonState The current state of mouse buttons. Every bit represents a mouse button
as follows: Bit 0 (0x01)left mouse buttonBit 1 (0x02)right mouse buttonBit 2
(6x04)middle mouse button A value of 1 means the corresponding button is
pressed. otherwise it is released.

Initiates a mouse event using relative pointer movements along x and y axis.
If this method fails, the following error codes may be reported:

e E_ACCESSDENIED: Console not powered up.

e VBOX_E_IPRT_ERROR: Could not send mouse event to virtual mouse.

9.26.3 putMouseEventAbsolute

void IMouse: :putMouseEventAbsolute(
[in] long x,
[in] long vy,
[in] long dz,
[in] long dw,
[in] long buttonState)

X X coordinate of the pointer in pixels, starting from 1.
y Y coordinate of the pointer in pixels, starting from 1.

dz Amount of mouse wheel moves. Positive values describe clockwise wheel rotations,
negative values describe counterclockwise rotations.

192

9 Classes (interfaces)

dw Amount of horizontal mouse wheel moves. Positive values describe a movement
to the left, negative values describe a movement to the right.

buttonState The current state of mouse buttons. Every bit represents a mouse button
as follows: Bit 0 (0x01)left mouse buttonBit 1 (0x02)right mouse buttonBit 2
(0x04)middle mouse button A value of 1 means the corresponding button is
pressed. otherwise it is released.

Positions the mouse pointer using absolute x and y coordinates. These coordinates
are expressed in pixels and start from [1, 1] which corresponds to the top left corner
of the virtual display.

Note: This method will have effect only if absolute mouse positioning is sup-
ported by the guest OS.

See also: absoluteSupported
If this method fails, the following error codes may be reported:

e E_ACCESSDENIED: Console not powered up.

e VBOX_E_IPRT_ERROR: Could not send mouse event to virtual mouse.

9.27 INATEngine

Interface for managing a NAT engine which is used with a virtual machine. This allows
for changing NAT behavior such as port-forwarding rules. This interface is used in the
INetworkAdapter::natDriver attribute.

9.27.1 Attributes
9.27.1.1 network (read/write)

wstring INATEngine::network

The network attribute of the NAT engine (the same value is used with built-in DHCP
server to fill corresponding fields of DHCP leases).

9.27.1.2 hostlIP (read/write)

wstring INATEngine::hostIP

IP of host interface to bind all opened sockets to.

Note: Changing this does not change binding of port forwarding.

193

9 Classes (interfaces)

9.27.1.3 tftpPrefix (read/write)

wstring INATEngine::tftpPrefix

TFTP prefix attribute which is used with the built-in DHCP server to fill the corre-
sponding fields of DHCP leases.

9.27.1.4 tftpBootFile (read/write)

wstring INATEngine::tftpBootFile

TFTP boot file attribute which is used with the built-in DHCP server to fill the corre-
sponding fields of DHCP leases.

9.27.1.5 tftpNextServer (read/write)

wstring INATEngine::tftpNextServer

TFTP server attribute which is used with the built-in DHCP server to fill the corre-
sponding fields of DHCP leases.

Note: The preferred form is IPv4 addresses.

9.27.1.6 aliasMode (read/write)

unsigned long INATEngine::aliasMode

9.27.1.7 dnsPassDomain (read/write)

boolean INATEngine::dnsPassDomain

Whether the DHCP server should pass the DNS domain used by the host.

9.27.1.8 dnsProxy (read/write)

boolean INATEngine::dnsProxy

Whether the DHCP server (and the DNS traffic by NAT) should pass the address of
the DNS proxy and process traffic using DNS servers registered on the host.

9.27.1.9 dnsUseHostResolver (read/write)

boolean INATEngine::dnsUseHostResolver

Whether the DHCP server (and the DNS traffic by NAT) should pass the address of
the DNS proxy and process traffic using the host resolver mechanism.

194

9 Classes (interfaces)

9.27.1.10 redirects (read-only)

wstring INATEngine::redirects[]

Array of NAT port-forwarding rules in string representation, in the following format:
“name,protocol id,host ip,host port,guest ip,guest port”.

9.27.2 addRedirect

void INATEngine::addRedirect(
[in] wstring name,
[in] NATProtocol proto,
[in] wstring hostIp,
[in] unsigned short hostPort,
[in] wstring guestIp,
[in] unsigned short guestPort)

name The name of the rule. An empty name is acceptable, in which case the NAT
engine auto-generates one using the other parameters.

proto Protocol handled with the rule.

hostlp IP of the host interface to which the rule should apply. An empty ip address
is acceptable, in which case the NAT engine binds the handling socket to any
interface.

hostPort The port number to listen on.

guestlp The IP address of the guest which the NAT engine will forward matching
packets to. An empty IP address is acceptable, in which case the NAT engine will
forward packets to the first DHCP lease (x.x.x.15).

guestPort The port number to forward.

Adds a new NAT port-forwarding rule.

9.27.3 getNetworkSettings

void INATEngine::getNetworkSettings(
[out] unsigned long mtu,
[out] unsigned long sockSnd,
[out] unsigned long sockRcv,
[out] unsigned long TcpWndSnd,
[out] unsigned long TcpWndRcv)

mtu
sockSnd

sockRcv

195

9 Classes (interfaces)

TepWndSnd
TcpWndRcv

Returns network configuration of NAT engine. See setNetworkSettings() for parameter
descriptions.

9.27.4 removeRedirect

void INATEngine::removeRedirect(
[in] wstring name)

name The name of the rule to delete.

Removes a port-forwarding rule that was previously registered.

9.27.5 setNetworkSettings

void INATEngine::setNetworkSettings(
[in] unsigned long mtu,
[in] unsigned long sockSnd,
[in] unsigned long sockRcv,
[in] unsigned long TcpWndSnd,
[in] unsigned long TcpWndRcv)

mtu MTU (maximum transmission unit) of the NAT engine in bytes.
sockSnd Capacity of the socket send buffer in bytes when creating a new socket.
sockRcv Capacity of the socket receive buffer in bytes when creating a new socket.

TepWndSnd Initial size of the NAT engine’s sending TCP window in bytes when es-
tablishing a new TCP connection.

TcpWndRcv Initial size of the NAT engine’s receiving TCP window in bytes when
establishing a new TCP connection.

Sets network configuration of the NAT engine.

9.28 INetworkAdapter

Represents a virtual network adapter that is attached to a virtual machine. Each virtual
machine has a fixed number of network adapter slots with one instance of this attached
to each of them. Call IMachine::getNetworkAdapter() to get the network adapter that
is attached to a given slot in a given machine.

Each network adapter can be in one of five attachment modes, which are rep-
resented by the NetworkAttachmentType enumeration; see the attachmentType at-
tribute.

196

9 Classes (interfaces)

9.28.1 Attributes
9.28.1.1 adapterType (read/write)

NetworkAdapterType INetworkAdapter::adapterType

Type of the virtual network adapter. Depending on this value, VirtualBox will pro-
vide a different virtual network hardware to the guest.

9.28.1.2 slot (read-only)

unsigned long INetworkAdapter::slot

Slot number this adapter is plugged into. Corresponds to the value you pass to
IMachine::getNetworkAdapter() to obtain this instance.

9.28.1.3 enabled (read/write)

boolean INetworkAdapter::enabled

Flag whether the network adapter is present in the guest system. If disabled, the
virtual guest hardware will not contain this network adapter. Can only be changed
when the VM is not running.

9.28.1.4 MACAddress (read/write)

wstring INetworkAdapter::MACAddress

Ethernet MAC address of the adapter, 12 hexadecimal characters. When setting it to
null or an empty string, VirtualBox will generate a unique MAC address.

9.28.1.5 attachmentType (read-only)

NetworkAttachmentType INetworkAdapter::attachmentType

9.28.1.6 hostlInterface (read/write)

wstring INetworkAdapter::hostInterface

Name of the host network interface the VM is attached to.

9.28.1.7 internalNetwork (read/write)

wstring INetworkAdapter::internalNetwork

Name of the internal network the VM is attached to.

197

9 Classes (interfaces)

9.28.1.8 NATNetwork (read/write)

wstring INetworkAdapter::NATNetwork

Name of the NAT network the VM is attached to.

9.28.1.9 VDENetwork (read/write)

wstring INetworkAdapter::VDENetwork

Name of the VDE switch the VM is attached to.

9.28.1.10 cableConnected (read/write)

boolean INetworkAdapter::cableConnected

Flag whether the adapter reports the cable as connected or not. It can be used to
report offline situations to a VM.

9.28.1.11 lineSpeed (read/write)

unsigned long INetworkAdapter::lineSpeed

Line speed reported by custom drivers, in units of 1 kbps.

9.28.1.12 traceEnabled (read/write)

boolean INetworkAdapter::traceEnabled

Flag whether network traffic from/to the network card should be traced. Can only
be toggled when the VM is turned off.

9.28.1.13 traceFile (read/write)

wstring INetworkAdapter::traceFile

Filename where a network trace will be stored. If not set, VBox-pid.pcap will be
used.

9.28.1.14 natDriver (read-only)

INATEngine INetworkAdapter::natDriver

Points to the NAT engine which handles the network address translation for this
interface. This is active only when the interface actually uses NAT (see attachToNAT()).

198

9 Classes (interfaces)

9.28.1.15 bootPriority (read/write)

unsigned long INetworkAdapter::bootPriority

Network boot priority of the adapter. Priority 1 is highest. If not set, the priority is
considered to be at the lowest possible setting.

9.28.2 attachToBridgedinterface

void INetworkAdapter::attachToBridgedInterface()

Attach the network adapter to a bridged host interface.

9.28.3 attachToHostOnlyinterface

void INetworkAdapter::attachToHostOnlyInterface()

Attach the network adapter to the host-only network.

9.28.4 attachTolnternalNetwork

void INetworkAdapter::attachToInternalNetwork()

Attach the network adapter to an internal network.

9.28.5 attachToNAT

void INetworkAdapter::attachToNAT()

Attach the network adapter to the Network Address Translation (NAT) interface.

9.28.6 attachToVDE

void INetworkAdapter::attachToVDE()

Attach the network adapter to a VDE network.

9.28.7 detach

void INetworkAdapter::detach()

Detach the network adapter

199

9 Classes (interfaces)

9.29 IParallelPort

The IParallelPort interface represents the virtual parallel port device.

The virtual parallel port device acts like an ordinary parallel port inside the virtual
machine. This device communicates to the real parallel port hardware using the name
of the parallel device on the host computer specified in the #path attribute.

Each virtual parallel port device is assigned a base I/0 address and an IRQ number
that will be reported to the guest operating system and used to operate the given
parallel port from within the virtual machine.

See also: IMachine::getParallelPort

9.29.1 Attributes
9.29.1.1 slot (read-only)

unsigned long IParallelPort::slot

Slot number this parallel port is plugged into. Corresponds to the value you pass to
IMachine::getParallelPort() to obtain this instance.

9.29.1.2 enabled (read/write)

boolean IParallelPort::enabled

Flag whether the parallel port is enabled. If disabled, the parallel port will not be
reported to the guest OS.

9.29.1.3 I0Base (read/write)

unsigned long IParallelPort::IO0OBase

Base I/0 address of the parallel port.

9.29.1.4 IRQ (read/write)

unsigned long IParallelPort::IRQ

IRQ number of the parallel port.

9.29.1.5 path (read/write)

wstring IParallelPort::path

Host parallel device name. If this parallel port is enabled, setting a null or an empty
string as this attribute’s value will result into an error.

200

9 Classes (interfaces)

9.30 IPerformanceCollector

The IPerformanceCollector interface represents a service that collects and stores per-
formance metrics data.

Performance metrics are associated with objects of interfaces like IHost and IMa-
chine. Each object has a distinct set of performance metrics. The set can be obtained
with getMetrics().

Metric data is collected at the specified intervals and is retained internally. The
interval and the number of retained samples can be set with setupMetrics(). Both
metric data and collection settings are not persistent, they are discarded as soon as
VBoxSVC process terminates. Moreover, metric settings and data associated with a
particular VM only exist while VM is running. They disappear as soon as VM shuts
down. It is not possible to set up metrics for machines that are powered off. One
needs to start VM first, then set up metric collection parameters.

Metrics are organized hierarchically, with each level separated by a slash (/) char-
acter. Generally, the scheme for metric names is like this:

Category/Metric[/SubMetric][:aggregation]

“Category/Metric” together form the base metric name. A base metric is the smallest
unit for which a sampling interval and the number of retained samples can be set. Only
base metrics can be enabled and disabled. All sub-metrics are collected when their
base metric is collected. Collected values for any set of sub-metrics can be queried
with queryMetricsData().

For example “CPU/Load/User:avg” metric name stands for the “CPU” category,
“Load” metric, “User” submetric, “average” aggregate. An aggregate function is com-
puted over all retained data. Valid aggregate functions are:

e avg — average
e min — minimum
e max — maximum

When setting up metric parameters, querying metric data, enabling or disabling
metrics wildcards can be used in metric names to specify a subset of metrics. For
example, to select all CPU-related metrics use CPU/*, all averages can be queried using
x:avg and so on. To query metric values without aggregates *: can be used.

The valid names for base metrics are:

e CPU/Load
e CPU/MHz
e RAM/Usage
The general sequence for collecting and retrieving the metrics is:

e Obtain an instance of IPerformanceCollector with IVirtualBox::performanceCollector

201

9 Classes (interfaces)
e Allocate and populate an array with references to objects the metrics will be
collected for. Use references to IHost and IMachine objects.

e Allocate and populate an array with base metric names the data will be collected
for.

e Call setupMetrics(). From now on the metric data will be collected and stored.
e Wait for the data to get collected.

e Allocate and populate an array with references to objects the metric values will
be queried for. You can re-use the object array used for setting base metrics.

e Allocate and populate an array with metric names the data will be collected for.
Note that metric names differ from base metric names.

e Call queryMetricsData(). The data that have been collected so far are returned.
Note that the values are still retained internally and data collection continues.

For an example of usage refer to the following files in VirtualBox SDK:

e Java: bindings/webservice/java/jax-ws/samples/metrictest.java

e Python: bindings/xpcom/python/sample/shellcommon.py

9.30.1 Attributes
9.30.1.1 metricNames (read-only)

wstring IPerformanceCollector::metricNames[]

Array of unique names of metrics.

This array represents all metrics supported by the performance collector. Individual
objects do not necessarily support all of them. getMetrics() can be used to get the list
of supported metrics for a particular object.

9.30.2 disableMetrics

IPerformanceMetric[] IPerformanceCollector::disableMetrics(
[in] wstring metricNames[],
[in] $unknown objects[])

metricNames Metric name filter. Comma-separated list of metrics with wildcard sup-
port.

objects Set of objects to disable metrics for.

Turns off collecting specified base metrics. Returns an array of [PerformanceMetric
describing the metrics have been affected.

202

9 Classes (interfaces)

Note: Null or empty metric name array means all metrics. Null or empty
object array means all existing objects. If metric name array contains a single
element and object array contains many, the single metric name array element
is applied to each object array element to form metric/object pairs.

9.30.3 enableMetrics

IPerformanceMetric[] IPerformanceCollector::enableMetrics(
[in] wstring metricNames[],
[in] $unknown objects[])

metricNames Metric name filter. Comma-separated list of metrics with wildcard sup-
port.

objects Set of objects to enable metrics for.

Turns on collecting specified base metrics. Returns an array of [PerformanceMetric
describing the metrics have been affected.

Note: Null or empty metric name array means all metrics. Null or empty
object array means all existing objects. If metric name array contains a single
element and object array contains many, the single metric name array element
is applied to each object array element to form metric/object pairs.

9.30.4 getMetrics

IPerformanceMetric[] IPerformanceCollector::getMetrics(
[in] wstring metricNames[],
[in] $unknown objects[])

metricNames Metric name filter. Currently, only a comma-separated list of metrics is
supported.

objects Set of objects to return metric parameters for.

Returns parameters of specified metrics for a set of objects.

Note: Null metrics array means all metrics. Null object array means all
existing objects.

203

9 Classes (interfaces)

9.30.5 queryMetricsData

long[] IPerformanceCollector::queryMetricsData(
[in] wstring metricNames[],
[in] $unknown objects[],
[out] wstring returnMetricNames|[],
[out] $unknown returnObjects[],
[out] wstring returnUnits[],
[out] unsigned long returnScales[],
[out] unsigned long returnSequenceNumbers[],
[out] unsigned long returnDatalndices|],
[out] unsigned long returnDatalLengths[])

metricNames Metric name filter. Comma-separated list of metrics with wildcard sup-
port.

objects Set of objects to query metrics for.

returnMetricNames Names of metrics returned in returnData.
returnObjects Objects associated with metrics returned in returnData.
returnUnits Units of measurement for each returned metric.

returnScales Divisor that should be applied to return values in order to get floating
point values. For example: (double)returnDatalreturnDataIndices[0]+i]
/ returnScales[0] will retrieve the floating point value of i-th sample of the
first metric.

returnSequenceNumbers Sequence numbers of the first elements of value se-
quences of particular metrics returned in returnData. For aggregate metrics
it is the sequence number of the sample the aggregate started calculation from.

returnDatalndices Indices of the first elements of value sequences of particular met-
rics returned in returnData.

returnDataLengths Lengths of value sequences of particular metrics.

Queries collected metrics data for a set of objects.

The data itself and related metric information are returned in seven parallel and
one flattened array of arrays. Elements of returnMetricNames, returnObjects,
returnUnits, returnScales, returnSequenceNumbers, returnDatalndices
and returnDatalLengths with the same index describe one set of values correspond-
ing to a single metric.

The returnData parameter is a flattened array of arrays. Each start and length of
a sub-array is indicated by returnDataIndices and returnDatalLengths. The first
value for metric metricNames[i] is at returnData[returnIndices[i]].

204

9 Classes (interfaces)

Note: Null or empty metric name array means all metrics. Null or empty
object array means all existing objects. If metric name array contains a single
element and object array contains many, the single metric name array element
is applied to each object array element to form metric/object pairs.

Note: Data collection continues behind the scenes after call to @c queryMet-
ricsData. The return data can be seen as the snapshot of the current state at
the time of queryMetricsData call. The internally kept metric values are not
cleared by the call. This makes possible querying different subsets of metrics
or aggregates with subsequent calls. If periodic querying is needed it is highly
suggested to query the values with interval*count period to avoid confu-
sion. This way a completely new set of data values will be provided by each

query.

9.30.6 setupMetrics

IPerformanceMetric[] IPerformanceCollector::setupMetrics(
[in] wstring metricNames[],
[in] $unknown objects[],
[in] unsigned long period,
[in] unsigned long count)

metricNames Metric name filter. Comma-separated list of metrics with wildcard sup-
port.

objects Set of objects to setup metric parameters for.

period Time interval in seconds between two consecutive samples of performance
data.

count Number of samples to retain in performance data history. Older samples get
discarded.

Sets parameters of specified base metrics for a set of objects. Returns an array of
[PerformanceMetric describing the metrics have been affected.

Note: Null or empty metric name array means all metrics. Null or empty
object array means all existing objects. If metric name array contains a single
element and object array contains many, the single metric name array element
is applied to each object array element to form metric/object pairs.

205

9 Classes (interfaces)

9.31 IPerformanceMetric

The IPerformanceMetric interface represents parameters of the given performance
metric.

9.31.1 Atiributes

9.31.1.1 metricName (read-only)

wstring IPerformanceMetric: :metricName

Name of the metric.

9.31.1.2 object (read-only)

$unknown IPerformanceMetric::object

Object this metric belongs to.

9.31.1.3 description (read-only)

wstring IPerformanceMetric::description

Textual description of the metric.

9.31.1.4 period (read-only)

unsigned long IPerformanceMetric::period

Time interval between samples, measured in seconds.

9.31.1.5 count (read-only)

unsigned long IPerformanceMetric::count

Number of recent samples retained by the performance collector for this metric.
When the collected sample count exceeds this number, older samples are discarded.

9.31.1.6 unit (read-only)

wstring IPerformanceMetric::unit

Unit of measurement.

9.31.1.7 minimumValue (read-only)

long IPerformanceMetric::minimumValue

Minimum possible value of this metric.

206

9 Classes (interfaces)

9.31.1.8 maximumValue (read-only)

long IPerformanceMetric::maximumValue

Maximum possible value of this metric.

9.32 IProgress

The IProgress interface is used to track and control asynchronous tasks within
VirtualBox.

An instance of this is returned every time VirtualBox starts an asynchronous task (in
other words, a separate thread) which continues to run after a method call returns. For
example, IConsole::saveState(), which saves the state of a running virtual machine,
can take a long time to complete. To be able to display a progress bar, a user interface
such as the VirtualBox graphical user interface can use the IProgress object returned
by that method.

Note that IProgress is a “read-only” interface in the sense that only the VirtualBox
internals behind the Main API can create and manipulate progress objects, whereas
client code can only use the IProgress object to monitor a task’s progress and, if can-
celable is true, cancel the task by calling cancel().

A task represented by IProgress consists of either one or several sub-operations that
run sequentially, one by one (see operation and operationCount). Every operation is
identified by a number (starting from 0) and has a separate description.

You can find the individual percentage of completion of the current operation in
operationPercent and the percentage of completion of the task as a whole in percent.

Similarly, you can wait for the completion of a particular operation via waitForOp-
erationCompletion() or for the completion of the whole task via waitForCompletion().

9.32.1 Attributes
9.32.1.1 id (read-only)
uuid IProgress::id

ID of the task.

9.32.1.2 description (read-only)

wstring IProgress::description

Description of the task.

9.32.1.3 initiator (read-only)
$unknown IProgress::initiator

Initiator of the task.

207

9 Classes (interfaces)

9.32.1.4 cancelable (read-only)

boolean IProgress::cancelable

Whether the task can be interrupted.

9.32.1.5 percent (read-only)

unsigned long IProgress::percent
Current progress value of the task as a whole, in percent. This value depends on
how many operations are already complete. Returns 100 if completed is true.

9.32.1.6 timeRemaining (read-only)

long IProgress::timeRemaining

Estimated remaining time until the task completes, in seconds. Returns O once the
task has completed; returns -1 if the remaining time cannot be computed, in particular
if the current progress is 0.

Even if a value is returned, the estimate will be unreliable for low progress values.
It will become more reliable as the task progresses; it is not recommended to display
an ETA before at least 20% of a task have completed.
9.32.1.7 completed (read-only)

boolean IProgress::completed

Whether the task has been completed.

9.32.1.8 canceled (read-only)

boolean IProgress::canceled

Whether the task has been canceled.

9.32.1.9 resultCode (read-only)

long IProgress::resultCode

Result code of the progress task. Valid only if completed is true.

9.32.1.10 errorinfo (read-only)

IVirtualBoxErrorInfo IProgress::errorInfo

Extended information about the unsuccessful result of the progress operation. May
be null if no extended information is available. Valid only if completed is true and
resultCode indicates a failure.

208

9 Classes (interfaces)

9.32.1.11 operationCount (read-only)

unsigned long IProgress::operationCount

Number of sub-operations this task is divided into. Every task consists of at least
one suboperation.

9.32.1.12 operation (read-only)

unsigned long IProgress::operation

Number of the sub-operation being currently executed.

9.32.1.13 operationDescription (read-only)

wstring IProgress::operationDescription

Description of the sub-operation being currently executed.

9.32.1.14 operationPercent (read-only)

unsigned long IProgress::operationPercent

Progress value of the current sub-operation only, in percent.
9.32.1.15 timeout (read/write)
unsigned long IProgress::timeout

When non-zero, this specifies the number of milliseconds after which the operation
will automatically be canceled. This can only be set on cancelable objects.

9.32.2 cancel

void IProgress::cancel()

Cancels the task.

Note: If cancelable is false, then this method will fail.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_OBJECT_STATE: Operation cannot be canceled.

209

9 Classes (interfaces)

9.32.3 setCurrentOperationProgress

void IProgress::setCurrentOperationProgress(
[in] unsigned long percent)

percent

Internal method, not to be called externally.

9.32.4 setNextOperation

void IProgress::setNextOperation(
[in] wstring nextOperationDescription,
[in] unsigned long nextOperationsWeight)

nextOperationDescription
nextOperationsWeight

Internal method, not to be called externally.

9.32.5 waitForCompletion

void IProgress::waitForCompletion(
[in] long timeout)

timeout Maximum time in milliseconds to wait or -1 to wait indefinitely.

Waits until the task is done (including all sub-operations) with a given timeout in
milliseconds; specify -1 for an indefinite wait.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Failed to wait for task completion.

9.32.6 waitForOperationCompletion

void IProgress::waitForOperationCompletion(
[in] unsigned long operation,
[in] long timeout)
operation Number of the operation to wait for. Must be less than operationCount.

timeout Maximum time in milliseconds to wait or -1 to wait indefinitely.

Waits until the given operation is done with a given timeout in milliseconds; specify
-1 for an indefinite wait.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Failed to wait for operation completion.

210

9 Classes (interfaces)

9.33 IRemoteDisplaylinfo

Note: With the web service, this interface is mapped to a structure. Attributes
that return this interface will not return an object, but a complete structure
containing the attributes listed below as structure members.

Contains information about the remote display (VRDP) capabilities and status. This
is used in the IConsole::remoteDisplayInfo attribute.

9.33.1 Attributes
9.33.1.1 active (read-only)

boolean IRemoteDisplayInfo::active

Whether the remote display connection is active.

9.33.1.2 port (read-only)

long IRemoteDisplayInfo::port

VRDP server port number. If this property is equal to 0, then the VRDP server failed
to start, usually because there are no free TCP ports to bind to. If this property is equal
to -1, then the VRDP server has not yet been started.

9.33.1.3 numberOfClients (read-only)

unsigned long IRemoteDisplayInfo::numberOfClients
How many times a client connected.

9.33.1.4 beginTime (read-only)

long long IRemoteDisplayInfo::beginTime

When the last connection was established, in milliseconds since 1970-01-01 UTC.

9.33.1.5 endTime (read-only)

long long IRemoteDisplayInfo::endTime

When the last connection was terminated or the current time, if connection is still
active, in milliseconds since 1970-01-01 UTC.

211

9 Classes (interfaces)

9.33.1.6 bytesSent (read-only)

unsigned long long IRemoteDisplayInfo::bytesSent

How many bytes were sent in last or current, if still active, connection.

9.33.1.7 bytesSentTotal (read-only)

unsigned long long IRemoteDisplayInfo::bytesSentTotal

How many bytes were sent in all connections.

9.33.1.8 bytesReceived (read-only)

unsigned long long IRemoteDisplayInfo::bytesReceived

How many bytes were received in last or current, if still active, connection.

9.33.1.9 bytesReceivedTotal (read-only)

unsigned long long IRemoteDisplayInfo::bytesReceivedTotal

How many bytes were received in all connections.

9.33.1.10 user (read-only)

wstring IRemoteDisplayInfo::user

Login user name supplied by the client.

9.33.1.11 domain (read-only)

wstring IRemoteDisplayInfo::domain

Login domain name supplied by the client.
9.33.1.12 clientName (read-only)
wstring IRemoteDisplayInfo::clientName

The client name supplied by the client.

9.33.1.13 clientlIP (read-only)

wstring IRemoteDisplayInfo::clientIP

The IP address of the client.

212

9 Classes (interfaces)

9.33.1.14 clientVersion (read-only)

unsigned long IRemoteDisplayInfo::clientVersion

The client software version number.

9.33.1.15 encryptionStyle (read-only)

unsigned long IRemoteDisplayInfo::encryptionStyle

Public key exchange method used when connection was established. Values: O -
RDP4 public key exchange scheme. 1 - X509 certificates were sent to client.

9.34 ISerialPort

The ISerialPort interface represents the virtual serial port device.

The virtual serial port device acts like an ordinary serial port inside the virtual ma-
chine. This device communicates to the real serial port hardware in one of two modes:
host pipe or host device.

In host pipe mode, the #path attribute specifies the path to the pipe on the host
computer that represents a serial port. The #server attribute determines if this pipe
is created by the virtual machine process at machine startup or it must already exist
before starting machine execution.

In host device mode, the #path attribute specifies the name of the serial port device
on the host computer.

There is also a third communication mode: the disconnected mode. In this mode,
the guest OS running inside the virtual machine will be able to detect the serial port,
but all port write operations will be discarded and all port read operations will return
no data.

See also: IMachine::getSerialPort

9.34.1 Attributes
9.34.1.1 slot (read-only)

unsigned long ISerialPort::slot

Slot number this serial port is plugged into. Corresponds to the value you pass to
IMachine::getSerialPort() to obtain this instance.

9.34.1.2 enabled (read/write)

boolean ISerialPort::enabled

Flag whether the serial port is enabled. If disabled, the serial port will not be re-
ported to the guest OS.

213

9 Classes (interfaces)

9.34.1.3 I0Base (read/write)

unsigned long ISerialPort::I0OBase
Base 1/0 address of the serial port.

9.34.1.4 IRQ (read/write)

unsigned long ISerialPort::IRQ
IRQ number of the serial port.

9.34.1.5 hostMode (read/write)

PortMode ISerialPort::hostMode

How is this port connected to the host.

Note: Changing this attribute may fail if the conditions for path are not met.

9.34.1.6 server (read/write)

boolean ISerialPort::server

Flag whether this serial port acts as a server (creates a new pipe on the host) or
as a client (uses the existing pipe). This attribute is used only when hostMode is
PortMode HostPipe.

9.34.1.7 path (read/write)

wstring ISerialPort::path

Path to the serial port’s pipe on the host when hostMode is PortMode HostPipe, or
the host serial device name when hostMode is PortMode HostDevice. For both cases,
setting a null or empty string as the attribute’s value is an error. Otherwise, the value
of this property is ignored.

9.35 ISession

The ISession interface represents a serialization primitive for virtual machines.

With VirtualBox, every time one wishes to manipulate a virtual machine (e.g.
change its settings or start execution), a session object is required. Such an object
must be passed to one of the session methods that open the given session, which then
initiates the machine manipulation.

214

9 Classes (interfaces)

A session serves several purposes: it identifies to the inter-process VirtualBox code
which process is currently working with the virtual machine, and it ensures that there
are no incompatible requests from several processes for the same virtual machine.
Session objects can therefore be thought of as mutex semaphores that lock virtual
machines to prevent conflicting accesses from several processes.

How sessions objects are used depends on whether you use the Main API via COM
or via the webservice:

e When using the COM API directly, an object of the Session class from the
VirtualBox type library needs to be created. In regular COM C+ + client code,
this can be done by calling createlLocalObject(), a standard COM API. This
object will then act as a local session object in further calls to open a session.

e In the webservice, the session manager (IWebsessionManager) instead creates
one session object automatically when IWebsessionManager::logon() is called.
A managed object reference to that session object can be retrieved by calling
IWebsessionManager::getSessionObject(). This session object reference can then
be used to open sessions.

Sessions are mainly used in two variations:

e To start a virtual machine in a separate process, one would call IVirtual-
Box::openRemoteSession(), which requires a session object as its first parameter.
This session then identifies the caller and lets him control the started machine
(for example, pause machine execution or power it down) as well as be notified
about machine execution state changes.

e To alter machine settings, or to start machine execution within the current pro-
cess, one needs to open a direct session for the machine first by calling IVirtual-
Box::openSession(). While a direct session is open within one process, no any
other process may open another direct session for the same machine. This pre-
vents the machine from being changed by other processes while it is running or
while the machine is being configured.

One also can attach to an existing direct session already opened by another process
(for example, in order to send a control request to the virtual machine such as the
pause or the reset request). This is done by calling IVirtualBox::openExistingSession().

Note: Unless you are trying to write a new VirtualBox front-end that
performs direct machine execution (like the VirtualBox or VBoxSDL front-
ends), don’t call IConsole::powerUp() in a direct session opened by IVirtual-
Box::openSession() and use this session only to change virtual machine set-
tings. If you simply want to start virtual machine execution using one of the
existing front-ends (for example the VirtualBox GUI or headless server), sim-
ply use IVirtualBox::openRemoteSession(); these front-ends will power up the
machine automatically for you.

215

9 Classes (interfaces)

9.35.1 Attributes
9.35.1.1 state (read-only)

SessionState ISession::state

Current state of this session.

9.35.1.2 type (read-only)

SessionType ISession::type

Type of this session. The value of this attribute is valid only if the session is currently
open (i.e. its #state is SessionType SessionOpen), otherwise an error will be returned.

9.35.1.3 machine (read-only)

IMachine ISession::machine

Machine object associated with this session.

9.35.1.4 console (read-only)

IConsole ISession::console

Console object associated with this session.

9.35.2 close

void ISession::close()

Closes a session that was previously opened.

It is recommended that every time an “open session” method (such as IVirtual-
Box::openRemoteSession() or IVirtualBox::openSession()) has been called to manip-
ulate a virtual machine, the caller invoke ISession::close() when it’s done doing so.
Since sessions are serialization primitives much like ordinary mutexes, they are best
used the same way: for each “open” call, there should be a matching “close” call, even
when errors occur.

Otherwise, if a direct session for a machine opened with IVirtualBox::openSession()
is not explicitly closed when the application terminates, the state of the machine will
be set to Aborted on the server.

Generally, it is recommended to close all open sessions explicitly before terminating
the application (regardless of the reason for the termination).

216

9 Classes (interfaces)

Note: Do not expect the session state (state to return to “Closed” immediately
after you invoke ISession::close(), particularly if you have started a remote
session to execute the VM in a new process. The session state will automat-
ically return to “Closed” once the VM is no longer executing, which can of
course take a very long time.

If this method fails, the following error codes may be reported:

e E_UNEXPECTED: Session is not open.

9.36 ISharedFolder

Note: With the web service, this interface is mapped to a structure. Attributes
that return this interface will not return an object, but a complete structure
containing the attributes listed below as structure members.

The ISharedFolder interface represents a folder in the host computer’s file system
accessible from the guest OS running inside a virtual machine using an associated
logical name.

There are three types of shared folders:

e Global (IVirtualBox::sharedFolders[]), shared folders available to all virtual ma-
chines.

e Permanent (IMachine::sharedFolders[]), VM-specific shared folders available to
the given virtual machine at startup.

e Transient (IConsole::sharedFolders[]), VM-specific shared folders created in the
session context (for example, when the virtual machine is running) and auto-
matically discarded when the session is closed (the VM is powered off).

Logical names of shared folders must be unique within the given scope (global,
permanent or transient). However, they do not need to be unique across scopes. In
this case, the definition of the shared folder in a more specific scope takes precedence
over definitions in all other scopes. The order of precedence is (more specific to more
general):

1. Transient definitions
2. Permanent definitions

3. Global definitions

217

9 Classes (interfaces)

For example, if MyMachine has a shared folder named C_DRIVE (that points
to C:\\), then creating a transient shared folder named C_DRIVE (that points to
C:\\\\WINDOWS) will change the definition of C_DRIVE in the guest OS so that
\\\\VBOXSVR\\C_DRIVE will give access to C:\\WINDOWS instead of C:\\ on the host
PC. Removing the transient shared folder C_DRIVE will restore the previous (perma-
nent) definition of C_DRIVE that points to C:\\ if it still exists.

Note that permanent and transient shared folders of different machines are in differ-
ent name spaces, so they don’t overlap and don’t need to have unique logical names.

Note: Global shared folders are not implemented in the current version of the
product.

9.36.1 Attributes
9.36.1.1 name (read-only)

wstring ISharedFolder::name

Logical name of the shared folder.

9.36.1.2 hostPath (read-only)

wstring ISharedFolder::hostPath

Full path to the shared folder in the host file system.

9.36.1.3 accessible (read-only)

boolean ISharedFolder::accessible

Whether the folder defined by the host path is currently accessible or not. For ex-
ample, the folder can be unaccessible if it is placed on the network share that is not
available by the time this property is read.

9.36.1.4 writable (read-only)

boolean ISharedFolder::writable

Whether the folder defined by the host path is writable or not.

218

9 Classes (interfaces)

9.36.1.5 lastAccessEtrror (read-only)
wstring ISharedFolder::lastAccessError

Text message that represents the result of the last accessibility check.

Accessibility checks are performed each time the accessible attribute is read. An
empty string is returned if the last accessibility check was successful. A non-empty
string indicates a failure and should normally describe a reason of the failure (for
example, a file read error).

9.37 ISnapshot

The ISnapshot interface represents a snapshot of the virtual machine.
Together with the differencing media that are created when a snapshot is taken, a
machine can be brought back to the exact state it was in when the snapshot was taken.
The ISnapshot interface has no methods, only attributes; snapshots are controlled
through methods of the IConsole interface which also manage the media associated
with the snapshot. The following operations exist:

e IConsole::takeSnapshot(): creates a new snapshot by creating new, empty dif-
ferencing images for the machine’s media and saving the VM settings and (if the
VM is running) the current VM state in the snapshot.

The differencing images will then receive all data written to the machine’s me-
dia, while their parent (base) images remain unmodified after the snapshot has
been taken (see IMedium for details about differencing images). This simplifies
restoring a machine to the state of a snapshot: only the differencing images need
to be deleted.

The current machine state is not changed by taking a snapshot. If the machine
is running, it will resume execution after the snapshot has been taken.

e IConsole::restoreSnapshot(): this goes back to a previous snapshot. This resets
the machine’s state to that of the previous snapshot by deleting the differencing
image of each of the machine’s media and setting the machine’s settings and
state to the state that was saved in the snapshot (if any).

This destroys the machine’s current state.

e IConsole::deleteSnapshot(): deletes a snapshot without affecting the current
machine state.

This does not change the machine, but instead frees the resources allocated when
the snapshot was taken: the settings and machine state is deleted (if any), and
the snapshot’s differencing image for each of the machine’s media gets merged
with its parent image.

Neither the current machine state nor other snapshots are affected by this oper-
ation, except that parent media will be modified to contain the disk data associ-
ated with the snapshot being deleted.

219

9 Classes (interfaces)

Each snapshot contains the settings of the virtual machine (hardware configuration
etc.). In addition, if the machine was running when the snapshot was taken (IMa-
chine::state is Running), the current VM state is saved in the snapshot (similarly to
what happens when a VM'’s state is saved). The snapshot is then said to be online
because when restoring it, the VM will be running.

If the machine is saved (Saved), the snapshot receives a copy of the execution state
file (IMachine::stateFilePath).

Otherwise, if the machine was not running (PoweredOff or Aborted), the snapshot
is offline; it then contains a so-called “zero execution state”, representing a machine
that is powered off.

Snapshot branches and the “current” snapshot

Snapshots can be chained, whereby every next snapshot is based on the previous
one. This chaining is related to medium branching (see the IMedium description) in
that every time a new snapshot is created, a new differencing medium is implicitly
created for all normal media attached to the machine.

Each virtual machine has a “current snapshot”, identified by IMachine::currentSnapshot.
Presently, this is always set to the last snapshot in the chain. In a future version of
VirtualBox, it will be possible to reset a machine’s current state to that of an ear-
lier snapshot without deleting the current state so that it will be possible to create
alternative snapshot paths in a snapshot tree.

In the current implementation, multiple snapshot branches within one vir-
tual machine are not allowed. Every machine has a single branch, and ICon-
sole::takeSnapshot() operation adds a new snapshot to the top of that branch.

9.37.1 Attributes
9.37.1.1 id (read-only)

uuid ISnapshot::id

UUID of the snapshot.

9.37.1.2 name (read/write)

wstring ISnapshot::name

Short name of the snapshot.

9.37.1.3 description (read/write)

wstring ISnapshot::description

Optional description of the snapshot.

220

9 Classes (interfaces)

9.37.1.4 timeStamp (read-only)

long long ISnapshot::timeStamp

Time stamp of the snapshot, in milliseconds since 1970-01-01 UTC.

9.37.1.5 online (read-only)

boolean ISnapshot::online

true if this snapshot is an online snapshot and false otherwise.

When this attribute is true, the IMachine::stateFilePath attribute of the machine
object associated with this snapshot will point to the saved state file. Otherwise, it will
be an empty string.

9.37.1.6 machine (read-only)

IMachine ISnapshot::machine

Virtual machine this snapshot is taken on. This object stores all settings the machine
had when taking this snapshot.

Note: The returned machine object is immutable, i.e. no any settings can be
changed.

9.37.1.7 parent (read-only)

ISnapshot ISnapshot::parent

Parent snapshot (a snapshot this one is based on), or null if the snapshot has no
parent (i.e. is the first snapshot).

9.37.1.8 children (read-only)
ISnapshot ISnapshot::children][]

Child snapshots (all snapshots having this one as a parent).

9.38 IStorageController

Represents a storage controller that is attached to a virtual machine (IMachine). Just
as drives (hard disks, DVDs, FDs) are attached to storage controllers in a real computer,
virtual drives (represented by IMediumAttachment) are attached to virtual storage
controllers, represented by this interface.

221

9 Classes (interfaces)

As opposed to physical hardware, VirtualBox has a very generic concept of a storage
controller, and for purposes of the Main API, all virtual storage is attached to virtual
machines via instances of this interface. There are five types of such virtual storage
controllers: IDE, SCSI, SATA, SAS and Floppy (see bus). Depending on which of these
four is used, certain sub-types may be available and can be selected in controllerType.

Depending on these settings, the guest operating system might see significantly dif-
ferent virtual hardware.

9.38.1 Attributes
9.38.1.1 name (read-only)

wstring IStorageController::name

Name of the storage controller, as originally specified with IMachine::addStorageController().
This then uniquely identifies this controller with other method calls such as IMa-
chine::attachDevice() and IMachine::mountMedium().

9.38.1.2 maxDevicesPerPortCount (read-only)

unsigned long IStorageController: :maxDevicesPerPortCount

Maximum number of devices which can be attached to one port.

9.38.1.3 minPortCount (read-only)

unsigned long IStorageController::minPortCount

Minimum number of ports that portCount can be set to.

9.38.1.4 maxPortCount (read-only)

unsigned long IStorageController::maxPortCount

Maximum number of ports that portCount can be set to.

9.38.1.5 instance (read/write)

unsigned long IStorageController::instance

The instance number of the device in the running VM.

9.38.1.6 portCount (read/write)

unsigned long IStorageController::portCount

The number of currently usable ports on the controller. The minimum and maximum
number of ports for one controller are stored in minPortCount and maxPortCount.

222

9 Classes (interfaces)

9.38.1.7 bus (read-only)

StorageBus IStorageController::bus

The bus type of the storage controller (IDE, SATA, SCSI, SAS or Floppy).

9.38.1.8 controllerType (read/write)

StorageControllerType IStorageController::controllerType

The exact variant of storage controller hardware presented to the guest. Depending
on this value, VirtualBox will provide a different virtual storage controller hardware
to the guest. For SATA, SAS and floppy controllers, only one variant is available, but
for IDE and SCSI, there are several.

For SCSI controllers, the default type is LsiLogic.

9.38.1.9 useHostlOCache (read/write)

boolean IStorageController::useHostIOCache

If true, the storage controller emulation will use a dedicated I/0 thread, enable the
host I/0 caches and use synchronous file APIs on the host. This was the only option in
the API before VirtualBox 3.2 and is still the default for IDE controllers.

If false, the host I/O cache will be disabled for image files attached to this storage
controller. Instead, the storage controller emulation will use asynchronous I/0 APIs on
the host. This makes it possible to turn off the host I/0O caches because the emulation
can handle unaligned access to the file. This should be used on OS X and Linux hosts
if a high I/0 load is expected or many virtual machines are running at the same time
to prevent I/0O cache related hangs. This option new with the API of VirtualBox 3.2
and is now the default for non-IDE storage controllers.

9.38.2 getIDEEmulationPort

long IStorageController::getIDEEmulationPort(
[in] long devicePosition)

devicePosition

Gets the corresponding port number which is emulated as an IDE device. Works
only with SATA controllers.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: The devicePosition is not in the range O to 3.

e E_NOTIMPL: The storage controller type is not SATAIntelAhci.

223

9 Classes (interfaces)

9.38.3 setIDEEmulationPort

void IStorageController::setIDEEmulationPort(
[in] long devicePosition,
[in] long portNumber)

devicePosition
portNumber

Sets the port number which is emulated as an IDE device. Works only with SATA
controllers.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: The devicePosition is not in the range O to 3 or the
portNumber is not in the range O to 29.

e E_NOTIMPL: The storage controller type is not SATAIntelAhci.

9.39 ISystemProperties

The ISystemProperties interface represents global properties of the given VirtualBox
installation.

These properties define limits and default values for various attributes and parame-
ters. Most of the properties are read-only, but some can be changed by a user.

9.39.1 Attributes
9.39.1.1 minGuestRAM (read-only)

unsigned long ISystemProperties::minGuestRAM
Minimum guest system memory in Megabytes.

9.39.1.2 maxGuestRAM (read-only)

unsigned long ISystemProperties: :maxGuestRAM

Maximum guest system memory in Megabytes.

9.39.1.3 minGuestVRAM (read-only)

unsigned long ISystemProperties::minGuestVRAM

Minimum guest video memory in Megabytes.

224

9 Classes (interfaces)

9.39.1.4 maxGuestVRAM (read-only)

unsigned long ISystemProperties::maxGuestVRAM

Maximum guest video memory in Megabytes.

9.39.1.5 minGuestCPUCount (read-only)

unsigned long ISystemProperties::minGuestCPUCount

Minimum CPU count.

9.39.1.6 maxGuestCPUCount (read-only)

unsigned long ISystemProperties: :maxGuestCPUCount

Maximum CPU count.

9.39.1.7 maxGuestMonitors (read-only)

unsigned long ISystemProperties::maxGuestMonitors

Maximum of monitors which could be connected.

9.39.1.8 maxVDISize (read-only)

unsigned long long ISystemProperties::maxVDISize

Maximum size of a virtual disk image in Megabytes.

9.39.1.9 networkAdapterCount (read-only)

unsigned long ISystemProperties::networkAdapterCount

Number of network adapters associated with every IMachine instance.

9.39.1.10 serialPortCount (read-only)

unsigned long ISystemProperties::serialPortCount

Number of serial ports associated with every IMachine instance.

9.39.1.11 parallelPortCount (read-only)

unsigned long ISystemProperties::parallelPortCount

Number of parallel ports associated with every IMachine instance.

225

9 Classes (interfaces)

9.39.1.12 maxBootPosition (read-only)

unsigned long ISystemProperties::maxBootPosition

Maximum device position in the boot order. This value corresponds to the total
number of devices a machine can boot from, to make it possible to include all possible
devices to the boot list. See also: IMachine::setBootOrder()

9.39.1.13 defaultMachineFolder (read/write)

wstring ISystemProperties::defaultMachineFolder

Full path to the default directory used to create new or open existing machines when
a settings file name contains no path.
The initial value of this property is <VirtualBox_home>/Machines.

Note: Setting this property to null or an empty string will restore the initial
value.

Note: When settings this property, the specified path can be absolute (full
path) or relative to the VirtualBox home directory. When reading this prop-
erty, a full path is always returned.

Note: The specified path may not exist, it will be created when necessary.

See also: 1VirtualBox::createMachine(), IVirtualBox::openMachine()

9.39.1.14 defaultHardDiskFolder (read/write)

wstring ISystemProperties::defaultHardDiskFolder

Full path to the default directory used to create new or open existing virtual disks.

This path is used when the storage unit of a hard disk is a regular file in the host’s
file system and only a file name that contains no path is given.

The initial value of this property is <VirtualBox_home>/HardDisks.

Note: Setting this property to null or empty string will restore the initial
value.

226

9 Classes (interfaces)

Note: When settings this property, the specified path can be relative to the
VirtualBox home directory or absolute. When reading this property, a full
path is always returned.

Note: The specified path may not exist, it will be created when necessary.

See also: IMedium, IVirtualBox::createHardDisk(), IVirtualBox::openHardDisk(),
IMedium::location

9.39.1.15 mediumFormats (read-only)

IMediumFormat ISystemProperties::mediumFormats[]

List of all medium storage formats supported by this VirtualBox installation.

Keep in mind that the medium format identifier (IMediumFormat::id) used in other
API calls like IVirtualBox::createHardDisk() to refer to a particular medium format is
a case-insensitive string. This means that, for example, all of the following strings:

"DI"
vydi®
nydI"

refer to the same medium format.

Note that the virtual medium framework is backend-based, therefore the list of sup-
ported formats depends on what backends are currently installed.

See also: IMediumFormat,

9.39.1.16 defaultHardDiskFormat (read/write)

wstring ISystemProperties::defaultHardDiskFormat

Identifier of the default medium format used by VirtualBox.

The medium format set by this attribute is used by VirtualBox when the medium for-
mat was not specified explicitly. One example is IVirtualBox::createHardDisk() with
the empty format argument. A more complex example is implicit creation of differenc-
ing media when taking a snapshot of a virtual machine: this operation will try to use
a format of the parent medium first and if this format does not support differencing
media the default format specified by this argument will be used.

The list of supported medium formats may be obtained by the mediaFormats call.
Note that the default medium format must have a capability to create differencing
media; otherwise operations that create media implicitly may fail unexpectedly.

The initial value of this property is "VDI" in the current version of the VirtualBox
product, but may change in the future.

227

9 Classes (interfaces)

Note: Setting this property to null or empty string will restore the initial
value.

See also: mediaFormats, IMediumFormat::id, IVirtualBox::createHardDisk()

9.39.1.17 freeDiskSpaceWarning (read/write)

unsigned long long ISystemProperties::freeDiskSpaceWarning

Issue a warning if the free disk space is below (or in some disk intensive operation
is expected to go below) the given size in Megabytes.

9.39.1.18 freeDiskSpacePercentWarning (read/write)

unsigned long ISystemProperties::freeDiskSpacePercentWarning

Issue a warning if the free disk space is below (or in some disk intensive operation
is expected to go below) the given percentage.

9.39.1.19 freeDiskSpaceError (read/write)

unsigned long long ISystemProperties::freeDiskSpaceError

Issue an error if the free disk space is below (or in some disk intensive operation is
expected to go below) the given size in Megabytes.

9.39.1.20 freeDiskSpacePercentError (read/write)

unsigned long ISystemProperties::freeDiskSpacePercentError

Issue an error if the free disk space is below (or in some disk intensive operation is
expected to go below) the given percentage.

9.39.1.21 remoteDisplayAuthLibrary (read/write)

wstring ISystemProperties::remoteDisplayAuthLibrary

Library that provides authentication for VRDP clients. The library is used if a virtual
machine’s authentication type is set to “external” in the VM RemoteDisplay configura-
tion.

The system library extension (“.DLL” or “.s0”) must be omitted. A full path can be
specified; if not, then the library must reside on the system’s default library path.

The default value of this property is "VRDPAuth". There is a library of that name in
one of the default VirtualBox library directories.

For details about VirtualBox authentication libraries and how to implement them,
please refer to the VirtualBox manual.

228

9 Classes (interfaces)

Note: Setting this property to null or empty string will restore the initial
value.

9.39.1.22 webServiceAuthLibrary (read/write)

wstring ISystemProperties::webServiceAuthLibrary

Library that provides authentication for webservice clients. The library is used if
a virtual machine’s authentication type is set to “external” in the VM RemoteDisplay
configuration and will be called from within the IWebsessionManager::logon() imple-
mentation.

As opposed to remoteDisplayAuthLibrary, there is no per-VM setting for this, as the
webservice is a global resource (if it is running). Only for this setting (for the web-
service), setting this value to a literal "null" string disables authentication, meaning
that IWebsessionManager::logon() will always succeed, no matter what user name and
password are supplied.

The initial value of this property is "VRDPAuth", meaning that the webservice will
use the same authentication library that is used by default for VBoxVRDP (again, see
remoteDisplayAuthLibrary). The format and calling convention of authentication li-
braries is the same for the webservice as it is for VBoxVRDP.

Note: Setting this property to null or empty string will restore the initial
value.

9.39.1.23 LogHistoryCount (read/write)

unsigned long ISystemProperties::LogHistoryCount

This value specifies how many old release log files are kept.

9.39.1.24 defaultAudioDriver (read-only)

AudioDriverType ISystemProperties::defaultAudioDriver

This value hold the default audio driver for the current system.

9.39.2 getDeviceTypesForStorageBus

DeviceType[] ISystemProperties::getDeviceTypesForStorageBus (
[in] StorageBus bus)

bus The storage bus type to get the value for.

Returns list of all the supported device types (DeviceType) for the given type of storage
bus.

229

9 Classes (interfaces)

9.39.3 getMaxDevicesPerPortForStorageBus

unsigned long ISystemProperties::getMaxDevicesPerPortForStorageBus(
[in] StorageBus bus)

bus The storage bus type to get the value for.

Returns the maximum number of devices which can be attached to a port for the given
storage bus.

9.39.4 getMaxinstancesOfStorageBus

unsigned long ISystemProperties::getMaxInstancesOfStorageBus (
[in] StorageBus bus)

bus The storage bus type to get the value for.

Returns the maximum number of storage bus instances which can be configured for
each VM. This corresponds to the number of storage controllers one can have.

9.39.5 getMaxPortCountForStorageBus

unsigned long ISystemProperties::getMaxPortCountForStorageBus (
[in] StorageBus bus)

bus The storage bus type to get the value for.

Returns the maximum number of ports the given storage bus supports.

9.39.6 getMinPortCountForStorageBus

unsigned long ISystemProperties::getMinPortCountForStorageBus (
[in] StorageBus bus)

bus The storage bus type to get the value for.

Returns the minimum number of ports the given storage bus supports.

9.40 IUSBController

9.40.1 Attributes
9.40.1.1 enabled (read/write)
boolean IUSBController::enabled

Flag whether the USB controller is present in the guest system. If disabled, the
virtual guest hardware will not contain any USB controller. Can only be changed
when the VM is powered off.

230

9 Classes (interfaces)

9.40.1.2 enabledEhci (read/write)
boolean IUSBController::enabledEhci

Flag whether the USB EHCI controller is present in the guest system. If disabled, the
virtual guest hardware will not contain a USB EHCI controller. Can only be changed
when the VM is powered off.

9.40.1.3 proxyAvailable (read-only)
boolean IUSBController::proxyAvailable

Flag whether there is an USB proxy available.

9.40.1.4 USBStandard (read-only)
unsigned short IUSBController::USBStandard

USB standard version which the controller implements. This is a BCD which means
that the major version is in the high byte and minor version is in the low byte.

9.40.1.5 deviceFilters (read-only)
IUSBDeviceFilter IUSBController::deviceFilters|[]

List of USB device filters associated with the machine.

If the machine is currently running, these filters are activated every time a new
(supported) USB device is attached to the host computer that was not ignored by
global filters (IHost::USBDeviceFilters[]).

These filters are also activated when the machine is powered up. They are run
against a list of all currently available USB devices (in states Available, Busy, Held)
that were not previously ignored by global filters.

If at least one filter matches the USB device in question, this device is automatically
captured (attached to) the virtual USB controller of this machine.

See also: IUSBDeviceFilter, ::IUSBController

9.40.2 createDeviceFilter

IUSBDeviceFilter IUSBController::createDeviceFilter(
[in] wstring name)

name Filter name. See IUSBDeviceFilter::name for more info.

Creates a new USB device filter. All attributes except the filter name are set to empty
(any match), active is false (the filter is not active).

The created filter can then be added to the list of filters using insertDeviceFilter().

See also: #deviceFilters

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: The virtual machine is not mutable.

231

9 Classes (interfaces)

9.40.3 insertDeviceFilter

void IUSBController::insertDeviceFilter(
[in] unsigned long position,
[in] IUSBDeviceFilter filter)

position Position to insert the filter to.
filter USB device filter to insert.

Inserts the given USB device to the specified position in the list of filters.
Positions are numbered starting from 0. If the specified position is equal to or greater
than the number of elements in the list, the filter is added to the end of the collection.

Note: Duplicates are not allowed, so an attempt to insert a filter that is al-
ready in the collection, will return an error.

See also: #deviceFilters
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine is not mutable.
e E_INVALIDARG: USB device filter not created within this VirtualBox instance.
e VBOX_E_INVALID_OBJECT_STATE: USB device filter already in list.

9.40.4 removeDeviceFilter

IUSBDeviceFilter IUSBController::removeDeviceFilter(
[in] unsigned long position)

position Position to remove the filter from.

Removes a USB device filter from the specified position in the list of filters.

Positions are numbered starting from 0. Specifying a position equal to or greater
than the number of elements in the list will produce an error.

See also: #deviceFilters

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine is not mutable.
e E_INVALIDARG: USB device filter list empty or invalid position.

9.41 IUSBDevice

The IUSBDevice interface represents a virtual USB device attached to the virtual ma-
chine.

A collection of objects implementing this interface is stored in the ICon-
sole::USBDevices[] attribute which lists all USB devices attached to a running virtual
machine’s USB controller.

232

9 Classes (interfaces)

9.41.1 Attributes
9.41.1.1 id (read-only)

uuid IUSBDevice::id

Unique USB device ID. This ID is built from #vendorld, #productld, #revision and
#serialNumber.

9.41.1.2 vendorld (read-only)

unsigned short IUSBDevice::vendorId

Vendor ID.

9.41.1.3 productld (read-only)

unsigned short IUSBDevice::productId

Product ID.

9.41.1.4 revision (read-only)

unsigned short IUSBDevice::revision

Product revision number. This is a packed BCD represented as unsigned short. The
high byte is the integer part and the low byte is the decimal.

9.41.1.5 manufacturer (read-only)

wstring IUSBDevice::manufacturer
Manufacturer string.

9.41.1.6 product (read-only)

wstring IUSBDevice::product
Product string.

9.41.1.7 serialNumber (read-only)

wstring IUSBDevice::serialNumber

Serial number string.

233

9 Classes (interfaces)

9.41.1.8 address (read-only)
wstring IUSBDevice::address

Host specific address of the device.

9.41.1.9 port (read-only)
unsigned short IUSBDevice::port

Host USB port number the device is physically connected to.

9.41.1.10 version (read-only)
unsigned short IUSBDevice::version

The major USB version of the device - 1 or 2.

9.41.1.11 portVersion (read-only)
unsigned short IUSBDevice::portVersion

The major USB version of the host USB port the device is physically connected to
- 1 or 2. For devices not connected to anything this will have the same value as the
version attribute.

9.41.1.12 remote (read-only)
boolean IUSBDevice::remote

Whether the device is physically connected to a remote VRDP client or to a local
host machine.

9.42 IUSBDeviceFilter

The TUSBDeviceFilter interface represents an USB device filter used to perform actions
on a group of USB devices.

This type of filters is used by running virtual machines to automatically capture
selected USB devices once they are physically attached to the host computer.

A USB device is matched to the given device filter if and only if all attributes of the
device match the corresponding attributes of the filter (that is, attributes are joined
together using the logical AND operation). On the other hand, all together, filters in
the list of filters carry the semantics of the logical OR operation. So if it is desirable to
create a match like “this vendor id OR this product id”, one needs to create two filters
and specify “any match” (see below) for unused attributes.

All filter attributes used for matching are strings. Each string is an expression repre-
senting a set of values of the corresponding device attribute, that will match the given
filter. Currently, the following filtering expressions are supported:

234

9 Classes (interfaces)

e Interval filters. Used to specify valid intervals for integer device attributes (Ven-
dor ID, Product ID and Revision). The format of the string is:

int: ((m) [([m]-[n]))(, (m) | (Im]-[n]))x*

where m and n are integer numbers, either in octal (starting from 0), hexadecimal
(starting from 0x) or decimal (otherwise) form, so that m < n. If m is omitted
before a dash (-), the minimum possible integer is assumed; if n is omitted after
a dash, the maximum possible integer is assumed.

e Boolean filters. Used to specify acceptable values for boolean device attributes.
The format of the string is:

true|false|yes|no|0|1

e Exact match. Used to specify a single value for the given device attribute. Any
string that doesn’t start with int: represents the exact match. String device at-
tributes are compared to this string including case of symbols. Integer attributes
are first converted to a string (see individual filter attributes) and then compared
ignoring case.

e Any match. Any value of the corresponding device attribute will match the given
filter. An empty or null string is used to construct this type of filtering expres-
sions.

Note: On the Windows host platform, interval filters are not currently avail-
able. Also all string filter attributes (manufacturer, product, serialNumber)
are ignored, so they behave as any match no matter what string expression is
specified.

See also: IUSBController::deviceFilters, IHostUSBDeviceFilter

9.42.1 Attributes
9.42.1.1 name (read/write)

wstring IUSBDeviceFilter::name

Visible name for this filter. This name is used to visually distinguish one filter from
another, so it can neither be null nor an empty string.

9.42.1.2 active (read/write)

boolean IUSBDeviceFilter::active

Whether this filter active or has been temporarily disabled.

235

9 Classes (interfaces)

9.42.1.3 vendorld (read/write)

wstring IUSBDeviceFilter::vendorId

Vendor ID filter. The string representation for the exact matching has the form XXXX,
where X is the hex digit (including leading zeroes).

9.42.1.4 productld (read/write)

wstring IUSBDeviceFilter::productId

Product ID filter. The string representation for the exact matching has the form XXXX,
where X is the hex digit (including leading zeroes).

9.42.1.5 revision (read/write)

wstring IUSBDeviceFilter::revision

Product revision number filter. The string representation for the exact matching has
the form IIFF, where I is the decimal digit of the integer part of the revision, and F is
the decimal digit of its fractional part (including leading and trailing zeros). Note that
for interval filters, it’s best to use the hexadecimal form, because the revision is stored
as a 16 bit packed BCD value; so the expression int:0x0100-0x0199 will match any
revision from 1.0 to 1.99.

9.42.1.6 manufacturer (read/write)

wstring IUSBDeviceFilter::manufacturer

Manufacturer filter.

9.42.1.7 product (read/write)

wstring IUSBDeviceFilter::product

Product filter.

9.42.1.8 serialNumber (read/write)

wstring IUSBDeviceFilter::serialNumber

Serial number filter.

9.42.1.9 port (read/write)

wstring IUSBDeviceFilter::port

Host USB port filter.

236

9 Classes (interfaces)

9.42.1.10 remote (read/write)

wstring IUSBDeviceFilter::remote

Remote state filter.

Note: This filter makes sense only for machine USB filters, i.e. it is ignored
by IHostUSBDeviceFilter objects.

9.42.1.11 maskedInterfaces (read/write)

unsigned long IUSBDeviceFilter::maskedInterfaces

This is an advanced option for hiding one or more USB interfaces from the guest.
The value is a bit mask where the bits that are set means the corresponding USB
interface should be hidden, masked off if you like. This feature only works on Linux
hosts.

9.43 IVFSEXxplorer

The VFSExplorer interface unifies access to different file system types. This includes
local file systems as well remote file systems like S3. For a list of supported types see
VESType. An instance of this is returned by IAppliance::createVFSExplorer().

9.43.1 Attributes
9.43.1.1 path (read-only)

wstring IVFSExplorer::path

Returns the current path in the virtual file system.

9.43.1.2 type (read-only)

VFSType IVFSExplorer::type

Returns the file system type which is currently in use.

9.43.2 cd

IProgress IVFSExplorer::cd(
[in] wstring aDir)

aDir The name of the directory to go in.

Change the current directory level.

237

9 Classes (interfaces)

9.43.3 cdUp

IProgress IVFSExplorer::cdUp()

Go one directory upwards from the current directory level.

9.43.4 entryList

void IVFSExplorer::entrylList(
[out] wstring aNames[],
[out] unsigned long aTypes[])

aNames The list of names for the entries.

aTypes The list of types for the entries.

Returns a list of files/directories after a call to update(). The user is responsible for
keeping this internal list up do date.

9.43.5 exists

wstring[] IVFSExplorer::exists(
[in] wstring aNames[])

aNames The names to check.

Checks if the given file list exists in the current directory level.

9.43.6 remove

IProgress IVFSExplorer::remove(
[in] wstring aNames[])

aNames The names to remove.

Deletes the given files in the current directory level.

9.43.7 update

IProgress IVFSExplorer::update()

Updates the internal list of files/directories from the current directory level. Use
entryList() to get the full list after a call to this method.

238

9 Classes (interfaces)

9.44 IVRDPServer

9.44.1 Attributes
9.44.1.1 enabled (read/write)

boolean IVRDPServer::enabled

VRDP server status.

9.44.1.2 ports (read/write)

wstring IVRDPServer::ports

VRDP server port numbers. The server will try to bind to one of free ports from the
list.

Note: This is a string of comma separated TCP port numbers or port number
ranges. Example 5000,5010-5012,5015

9.44.1.3 netAddress (read/write)

wstring IVRDPServer::netAddress

VRDP server address.

9.44.1.4 authType (read/write)

VRDPAuthType IVRDPServer::authType

VRDP authentication method.

9.44.1.5 authTimeout (read/write)

unsigned long IVRDPServer::authTimeout

Timeout for guest authentication. Milliseconds.

9.44.1.6 allowMultiConnection (read/write)

boolean IVRDPServer::allowMultiConnection

Flag whether multiple simultaneous connections to the VM are permitted. Note that
this will be replaced by a more powerful mechanism in the future.

239

9 Classes (interfaces)

9.44.1.7 reuseSingleConnection (read/write)

boolean IVRDPServer::reuseSingleConnection

Flag whether the existing connection must be dropped and a new connection must
be established by the VRDP server, when a new client connects in single connection
mode.

9.44.1.8 videoChannel (read/write)

boolean IVRDPServer::videoChannel

Flag whether RDP video channel is supported.

9.44.1.9 videoChannelQuality (read/write)

unsigned long IVRDPServer::videoChannelQuality

Image quality in percents.

9.45 |VirtualBox

The IVirtualBox interface represents the main interface exposed by the product that
provides virtual machine management.

An instance of IVirtualBox is required for the product to do anything useful. Even
though the interface does not expose this, internally, IVirtualBox is implemented as
a singleton and actually lives in the process of the VirtualBox server (VBoxSVC.exe).
This makes sure that IVirtualBox can track the state of all virtual machines on a par-
ticular host, regardless of which frontend started them.

To enumerate all the virtual machines on the host, use the machines[] attribute.

9.45.1 Attributes
9.45.1.1 version (read-only)

wstring IVirtualBox::version

A string representing the version number of the product. The format is 3 integer
numbers divided by dots (e.g. 1.0.1). The last number represents the build number
and will frequently change.

9.45.1.2 revision (read-only)

unsigned long IVirtualBox::revision

The internal build revision number of the product.

240

9 Classes (interfaces)

9.45.1.3 packageType (read-only)

wstring IVirtualBox::packageType

A string representing the package type of this product. The format is
OS_ARCH_DIST where OS is either WINDOWS, LINUX, SOLARIS, DARWIN. ARCH is
either 32BITS or 64BITS. DIST is either GENERIC, UBUNTU_ 606, UBUNTU 710, or
something like this.

9.45.1.4 homeFolder (read-only)

wstring IVirtualBox::homeFolder

Full path to the directory where the global settings file, VirtualBox.xml, is stored.

In this version of VirtualBox, the value of this property is always <user_dir>/.VirtualBox
(where <user_dir> is the path to the user directory, as determined by the host OS),
and cannot be changed.

This path is also used as the base to resolve relative paths in places where relative
paths are allowed (unless otherwise expressly indicated).

9.45.1.5 settingsFilePath (read-only)

wstring IVirtualBox::settingsFilePath

Full name of the global settings file. The value of this property corresponds to the
value of homeFolder plus /VirtualBox.xml.

9.45.1.6 host (read-only)

IHost IVirtualBox::host
Associated host object.

9.45.1.7 systemProperties (read-only)

ISystemProperties IVirtualBox::systemProperties
Associated system information object.

9.45.1.8 machines (read-only)

IMachine IVirtualBox::machines|[]

Array of machine objects registered within this VirtualBox instance.

241

9 Classes (interfaces)

9.45.1.9 hardDisks (read-only)

IMedium IVirtualBox::hardDisks[]

Array of medium objects known to this VirtualBox installation.
This array contains only base media. All differencing media of the given base
medium can be enumerated using IMedium::children[].

9.45.1.10 DVDImages (read-only)

IMedium IVirtualBox::DVDImages]|]

Array of CD/DVD image objects registered with this VirtualBox instance.

9.45.1.11 floppylmages (read-only)

IMedium IVirtualBox::floppyImages|]

Array of floppy image objects registered with this VirtualBox instance.

9.45.1.12 progressOperations (read-only)

IProgress IVirtualBox::progressOperations|[]

9.45.1.13 guestOSTypes (read-only)

IGuestO0SType IVirtualBox::guestOSTypes|[]

9.45.1.14 sharedFolders (read-only)

ISharedFolder IVirtualBox::sharedFolders[]

Collection of global shared folders. Global shared folders are available to all virtual
machines.

New shared folders are added to the collection using createSharedFolder(). Existing
shared folders can be removed using removeSharedFolder().

Note: In the current version of the product, global shared folders are not
implemented and therefore this collection is always empty.

9.45.1.15 performanceCollector (read-only)

IPerformanceCollector IVirtualBox::performanceCollector

Associated performance collector object.

242

9 Classes (interfaces)

9.45.1.16 DHCPServers (read-only)

IDHCPServer IVirtualBox::DHCPServers[]

dhcp server settings.

9.45.2 checkFirmwarePresent

boolean IVirtualBox::checkFirmwarePresent (
[in] FirmwareType firmwareType,
[in] wstring version,
[out] wstring url,
[out] wstring file)
firmwareType Type of firmware to check.
version Expected version number, usually empty string (presently ignored).
url Suggested URL to download this firmware from.

file Filename of firmware, only valid if result == TRUE.

Check if this VirtualBox installation has a firmware of the given type available, either
system-wide or per-user. Optionally, this may return a hint where this firmware can be
downloaded from.

9.45.3 createAppliance

IAppliance IVirtualBox::createAppliance()

Creates a new appliance object, which represents an appliance in the Open Vir-
tual Machine Format (OVF). This can then be used to import an OVF appliance into
VirtualBox or to export machines as an OVF appliance; see the documentation for
[Appliance for details.

9.45.4 createDHCPServer

IDHCPServer IVirtualBox::createDHCPServer(
[in] wstring name)

name server name

Creates a dhcp server settings to be used for the given internal network name
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Host network interface name already exists.

243

9 Classes (interfaces)

9.45.5 createHardDisk

IMedium IVirtualBox::createHardDisk(
[in] wstring format,
[in] wstring location)

format Identifier of the storage format to use for the new medium.
location Location of the storage unit for the new medium.

Creates a new base medium object that will use the given storage format and loca-
tion for medium data.

Note that the actual storage unit is not created by this method. In order to do it, and
before you are able to attach the created medium to virtual machines, you must call
one of the following methods to allocate a format-specific storage unit at the specified
location:

e IMedium::createBaseStorage()
e IMedium::createDiffStorage()

Some medium attributes, such as IMedium::id, may remain uninitialized until the
medium storage unit is successfully created by one of the above methods.

After the storage unit is successfully created, the medium gets remembered by this
VirtualBox installation and will be accessible through getHardDisk() and findHard-
Disk() methods. Remembered base medium are also returned as part of the hard-
Disks[] array. See IMedium for more details.

The list of all storage formats supported by this VirtualBox installation can
be obtained using ISystemProperties::mediumFormats[]. If the format attribute
is empty or null then the default storage format specified by ISystemProper-
ties::defaultHardDiskFormat will be used for creating a storage unit of the medium.

Note that the format of the location string is storage format specific. See
IMedium::location, IMedium and ISystemProperties::defaultHardDiskFolder for more
details.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: format identifier is invalid. See ISystemProper-
ties::mediumFormats[].

e VBOX_E_FILE_ERROR: location is a not valid file name (for file-based formats
only).

9.45.6 createLegacyMachine

IMachine IVirtualBox::createlLegacyMachine(
[in] wstring name,
[in] wstring osTypeld,
[in] wstring settingsFile,
[in] uuid id)

244

9 Classes (interfaces)

name Machine name.
osTypeld Machine OS Type ID.
settingsFile Name of the machine settings file.

id Machine UUID (optional).

Creates a new virtual machine in “legacy” mode, using the specified settings file to
store machine settings.

As opposed to machines created by createMachine(), the settings file of the machine
created in “legacy” mode is not automatically renamed when the machine name is
changed - it will always remain the same as specified in this method call.

The specified settings file name can be absolute (full path) or relative to the
VirtualBox home directory. If the file name doesn’t contain an extension, the default
extension (.xml) will be appended.

Note that the configuration of the newly created machine is not saved to disk (and
therefore no settings file is created) until IMachine::saveSettings() is called. If the
specified settings file already exists, this method will fail with ::.

See createMachine() for more information.

@deprecated This method may be removed later. Use createMachine() instead.

Note: There is no way to change the name of the settings file of the machine
created in “legacy” mode.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: osTypeld is invalid.

e VBOX_E_FILE ERROR: settingsFile isinvalid or the settings file already exists
or could not be created due to an I/0O error.

e E_INVALIDARG: name or settingsFile is empty or null.

9.45.7 createMachine

IMachine IVirtualBox::createMachine(
[in] wstring name,
[in] wstring osTypeld,
[in] wstring baseFolder,
[in] uuid id,
[in] boolean override)

name Machine name.
osTypeld Guest OS Type ID.

baseFolder Base machine folder (optional).

245

9 Classes (interfaces)

id Machine UUID (optional).

override Create the VM even if there are conflicting files.

Creates a new virtual machine.

The new machine is created unregistered, with the initial configuration set according
to the specified guest OS type. A typical sequence of actions to create a new virtual
machine is as follows:

1. Call this method to have a new machine created. The returned machine object
will be “mutable” allowing to change any machine property.

2. Configure the machine using the appropriate attributes and methods.

3. Call IMachine::saveSettings() to write the settings to the machine’s XML settings
file. The configuration of the newly created machine will not be saved to disk
until this method is called.

4. Call registerMachine() to add the machine to the list of machines known to
VirtualBox.

You should specify valid name for the newly created machine when calling this
method. See the IMachine::name attribute description for more details about the ma-
chine name.

The specified guest OS type identifier must match an ID of one of known guest OS
types listed in the guestOSTypes[] array.

Every machine has a settings file that is used to store the machine configuration. This
file is stored in a directory called the machine settings subfolder. Both the settings sub-
folder and file will have a name that corresponds to the name of the virtual machine.
You can specify where to create the machine setting subfolder using the baseFolder
argument. The base folder can be absolute (full path) or relative to the VirtualBox
home directory.

If baseFolder is a null or empty string (which is recommended), the default ma-
chine settings folder will be used as a base folder for the created machine. Otherwise
the given base folder will be used. In either case, the full path to the resulting settings
file has the following structure:

<base_folder>/<machine_name>/<machine_name>.xml

Note that if the resulting settings file already exists, this method will fail with ::.

Optionally, you may specify an UUID of to assign to the created machine. However,
this is not recommended and you should normally pass an empty (null) UUID to this
method so that a new UUID will be automatically generated for every created machine.
You can use UUID 00000000-0000-0000-0000-000000000000 as null value.

246

9 Classes (interfaces)

Note: There is no way to change the name of the settings file or subfolder of
the created machine directly.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: osTypeld is invalid.

e VBOX_E_FILE_ERROR: Resulting settings file name is invalid or the settings file
already exists or could not be created due to an I/O error.

e E_INVALIDARG: name is empty or null.

9.45.8 createSharedFolder

void IVirtualBox::createSharedFolder(
[in] wstring name,
[in] wstring hostPath,
[in] boolean writable)

name Unique logical name of the shared folder.
hostPath Full path to the shared folder in the host file system.

writable Whether the share is writable or readonly

Creates a new global shared folder by associating the given logical name with the
given host path, adds it to the collection of shared folders and starts sharing it. Refer
to the description of ISharedFolder to read more about logical names.

’ Note: In the current implementation, this operation is not implemented.

9.45.9 findDHCPServerByNetworkName

IDHCPServer IVirtualBox::findDHCPServerByNetworkName (
[in] wstring name)

name server name

Searches a dhcp server settings to be used for the given internal network name
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Host network interface name already exists.

247

9 Classes (interfaces)

9.45.10 findDVDImage

IMedium IVirtualBox::findDVDImage (
[in] wstring location)

location CD/DVD image file path to look for.

Returns a CD/DVD image with the given image location.

The image with the given UUID must be known to this VirtualBox installation, i.e.
it must be previously opened by openDVDImage(), or mounted to some known virtual
machine.

The search is done by comparing the value of the location argument to the
IMedium::location attribute of each known CD/DVD image.

The requested location can be a path relative to the VirtualBox home folder. If only
a file name without any path is given, the default hard disk folder will be prepended to
the file name before searching. Note that on case sensitive file systems, a case sensitive
comparison is performed, otherwise the case in the file path is ignored.

If this method fails, the following error codes may be reported:

e VBOX_E_FILE ERROR: Invalid image file location.

e VBOX_E_OBJECT_NOT_FOUND: No matching DVD image found in the media reg-
istry.

9.45.11 findFloppylmage

IMedium IVirtualBox::findFloppyImage(
[in] wstring location)

location Floppy image file path to look for.

Returns a floppy image with the given image location.

The image with the given UUID must be known to this VirtualBox installation, i.e. it
must be previously opened by openFloppylmage(), or mounted to some known virtual
machine.

The search is done by comparing the value of the location argument to the
IMedium::location attribute of each known floppy image.

The requested location can be a path relative to the VirtualBox home folder. If only
a file name without any path is given, the default hard disk folder will be prepended to
the file name before searching. Note that on case sensitive file systems, a case sensitive
comparison is performed, otherwise the case of symbols in the file path is ignored.

If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Invalid image file location.

e VBOX_E_OBJECT_NOT_FOUND: No matching floppy image found in the media
registry.

248

9 Classes (interfaces)

9.45.12 findHardDisk

IMedium IVirtualBox::findHardDisk(
[in] wstring location)

location Location string to search for.

Returns a medium that uses the given location to store medium data.

The given medium must be known to this VirtualBox installation, i.e. it must be
previously created by createHardDisk() or opened by openHardDisk(), or attached to
some known virtual machine.

The search is done by comparing the value of the location argument to the
IMedium::location attribute of each known medium.

For locations represented by file names in the host’s file system, the requested loca-
tion can be a path relative to the VirtualBox home folder. If only a file name without
any path is given, the default medium folder will be prepended to the file name be-
fore searching. Note that on case sensitive file systems, a case sensitive comparison is
performed, otherwise the case of symbols in the file path is ignored.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: No medium object matching location found.

9.45.13 findMachine

IMachine IVirtualBox::findMachine(
[in] wstring name)

name

Attempts to find a virtual machine given its name. To look up a machine by UUID,
use getMachine() instead.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Could not find registered machine matching
name.

9.45.14 getDVDImage

IMedium IVirtualBox::getDVDImage (
[in] uuid id)

id UUID of the image to look for.

Returns a CD/DVD image with the given UUID.

The image with the given UUID must be known to this VirtualBox installation, i.e.
it must be previously opened by openDVDImage(), or mounted to some known virtual
machine.

If this method fails, the following error codes may be reported:

249

9 Classes (interfaces)

e VBOX_E_OBJECT_NOT_FOUND: No matching DVD image found in the media reg-
istry.

9.45.15 getExtraData

wstring IVirtualBox::getExtraData(
[in] wstring key)

key Name of the data key to get.

Returns associated global extra data.

If the requested data key does not exist, this function will succeed and return an
empty string in the value argument.

If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Settings file not accessible.
e VBOX_E_XML_ERROR: Could not parse the settings file.

9.45.16 getExtraDataKeys

wstring[] IVirtualBox::getExtraDataKeys()

Returns an array representing the global extra data keys which currently have values
defined.

9.45.17 getFloppylmage

IMedium IVirtualBox::getFloppyImage(
[in] uuid id)

id UUID of the image to look for.

Returns a floppy image with the given UUID.

The image with the given UUID must be known to this VirtualBox installation, i.e. it
must be previously opened by openFloppylmage(), or mounted to some known virtual
machine.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: No matching floppy image found in the media
registry.

250

9 Classes (interfaces)

9.45.18 getGuestOSType

IGuestO0SType IVirtualBox::getGuestOSType(
[in] uuid id)

id Guest OS type ID string.

Returns an object describing the specified guest OS type.

The requested guest OS type is specified using a string which is a mnemonic identi-
fier of the guest operating system, such as "win31" or "ubuntu". The guest OS type
ID of a particular virtual machine can be read or set using the IMachine::OSTypeld
attribute.

The guestOSTypes[] collection contains all available guest OS type objects. Each
object has an IGuestOSType::id attribute which contains an identifier of the guest OS
this object describes.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: id is not a valid Guest OS type.

9.45.19 getHardDisk

IMedium IVirtualBox::getHardDisk(
[in] uuid id)

id UUID of the medium to look for.

Returns a medium with the given UUID.

The medium with the given UUID must be known to this VirtualBox installation, i.e.
it must be previously created by createHardDisk() or opened by openHardDisk(), or
attached to some known virtual machine.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: No medium object matching id found.

9.45.20 getMachine

IMachine IVirtualBox::getMachine(
[in] uuid id)

id

Attempts to find a virtual machine given its UUID. To look up a machine by name,
use findMachine() instead.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Could not find registered machine matching id.

251

9 Classes (interfaces)

9.45.21 openDVDImage

IMedium IVirtualBox::openDVDImage(
[in] wstring location,
[in] uuid id)

location Full path to the file that contains a valid CD/DVD image.

id UUID to assign to the given image within this VirtualBox installation. If an empty
(null) UUID is specified, the system will randomly generate a new UUID.

Opens a CD/DVD image contained in the specified file of the supported format and
assigns it the given UUID.

After the image is successfully opened by this method, it gets remembered by
(known to) this VirtualBox installation and will be accessible through getDVDImage()
and findDVDImage() methods. Remembered images are also returned as part of the
DVDImages[] array and can be mounted to virtual machines. See IMedium for more
details.

See IMedium::location to get more details about the format of the location string.

Note: Currently only ISO 9960 CD/DVD images are supported by VirtualBox.

If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Invalid CD/DVD image file location or could not find the
CD/DVD image at the specified location.

e VBOX_E_INVALID_OBJECT_STATE: CD/DVD image already exists in the media
registry.

9.45.22 openExistingSession

void IVirtualBox::openExistingSession(
[in] ISession session,
[in] uuid machineId)

session Session object that will represent the open remote session after successful
method invocation. This object must not represent an already open session.

Note: This session will be automatically closed when the peer (direct) session
dies or gets closed.

machineld ID of the virtual machine to open a session with.

252

9 Classes (interfaces)

Opens a new remote session with the virtual machine for which a direct session is
already open.

The remote session provides some level of control over the VM execution (using the
IConsole interface) to the caller; however, within the remote session context, not all
VM settings are available for modification.

As opposed to openRemoteSession(), the number of remote sessions opened this
way is not limited by the API

Note: It is an error to open a remote session with the machine that doesn’t
have an open direct session.

See also: openRemoteSession
If this method fails, the following error codes may be reported:

e E_UNEXPECTED: Virtual machine not registered.

VBOX_E_OBJECT_NOT_FOUND: No machine matching machineId found.

e VBOX_E_INVALID_OBJECT_STATE: Session already open or being opened.

VBOX_E_INVALID_SESSION_STATE: Direct session state not Open.

VBOX_E_VM_ERROR: Failed to get console object from direct session or assign
machine to session.

9.45.23 openFloppylmage

IMedium IVirtualBox::openFloppyImage(
[in] wstring location,
[in] uuid id)

location Full path to the file that contains a valid floppy image.

id UUID to assign to the given image file within this VirtualBox installation. If an
empty (null) UUID is specified, the system will randomly generate a new UUID.

Opens a floppy image contained in the specified file of the supported format and
assigns it the given UUID.

After the image is successfully opened by this method, it gets remembered by
(known to) this VirtualBox installation and will be accessible through getFloppylm-
age() and findFloppylmage() methods. Remembered images are also returned as part
of the floppylmages[] array and can be mounted to virtual machines. See IMedium
for more details.

See IMedium::location to get more details about the format of the location string.

Note: Currently, only raw floppy images are supported by VirtualBox.

253

9 Classes (interfaces)

If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Invalid floppy image file location or could not find the
floppy image at the specified location.

e VBOX_E_INVALID OBJECT_STATE: Floppy image already exists in the media
registry.

9.45.24 openHardDisk

IMedium IVirtualBox::openHardDisk(
[in] wstring location,
[in] AccessMode accessMode,
[in] boolean setImageld,
[in] uuid imageld,
[in] boolean setParentId,
[in] uuid parentld)

location Location of the storage unit that contains medium data in one of the sup-
ported storage formats.

accessMode Determines whether to open the image in read/write or read-only
mode.

setimageld Select whether a new image UUID is set or not.

imageld New UUID for the image. If an empty string is passed, then a new UUID is
automatically created. Specifying a zero UUIDs is not valid.

setParentld Select whether a new parent UUID is set or not.

parentld New parent UUID for the image. If an empty string is passed, then a new
UUID is automatically created, provided setParentId is true. A zero UUID is
valid.

Opens a medium from an existing location, optionally replacing the image UUID
and/or parent UUID.

After the medium is successfully opened by this method, it gets remembered by
(known to) this VirtualBox installation and will be accessible through getHardDisk()
and findHardDisk() methods. Remembered base media are also returned as part of
the hardDisks[] array and can be attached to virtual machines. See IMedium for more
details.

If a differencing medium is to be opened by this method, the operation will succeed
only if its parent medium and all ancestors, if any, are already known to this VirtualBox
installation (for example, were opened by this method before).

This method tries to guess the storage format of the specified medium by reading
medium data at the specified location.

254

9 Classes (interfaces)

If accessMode is ReadWrite (which it should be), the image is opened for read/write
access and must have according permissions, as VirtualBox may actually write status
information into the disk’s metadata sections.

Note that write access is required for all typical image usage in VirtualBox, since
VirtualBox may need to write metadata such as a UUID into the image. The only
exception is opening a source image temporarily for copying and cloning when the
image will quickly be closed again.

Note that the format of the location string is storage format specific. See
IMedium::location, IMedium and ISystemProperties::defaultHardDiskFolder for more
details.

If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Invalid medium storage file location or could not find
the medium at the specified location.

e VBOX_E_IPRT_ERROR: Could not get medium storage format.

e E_INVALIDARG: Invalid medium storage format.

9.45.25 openMachine

IMachine IVirtualBox::openMachine(
[in] wstring settingsFile)

settingsFile Name of the machine settings file.

Opens a virtual machine from the existing settings file. The opened machine remains
unregistered until you call registerMachine().

The specified settings file name can be absolute (full path) or relative to the
VirtualBox home directory. This file must exist and must be a valid machine settings
file whose contents will be used to construct the machine object.

@deprecated Will be removed soon.

If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Settings file name invalid, not found or sharing viola-
tion.

9.45.26 openRemoteSession

IProgress IVirtualBox::openRemoteSession(
[in] ISession session,
[in] uuid machineld,
[in] wstring type,
[in] wstring environment)

session Session object that will represent the opened remote session after successful
method invocation (this object must not represent an already open session).

255

9 Classes (interfaces)

machineld ID of the virtual machine to open a session with.
type Type of the remote session (case sensitive).

environment Environment to pass to the opened session.

Spawns a new process that executes a virtual machine (called a “remote session”).

Opening a remote session causes the VirtualBox server to start a new process that
opens a direct session with the given VM. As a result, the VM is locked by that direct
session in the new process, preventing conflicting changes from other processes. Since
sessions act as locks that prevent conflicting changes, one cannot open a remote ses-
sion for a VM that already has another open session (direct or remote), or is currently
in the process of opening one (see IMachine::sessionState).

While the remote session still provides some level of control over the VM execu-
tion to the caller (using the IConsole interface), not all VM settings are available for
modification within the remote session context.

This operation can take some time (a new VM is started in a new process, for
which memory and other resources need to be set up). Because of this, an IProgress
is returned to allow the caller to wait for this asynchronous operation to be com-
pleted. Until then, the remote session object remains in the closed state, and ac-
cessing the machine or its console through it is invalid. It is recommended to use
IProgress::waitForCompletion() or similar calls to wait for completion. Completion is
signalled when the VM is powered on. Error messages etc. can be queried via the
progress object, if available.

As with all ISession objects, it is recommended to call ISession::close() on the local
session object once openRemoteSession() has been called. However, the session’s state
(see ISession::state) will not return to “Closed” until the remote session has also closed
(i.e. until the VM is no longer running). In that case, however, the state of the session
will automatically change back to “Closed”.

Currently supported session types (values of the type argument) are:

e '"gui": VirtualBox Qt GUI session
e "vrdp": VirtualBox VRDP Server session

e "sdl": VirtualBox SDL GUI session

The environment argument is a string containing definitions of environment vari-
ables in the following format: @code NAME[=VALUE]\n NAME[=VALUEJ\n ...
@endcode where \\n is the new line character. These environment variables will
be appended to the environment of the VirtualBox server process. If an environment
variable exists both in the server process and in this list, the value from this list takes
precedence over the server’s variable. If the value of the environment variable is omit-
ted, this variable will be removed from the resulting environment. If the environment
string is null or empty, the server environment is inherited by the started process as
is.

256

9 Classes (interfaces)

The progress object will have at least 2 operation. The first operation covers the
period up to the new VM process calls powerUp. The subsequent operations mirrors
the IConsole::powerUp() progress object. Because IConsole::powerUp() may require
some extra operation, the IProgress::operationCount may change at the completion of
operationl.

For details on the teleportation progress operation, see IConsole::powerUp().

See also: openExistingSession

If this method fails, the following error codes may be reported:

e E_UNEXPECTED: Virtual machine not registered.

e E_INVALIDARG: Invalid session type type.

VBOX_E_OBJECT_NOT_FOUND: No machine matching machineId found.

e VBOX_E_INVALID_OBJECT_STATE: Session already open or being opened.

VBOX_E_IPRT_ERROR: Launching process for machine failed.

VBOX_E_VM_ERROR: Failed to assign machine to session.

9.45.27 openSession

void IVirtualBox::openSession(
[in] ISession session,
[in] uuid machineld)

session Session object that will represent the opened session after successful method
invocation. This object must not represent the already open session.

Note: This session will be automatically closed if the VirtualBox server is
terminated for some reason.

machineld ID of the virtual machine to open a session with.

Opens a new direct session with the given virtual machine.

A direct session acts as a local lock on the given VM. There can be only one direct
session open at a time for every virtual machine, protecting the VM from being manip-
ulated by conflicting actions from different processes. Only after a direct session has
been opened, one can change all VM settings and execute the VM in the process space
of the session object.

Sessions therefore can be compared to mutex semaphores that lock a given VM for
modification and execution. See ISession for details.

257

9 Classes (interfaces)

Note: Unless you are writing a new VM frontend, you will not want to execute
a VM in the current process. To spawn a new process that executes a VM, use
openRemoteSession() instead.

Upon successful return, the session object can be used to get access to the machine
and to the VM console.

In VirtualBox terminology, the machine becomes “mutable” after a session has been
opened. Note that the “mutable” machine object, on which you may invoke IMachine
methods to change its settings, will be a different object from the immutable IMachine
objects returned by various IVirtualBox methods. To obtain a mutable IMachine object
(upon which you can invoke settings methods), use the ISession::machine attribute.

One must always call ISession::close() to release the lock on the machine, or the
machine’s state will eventually be set to “Aborted”.

In other words, to change settings on a machine, the following sequence is typically
performed:

1.

2
3
4,
5

Call this method (openSession) to have a machine locked for the current session.

. Obtain a mutable IMachine object from ISession::machine.

. Change the settings of the machine.

Call IMachine::saveSettings().

. Close the session by calling ISession::close().

If this method fails, the following error codes may be reported:

E_UNEXPECTED: Virtual machine not registered.

E_ACCESSDENIED: Process not started by OpenRemoteSession.
VBOX_E_OBJECT_NOT_FOUND: No matching virtual machine found.
VBOX_E_INVALID_OBJECT_STATE: Session already open or being opened.

VBOX_E_VM_ERROR: Failed to assign machine to session.

9.45.28 registerCallback

’ Note: This method is not supported in the web service.

void

IVirtualBox::registerCallback(
[in] IVirtualBoxCallback callback)

callback Callback object to register.

258

9 Classes (interfaces)

Registers a new global VirtualBox callback. The methods of the given callback object
will be called by VirtualBox when an appropriate event occurs.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: A null callback cannot be registered.

9.45.29 registerMachine

void IVirtualBox::registerMachine(
[in] IMachine machine)

machine

Registers the machine previously created using createMachine() or opened using
openMachine() within this VirtualBox installation. After successful method invoca-
tion, the IVirtualBoxCallback::onMachineRegistered() signal is sent to all registered
callbacks.

Note: This method implicitly calls IMachine::saveSettings() to save all current
machine settings before registering it.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: No matching virtual machine found.

e VBOX_E_INVALID_OBJECT_STATE: Virtual machine was not created within this
VirtualBox instance.

9.45.30 removeDHCPServer

void IVirtualBox::removeDHCPServer(
[in] IDHCPServer server)

server Dhcp server settings to be removed

Removes the dhcp server settings
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Host network interface name already exists.

9.45.31 removeSharedFolder

void IVirtualBox::removeSharedFolder(
[in] wstring name)

name Logical name of the shared folder to remove.

259

9 Classes (interfaces)

Removes the global shared folder with the given name previously created by create-
SharedFolder() from the collection of shared folders and stops sharing it.

Note: In the current implementation, this operation is not implemented.

9.45.32 setExtraData

void IVirtualBox::setExtraData(
[in] wstring key,
[in] wstring value)

key Name of the data key to set.

value Value to assign to the key.

Sets associated global extra data.
If you pass null or empty string as a key value, the given key will be deleted.

Note: Before performing the actual data change, this method will ask all
registered callbacks using the IVirtualBoxCallback::onExtraDataCanChange()
notification for a permission. If one of the callbacks refuses the new value,
the change will not be performed.

Note: On success, the IVirtualBoxCallback::onExtraDataChange() notifica-
tion is called to inform all registered callbacks about a successful data change.

If this method fails, the following error codes may be reported:
e VBOX_E_FILE_ERROR: Settings file not accessible.
e VBOX_E_XML_ERROR: Could not parse the settings file.

e E_ACCESSDENIED: Modification request refused.

9.45.33 unregisterCallback

Note: This method is not supported in the web service.

void IVirtualBox::unregisterCallback(
[in] IVirtualBoxCallback callback)

260

9 Classes (interfaces)

callback Callback object to unregister.

Unregisters the previously registered global VirtualBox callback.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Specified callback not registered.

9.45.34 unregisterMachine
IMachine IVirtualBox::unregisterMachine(
[in] uuid id)

id UUID of the machine to unregister.

Unregisters the machine previously registered using registerMachine(). After suc-
cessful method invocation, the IVirtualBoxCallback::onMachineRegistered() signal is
sent to all registered callbacks.

Note: The specified machine must not be in the Saved state, have an open
(or a spawning) direct session associated with it, have snapshots or have any
medium attached.

Note: This method implicitly calls IMachine::saveSettings() to save all current
machine settings before unregistering it.

Note: If the given machine is inaccessible (see IMachine::accessible), it will be
unregistered and fully uninitialized right afterwards. As a result, the returned
machine object will be unusable and an attempt to call any method will return
the “Object not ready” error.

If this method fails, the following error codes may be reported:
e VBOX_E_OBJECT_NOT_FOUND: Could not find registered machine matching id.
e VBOX_E_INVALID_VM_STATE: Machine isin Saved state.

e VBOX_E_INVALID_OBJECT_STATE: Machine has snapshot or open session or
medium attached.

261

9 Classes (interfaces)

9.45.35 waitForPropertyChange

void IVirtualBox::waitForPropertyChange(
[in] wstring what,
[in] unsigned long timeout,
[out] wstring changed,
[out] wstring values)

what Comma separated list of property masks.
timeout Wait timeout in milliseconds. Specify -1 for an indefinite wait.

changed Comma separated list of properties that have been changed and caused this
method to return to the caller.

values Reserved, not currently used.

Blocks the caller until any of the properties represented by the what argument
changes the value or until the given timeout interval expires.

The what argument is a comma separated list of property masks that describe prop-
erties the caller is interested in. The property mask is a string in the following format:

[[group.]lsubgroup.]name

where name is the property name and group, subgroup are zero or more property
group specifiers. Each element (group or name) in the property mask may be either
a Latin string or an asterisk symbol (@c “*“) which is used to match any string for
the given element. A property mask that doesn’t contain asterisk symbols represents a
single fully qualified property name.

Groups in the fully qualified property name go from more generic (the left-most
part) to more specific (the right-most part). The first element is usually a name of the
object the property belongs to. The second element may be either a property name,
or a child object name, or an index if the preceding element names an object which is
one of many objects of the same type. This way, property names form a hierarchy of
properties. Here are some examples of property names:

VirtualBox.versionversion propertyMachine.<UUID>.nameIMachine::name
property of the machine with the given UUID

Most property names directly correspond to the properties of objects (components)
provided by the VirtualBox library and may be used to track changes to these prop-
erties. However, there may be pseudo-property names that don’t correspond to any
existing object’s property directly, as well as there may be object properties that don’t
have a corresponding property name that is understood by this method, and there-
fore changes to such properties cannot be tracked. See individual object’s property
descriptions to get a fully qualified property name that can be used with this method
(if any).

262

9 Classes (interfaces)

There is a special property mask @c “*“ (i.e. a string consisting of a single asterisk
symbol) that can be used to match all properties. Below are more examples of property
masks:

VirtualBox.xTrack all properties of the VirtualBox objectMachine.*.nameTrack
changes to the IMachine::name property of all registered virtual machines

’ Note: This function is not implemented in the current version of the product.

9.46 |VirtualBoxCallback

’ Note: This interface is not supported in the web service.

9.46.1 onExtraDataCanChange

boolean IVirtualBoxCallback::onExtraDataCanChange(
[in] uuid machineld,
[in] wstring key,
[in] wstring value,
[out] wstring error)

machineld ID of the machine this event relates to (null ID for global extra data
change requests).

key Extra data key for the attempted write.
value Extra data value for the given key.

error Optional error message describing the reason of the veto (ignored if this notifi-
cation returns true).

Notification when someone tries to change extra data for either the given machine
or (if null) global extra data. This gives the chance to veto against changes.
If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP. Change
is allowed.

9.46.2 onExtraDataChange

void IVirtualBoxCallback::onExtraDataChange(
[in] uuid machineld,
[in] wstring key,
[in] wstring value)

263

9 Classes (interfaces)

machineld ID of the machine this event relates to. Null for global extra data changes.
key Extra data key that has changed.

value Extra data value for the given key.

Notification when machine specific or global extra data has changed.
If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

9.46.3 onGuestPropertyChange

void IVirtualBoxCallback::onGuestPropertyChange(
[in] uuid machineld,
[in] wstring name,
[in] wstring value,
[in] wstring flags)
machineld ID of the machine this event relates to.
name The name of the property that has changed.
value The new property value.
flags The new property flags.

Notification when a guest property has changed.
If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

9.46.4 onMachineDataChange

void IVirtualBoxCallback::onMachineDataChange(
[in] uuid machineld)

machineld ID of the machine this event relates to.

Any of the settings of the given machine has changed.
If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

264

9 Classes (interfaces)

9.46.5 onMachineRegistered

void IVirtualBoxCallback::onMachineRegistered(
[in] uuid machineld,
[in] boolean registered)

machineld ID of the machine this event relates to.
registered If true, the machine was registered, otherwise it was unregistered.

The given machine was registered or unregistered within this VirtualBox installa-
tion.
If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

9.46.6 onMachineStateChange

void IVirtualBoxCallback::onMachineStateChange(
[in] uuid machineld,
[in] MachineState state)

machineld ID of the machine this event relates to.
state New execution state.

The execution state of the given machine has changed. See also: IMachine::state
If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

9.46.7 onMediumRegistered

void IVirtualBoxCallback::onMediumRegistered(
[in] uuid mediumId,
[in] DeviceType mediumType,
[in] boolean registered)

mediumld ID of the medium this event relates to.
mediumType Type of the medium this event relates to.
registered If true, the medium was registered, otherwise it was unregistered.

The given medium was registered or unregistered within this VirtualBox installation.
The mediumType parameter describes what type of medium the specified mediumId
refers to. Possible values are:

e HardDisk: the medium is a hard disk that, if registered, can be obtained using
the IVirtualBox::getHardDisk() call.

265

9 Classes (interfaces)
e DVD: the medium is a CD/DVD image that, if registered, can be obtained using
the IVirtualBox::getDVDImage() call.

e Floppy: the medium is a Floppy image that, if registered, can be obtained using
the IVirtualBox::getFloppylmage() call.

Note that if this is a deregistration notification, there is no way to access the object
representing the unregistered medium. It is supposed that the application will do
required cleanup based on the mediumId value.

If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

9.46.8 onSessionStateChange

void IVirtualBoxCallback::onSessionStateChange(
[in] uuid machineld,
[in] SessionState state)

machineld ID of the machine this event relates to.

state New session state.

The state of the session for the given machine was changed. See also: IMa-
chine::sessionState
If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

9.46.9 onSnapshotChange

void IVirtualBoxCallback::onSnapshotChange(
[in] uuid machineld,
[in] uuid snapshotId)

machineld ID of the machine this event relates to.
snapshotld ID of the changed snapshot.

Snapshot properties (name and/or description) have been changed. See also: IS-
napshot
If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

266

9 Classes (interfaces)

9.46.10 onSnapshotDeleted

void IVirtualBoxCallback::onSnapshotDeleted(
[in] uuid machineld,
[in] uuid snapshotId)

machineld ID of the machine this event relates to.

snapshotld ID of the deleted snapshot. null means the current machine state has
been deleted (restored from the current snapshot).

Snapshot of the given machine has been deleted.

Note: This notification is delivered after the snapshot object has been unini-
tialized on the server (so that any attempt to call its methods will return an
error).

See also: ISnapshot
If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

9.46.11 onSnapshotTaken

void IVirtualBoxCallback::onSnapshotTaken(
[in] uuid machineld,
[in] uuid snapshotId)

machineld ID of the machine this event relates to.
snapshotld ID of the new snapshot.

A new snapshot of the machine has been taken. See also: ISnapshot
If this method fails, the following error codes may be reported:

e VBOX_E_DONT_CALL_AGAIN: Do not call again, this method is a NOP.

9.47 IVirtualBoxErrorinfo

The IVirtualBoxErrorInfo interface represents extended error information.

Extended error information can be set by VirtualBox components after unsuccessful
or partially successful method invocation. This information can be retrieved by the
calling party as an IVirtualBoxErrorInfo object and then shown to the client in addition
to the plain 32-bit result code.

In MS COM, this interface extends the IErrorInfo interface, in XPCOM, it extends
the nsIException interface. In both cases, it provides a set of common attributes to
retrieve error information.

267

9 Classes (interfaces)

Sometimes invocation of some component’s method may involve methods of other
components that may also fail (independently of this method’s failure), or a series of
non-fatal errors may precede a fatal error that causes method failure. In cases like that,
it may be desirable to preserve information about all errors happened during method
invocation and deliver it to the caller. The next attribute is intended specifically for this
purpose and allows to represent a chain of errors through a single IVirtualBoxErrorInfo
object set after method invocation.

Note that errors are stored to a chain in the reverse order, i.e. the initial error object
you query right after method invocation is the last error set by the callee, the object
it points to in the next attribute is the previous error and so on, up to the first error
(which is the last in the chain).

9.47.1 Attributes
9.47.1.1 resultCode (read-only)

long IVirtualBoxErrorInfo::resultCode

Result code of the error. Usually, it will be the same as the result code returned by the
method that provided this error information, but not always. For example, on Win32,
CoCreatelnstance() will most likely return E NOINTERFACE upon unsuccessful com-
ponent instantiation attempt, but not the value the component factory returned. Value
is typed 'long’, not ’result’, to make interface usable from scripting languages.

Note: In MS COM, there is no equivalent. In XPCOM, it is the same as nsIEx-
ception::result.

9.47.1.2 interfacelD (read-only)
uuid IVirtualBoxErrorInfo::interfacelD

UUID of the interface that defined the error.

Note: In MS COM, it is the same as IErrorinfo::GetGUID, except for the data
type. In XPCOM, there is no equivalent.

9.47.1.3 component (read-only)
wstring IVirtualBoxErrorInfo::component

Name of the component that generated the error.

Note: In MS COM, it is the same as IErrorInfo::GetSource. In XPCOM, there
is no equivalent.

268

9 Classes (interfaces)

9.47.1.4 text (read-only)

wstring IVirtualBoxErrorInfo::text

Text description of the error.

Note: In MS COM, it is the same as IErrorInfo::GetDescription. In XPCOM, it
is the same as nsIException::message.

9.47.1.5 next (read-only)

IVirtualBoxErrorInfo IVirtualBoxErrorInfo::next

Next error object if there is any, or null otherwise.

Note: In MS COM, there is no equivalent. In XPCOM, it is the same as nsIEx-
ception::inner.

9.48 IVirtualSystemDescription

Represents one virtual system (machine) in an appliance. This interface is used in the
IAppliance::virtualSystemDescriptions[] array. After IAppliance::interpret() has been
called, that array contains information about how the virtual systems described in the
OVF should best be imported into VirtualBox virtual machines. See IAppliance for the
steps required to import an OVF into VirtualBox.

9.48.1 Attributes
9.48.1.1 count (read-only)

unsigned long IVirtualSystemDescription::count

Return the number of virtual system description entries.

9.48.2 addDescription

void IVirtualSystemDescription::addDescription(
[in] VirtualSystemDescriptionType aType,
[in] wstring aVBoxValue,
[in] wstring aExtraConfigValue)

aType

269

9 Classes (interfaces)

aVBoxValue
aExtraConfigValue

This method adds an additional description entry to the stack of already available
descriptions for this virtual system. This is handy for writing values which aren’t di-
rectly supported by VirtualBox. One example would be the License type of VirtualSys-
temDescriptionType.

9.48.3 getDescription

void IVirtualSystemDescription::getDescription(
[out] VirtualSystemDescriptionType aTypes|[],
[out] wstring aRefs[],
[out] wstring aOvfValues|],
[out] wstring aVBoxValues[],
[out] wstring aExtraConfigValues[])

aTypes

aRefs

aOvfValues
aVBoxValues
aExtraConfigValues

Returns information about the virtual system as arrays of instruction items. In each
array, the items with the same indices correspond and jointly represent an import
instruction for VirtualBox.

The list below identifies the value sets that are possible depending on the Virtual-
SystemDescriptionType enum value in the array item in aTypes[]. In each case, the
array item with the same index in aOvfValues[] will contain the original value as con-
tained in the OVF file (just for informational purposes), and the corresponding item in
aVBoxValues[] will contain a suggested value to be used for VirtualBox. Depending
on the description type, the aExtraConfigValues[] array item may also be used.

e “OS”: the guest operating system type. There must be exactly one such array
item on import. The corresponding item in aVBoxValues[] contains the sug-
gested guest operating system for VirtualBox. This will be one of the values
listed in IVirtualBox::guestOSTypes[]. The corresponding item in aOvfValues[]
will contain a numerical value that described the operating system in the OVF.

e “Name”: the name to give to the new virtual machine. There can be at most
one such array item; if none is present on import, then an automatic name
will be created from the operating system type. The correponding item im
alOvfValues[] will contain the suggested virtual machine name from the OVF
file, and aVBoxValues[] will contain a suggestion for a unique VirtualBox IMa-
chine name that does not exist yet.

270

9 Classes (interfaces)

“Description”: an arbitrary description.

“License”: the EULA section from the OVF, if present. It is the responsibility of
the calling code to display such a license for agreement; the Main API does not
enforce any such policy.

Miscellaneous: reserved for future use.

“CPU”: the number of CPUs. There can be at most one such item, which will
presently be ignored.

“Memory”: the amount of guest RAM, in bytes. There can be at most one such
array item; if none is present on import, then VirtualBox will set a meaningful
default based on the operating system type.

“HardDiskControllerIDE”: an IDE hard disk controller. There can be at most
two such items. An optional value in aOvfValues[] and aVBoxValues[] can be
“PIIX3” or “PIIX4” to specify the type of IDE controller; this corresponds to the
ResourceSubType element which VirtualBox writes into the OVF. The matching
item in the aRefs[] array will contain an integer that items of the “Harddisk”
type can use to specify which hard disk controller a virtual disk should be con-
nected to. Note that in OVF, an IDE controller has two channels, corresponding
to “master” and “slave” in traditional terminology, whereas the IDE storage con-
troller that VirtualBox supports in its virtual machines supports four channels
(primary master, primary slave, secondary master, secondary slave) and thus
maps to two IDE controllers in the OVF sense.

“HardDiskControllerSATA’: an SATA hard disk controller. There can be at most
one such item. This has no value in aOvfValues[] or aVBoxValues[]. The
matching item in the aRefs[] array will be used as with IDE controllers (see
above).

“HardDiskControllerSCSI”: a SCSI hard disk controller. There can be at most
one such item. The items in aOvfValues[] and aVBoxValues[] will either be
“LsiLogic”, “BusLogic” or “LsiLogicSas”. (Note that in OVF, the LsiLogicSas con-
troller is treated as a SCSI controller whereas VirtualBox considers it a class of
storage controllers of its own; see StorageControllerType). The matching item
in the aRefs[] array will be used as with IDE controllers (see above).

“HardDiskImage”: a virtual hard disk, most probably as a reference to an image
file. There can be an arbitrary number of these items, one for each virtual disk
image that accompanies the OVF.

The array item in aOvfValues[] will contain the file specification from the OVF
file (without a path since the image file should be in the same location as the
OVF file itself), whereas the item in aVBoxValues[] will contain a qualified path
specification to where VirtualBox uses the hard disk image. This means that on
import the image will be copied and converted from the “ovf” location to the

271

9 Classes (interfaces)

“vbox” location; on export, this will be handled the other way round. On import,
the target image will also be registered with VirtualBox.

The matching item in the aExtraConfigValues[] array must contain a string of
the following format: “controller=<index>;channel=<c>* In this string, <in-
dex> must be an integer specifying the hard disk controller to connect the im-
age to. That number must be the index of an array item with one of the hard
disk controller types (HardDiskControllerSCSI, HardDiskControllerSATA, Hard-
DiskControllerIDE). In addition, <c¢> must specify the channel to use on that
controller. For IDE controllers, this can be 0 or 1 for master or slave, respec-
tively. For compatibility with VirtualBox versions before 3.2, the values 2 and 3
(for secondary master and secondary slave) are also supported, but no longer
exported. For SATA and SCSI controllers, the channel can range from 0-29.

e “CDROM?”: a virtual CD-ROM drive. The matching item in aExtraConfigValue[]
contains the same attachment information as with “HardDiskImage” items.

e “CDROM?”: a virtual floppy drive. The matching item in aExtraConfigValuel]
contains the same attachment information as with “HardDiskImage” items.

e “NetworkAdapter”: a network adapter. The array item in aVBoxValues[]
will specify the hardware for the network adapter, whereas the array item in
aExtraConfigValues[] will have a string of the “type=<X>“ format, where
<X> must be either “NAT” or “Bridged”.

e “USBController”: a USB controller. There can be at most one such item. If and
only if such an item ispresent, USB support will be enabled for the new virtual
machine.

e “SoundCard”: a sound card. There can be at most one such item. If and only
if such an item is present, sound support will be enabled for the new virtual
machine. Note that the virtual machine in VirtualBox will always be presented
with the standard VirtualBox soundcard, which may be different from the virtual
soundcard expected by the appliance.

9.48.4 getDescriptionByType

void IVirtualSystemDescription::getDescriptionByType(
[in] VirtualSystemDescriptionType aType,
[out] VirtualSystemDescriptionType aTypesl|],
[out] wstring aRefs[],
[out] wstring aOvfValues|[],
[out] wstring aVBoxValues|[],
[out] wstring aExtraConfigValues[])

aType
aTypes

272

9 Classes (interfaces)

aRefs
aOvfValues
aVBoxValues

aExtraConfigValues

This is the same as getDescription() except that you can specify which types should be
returned.

9.48.5 getValuesByType

wstring[] IVirtualSystemDescription::getValuesByType(
[in] VirtualSystemDescriptionType aType,
[in] VirtualSystemDescriptionValueType aWhich)

aType
aWhich

This is the same as getDescriptionByType() except that you can specify which value
types should be returned. See VirtualSystemDescriptionValueType for possible values.

9.48.6 setFinalValues

void IVirtualSystemDescription::setFinalValues(
[in] boolean aEnabled[],
[in] wstring aVBoxValues|[],
[in] wstring aExtraConfigValues[])

aEnabled
aVBoxValues

aExtraConfigValues

This method allows the appliance’s user to change the configuration for the virtual
system descriptions. For each array item returned from getDescription(), you must
pass in one boolean value and one configuration value.

Each item in the boolean array determines whether the particular configuration item
should be enabled. You can only disable items of the types HardDiskControllerIDE,
HardDiskControllerSATA, HardDiskControllerSCSI, HardDiskimage, CDROM, Floppy,
NetworkAdapter, USBController and SoundCard.

For the “vbox” and “extra configuration” values, if you pass in the same arrays as
returned in the aVBoxValues and aExtraConfigValues arrays from getDescription(), the
configuration remains unchanged. Please see the documentation for getDescription()
for valid configuration values for the individual array item types. If the corresponding
item in the aEnabled array is false, the configuration value is ignored.

273

9 Classes (interfaces)

9.49 IWebsessionManager

’ Note: This interface is supported in the web service only, not in COM/XPCOM.

Websession manager. This provides essential services to webservice clients.

9.49.1 getSessionObject

ISession IWebsessionManager::getSessionObject(
[in] IVirtualBox refIVirtualBox)

reflVirtualBox

Returns a managed object reference to the internal ISession object that was created
for this web service session when the client logged on.
See also: ISession

9.49.2 logoff

void IWebsessionManager::logoff(
[in] IVirtualBox refIVirtualBox)

reflVirtualBox

Logs off the client who has previously logged on with logoff() and destroys all re-
sources associated with the session (most importantly, all managed objects created in
the server while the session was active).

9.49.3 logon

IVirtualBox IWebsessionManager::logon(
[in] wstring username,
[in] wstring password)

username

password

Logs a new client onto the webservice and returns a managed object reference to
the IVirtualBox instance, which the client can then use as a basis to further queries,
since all calls to the VirtualBox API are based on the IVirtualBox interface, in one way
or the other.

274

10 Enumerations (enums)

10.1 AccessMode

Access mode for opening files.

ReadOnly
ReadWrite

10.2 AudioControllerType
Virtual audio controller type.

AC97
SB16

10.3 AudioDriverType

Host audio driver type.

Null Null value, also means “dummy audio driver”.

WinMM Windows multimedia (Windows hosts only).

OSS Open Sound System (Linux hosts only).

ALSA Advanced Linux Sound Architecture (Linux hosts only).
DirectSound DirectSound (Windows hosts only).

CoreAudio CoreAudio (Mac hosts only).

MMPM Reserved for historical reasons.

Pulse PulseAudio (Linux hosts only).

SolAudio Solaris audio (Solaris hosts only).

275

10 Enumerations (enums)

10.4 BIOSBootMenuMode

BIOS boot menu mode.
Disabled
MenuOnly

MessageAndMenu

10.5 CPUPropertyType

Virtual CPU property type. This enumeration represents possible values of the IMa-
chine get- and setCPUProperty methods.

Null Null value (never used by the API).

PAE This setting determines whether VirtualBox will expose the Physical Address Ex-
tension (PAE) feature of the host CPU to the guest. Note that in case PAE is not
available, it will not be reported.

Synthetic This setting determines whether VirtualBox will expose a synthetic CPU to
the guest to allow teleporting between host systems that differ significantly.

10.6 ClipboardMode

Host-Guest clipboard interchange mode.
Disabled

HostToGuest

GuestToHost

Bidirectional

10.7 DataFlags

None
Mandatory
Expert
Array
FlagMask

276

10 Enumerations (enums)

10.8 DataType

Int32
Int8
String

10.9 DeviceActivity

Device activity for IConsole::getDeviceActivity().
Null

Idle

Reading

Writing

10.10 DeviceType

Device type.

Null Null value, may also mean “no device” (not allowed for IConsole::getDeviceActivity()).
Floppy Floppy device.

DVD CD/DVD-ROM device.

HardDisk Hard disk device.

Network Network device.

USB USB device.

SharedFolder Shared folder device.

10.11 FirmwareType

Firmware type.

BIOS BIOS Firmware.

EFI EFI Firmware, bitness detetced basing on OS type.
EFI32 Efi firmware, 32-bit.

EFI64 Efi firmware, 64-bit.

EFIDUAL Efi firmware, combined 32 and 64-bit.

277

10 Enumerations (enums)

10.12 FramebufferPixelFormat

Format of the video memory buffer. Constants represented by this enum can be
used to test for particular values of IFramebuffer::pixelFormat. See also IFrame-
buffer::requestResize().

See also www.fourcc.org for more information about FOURCC pixel formats.

Opaque Unknown buffer format (the user may not assume any particular format of
the buffer).

FOURCC_RGB Basic RGB format (IFramebuffer::bitsPerPixel determines the bit lay-
out).

10.13 HWVirtExPropertyType

Hardware virtualization property type. This enumeration represents possible val-
ues for the IMachine::getHWVirtExProperty() and IMachine::setHWVirtExProperty()
methods.

Null Null value (never used by the API).

Enabled Whether hardware virtualization (VI-x/AMD-V) is enabled at all. If such
extensions are not available, they will not be used.

Exclusive Whether hardware virtualization is used exclusively by VirtualBox. When
enabled, VirtualBox assumes it can acquire full and exclusive access to the VI-x
or AMD-V feature of the host. To share these with other hypervisors, you must
disable this property.

VPID Whether VT-x VPID is enabled. If this extension is not available, it will not be
used.

NestedPaging Whether Nested Paging is enabled. If this extension is not available,
it will not be used.

LargePages Whether large page allocation is enabled; requires nested paging and a
64 bits host.

10.14 HostNetworkinterfaceMediumType

Type of encapsulation. Ethernet encapsulation includes both wired and wireless Eth-
ernet connections. See also: IHostNetworkInterface

Unknown The type of interface cannot be determined.

Ethernet Ethernet frame encapsulation.

278

10 Enumerations (enums)

PPP Point-to-point protocol encapsulation.

SLIP Serial line IP encapsulation.

10.15 HostNetworkinterfaceStatus

Current status of the interface. See also: IHostNetworkInterface
Unknown The state of interface cannot be determined.
Up The interface is fully operational.

Down The interface is not functioning.

10.16 HostNetworkinterfaceType
Network interface type.

Bridged

HostOnly

10.17 KeyboardHidType

Type of keyboard device used in a virtual machine.

None No keyboard.
PS2Keyboard PS/2 keyboard.
USBKeyboard USB keyboard.

ComboKeyboard Combined device, working as PS/2 or USB keyboard, depending
on guest behavior. Using of such device can have negative performance implica-
tions.

10.18 MachineState

Virtual machine execution state.
This enumeration represents possible values of the IMachine::state attribute.
Below is the basic virtual machine state diagram. It shows how the state changes
during virtual machine execution. The text in square braces shows a method of the
IConsole interface that performs the given state transition.

279

10 Enumerations (enums)

Fo------ - [powerDown()] <- Stuck <--[failure]-+

v I
+-> PoweredOff --+-->[powerUp()]--> Starting --+ | +----- [resume()]----- +
I I | [V I
| Aborted ----- + +--> Running --[pause()]--> Paused
I | ~ ~
| Saved ----------- [powerUp()]--> Restoring -+ || |
I ~ [[
| | e L I + +
I I I I I
| | +-- Saving <-------- [takeSnapshot()]<------- R T +
I I I I
| oo Saving <-------- [saveState()]<---------- R T +
I I I
LR Stopping ------- [powerDown()]<---------- R e +

Note that states to the right from PoweredOff, Aborted and Saved in the above
diagram are called online VM states. These states represent the virtual machine which
is being executed in a dedicated process (usually with a GUI window attached to it
where you can see the activity of the virtual machine and interact with it). There are
two special pseudo-states, FirstOnline and LastOnline, that can be used in relational
expressions to detect if the given machine state is online or not:

if (machine.GetState() >= MachineState_FirstOnline &&
machine.GetState() <= MachineState_LastOnline)

{
...the machine is being executed...

}

When the virtual machine is in one of the online VM states (that is, being executed),
only a few machine settings can be modified. Methods working with such settings
contain an explicit note about that. An attempt to change any oter setting or perform
a modifying operation during this time will result in the error.

All online states except Running, Paused and Stuck are transitional: they represent
temporary conditions of the virtual machine that will last as long as the operation that
initiated such a condition.

The Stuck state is a special case. It means that execution of the machine has reached
the “Guru Meditation” condition. This condition indicates an internal VMM (virtual
machine manager) failure which may happen as a result of either an unhandled low-
level virtual hardware exception or one of the recompiler exceptions (such as the
too-many-traps condition).

Note also that any online VM state may transit to the Aborted state. This happens if
the process that is executing the virtual machine terminates unexpectedly (for exam-
ple, crashes). Other than that, the Aborted state is equivalent to PoweredOff.

There are also a few additional state diagrams that do not deal with virtual machine
execution and therefore are shown separately. The states shown on these diagrams
are called offline VM states (this includes PoweredOff, Aborted and Saved too).

280

10 Enumerations (enums)

The first diagram shows what happens when a lengthy setup operation is being
executed (such as IMachine::attachDevice()).

+-> PoweredOff --+

| | I
| -> Aborted ----- +-->[lengthy VM configuration call] --> SettingUp ----- +

+-> Saved ------- +

The next two diagrams demonstrate the process of taking a snapshot of a powered
off virtual machine, restoring the state to that as of a snapshot or deleting a snapshot,
respectively.

| +-->[takeSnapshot ()] ------------------- > Saving ------ +
+-> Aborted ----- +

+-> PoweredOff --+

| Aborted ----- +-->[restoreSnapshot()]---ee-- > RestoringSnapshot -+
| | [deleteSnapshot()]------- > DeletingSnapshot --+
+-> Saved ------- +

| |
+---(Saved if restored from an online snapshot, PoweredOff otherwise)---+

Note that the Saving state is present in both the offline state group and online state
group. Currently, the only way to determine what group is assumed in a particular
case is to remember the previous machine state: if it was Running or Paused, then
Saving is an online state, otherwise it is an offline state. This inconsistency may be
removed in one of the future versions of VirtualBox by adding a new state.

Null Null value (never used by the API).

PoweredOff The machine is not running and has no saved execution state; it has
either never been started or been shut down successfully.

Saved The machine is not currently running, but the execution state of the machine
has been saved to an external file when it was running, from where it can be
resumed.

Teleported The machine was teleported to a different host (or process) and then
powered off. Take care when powering it on again may corrupt resources it
shares with the teleportation target (e.g. disk and network).

281

10 Enumerations (enums)

Aborted The process running the machine has terminated abnormally. This may in-
dicate a crash of the VM process in host execution context, or the VM process
has been terminated externally.

Running The machine is currently being executed.
Paused Execution of the machine has been paused.

Stuck Execution of the machine has reached the “Guru Meditation” condition. This
indicates a severe error in the hypervisor itself.

Teleporting The machine is about to be teleported to a different host or process.
It is possible to pause a machine in this state, but it will go to the MachineS-
tate::PausedTeleporting state and it will not be possible to resume it again unless
the teleportation fails.

LiveSnapshotting A live snapshot is being taken. The machine is running normally,
but some of the runtime configuration options are inaccessible. Also, if paused
while in this state it will transition to MachineState::Saving and it will not be
resume the execution until the snapshot operation has completed.

Starting Machine is being started after powering it on from a zero execution state.

Stopping Machine is being normally stopped powering it off, or after the guest OS
has initiated a shutdown sequence.

Saving Machine is saving its execution state to a file, or an online snapshot of the
machine is being taken.

Restoring Execution state of the machine is being restored from a file after powering
it on from the saved execution state.

TeleportingPausedVM The machine is being teleported to another host or process,
but it is not running. This is the paused variant of the MachineState::Teleporting
state.

Teleportingln Teleporting the machine state in from another host or process.

DeletingSnapshotOnline Like DeletingSnapshot, but the merging of media is on-
going in the background while the machine is running.

DeletingSnapshotPaused Like DeletingSnapshotOnline, but the machine was
paused when the merging of differencing media was started.

RestoringSnapshot A machine snapshot is being restored; this typically does not
take long.

DeletingSnapshot A machine snapshot is being deleted; this can take a long time
since this may require merging differencing media. This value indicates that the
machine is not running while the snapshot is being deleted.

282

10 Enumerations (enums)

SettingUp Lengthy setup operation is in progress.

FirstOnline Pseudo-state: first online state (for use in relational expressions).
LastOnline Pseudo-state: last online state (for use in relational expressions).
FirstTransient Pseudo-state: first transient state (for use in relational expressions).

LastTransient Pseudo-state: last transient state (for use in relational expressions).

10.19 MediumFormatCapabilities
Medium format capability flags.

Uuid Supports UUIDs as expected by VirtualBox code.
CreateFixed Supports creating fixed size images, allocating all space instantly.

CreateDynamic Supports creating dynamically growing images, allocating space on
demand.

CreateSplit2G Supports creating images split in chunks of a bit less than 2 GBytes.

Differencing Supports being used as a format for differencing media (see
IMedium::createDiffStorage()).

Asynchronous Supports asynchronous I/O operations for at least some configura-
tions.

File The format backend operates on files (the IMedium::location attribute of the
medium specifies a file used to store medium data; for a list of supported file
extensions see IMediumFormat::fileExtensions[]).

Properties The format backend uses the property interface to configure the stor-
age location and properties (the IMediumFormat::describeProperties() method
is used to get access to properties supported by the given medium format).

CapabilityMask

10.20 MediumState

Virtual medium state. See also: IMedium

NotCreated Associated medium storage does not exist (either was not created yet or
was deleted).

Created Associated storage exists and accessible; this gets set if the accessibility check
performed by IMedium::refreshState() was successful.

283

10 Enumerations (enums)

LockedRead Medium is locked for reading (see IMedium::lockRead()), no data mod-
ification is possible.

LockedWrite Medium is locked for writing (see IMedium::lockWrite()), no concur-
rent data reading or modification is possible.

Inaccessible Medium accessiblity check (see IMedium::refreshState()) has not yet
been performed, or else, associated medium storage is not accessible. In the
first case, IMedium::lastAccessError is empty, in the second case, it describes the
error that occured.

Creating Associated medium storage is being created.

Deleting Associated medium storage is being deleted.

10.21 MediumType

Virtual medium type. See also: IMedium

Normal Normal medium (attached directly or indirectly, preserved when taking snap-
shots).

Immutable Immutable medium (attached indirectly, changes are wiped out the next
time the virtual machine is started).

Writethrough Write through medium (attached directly, ignored when taking snap-
shots).

Shareable Allow using this medium concurrently by several machines.

’Note: Present since VirtualBox 3.2.0, and accepted since 3.2.8.

10.22 MediumVariant

Virtual medium image variant. More than one flag may be set. See also: IMedium
Standard No particular variant requested, results in using the backend default.
VmdkSplit2G VMDK image split in chunks of less than 2GByte.

VmdkStreamOptimized VMDK streamOptimized image. Special import/export for-
mat which is read-only/append-only.

VmdKESX VMDK format variant used on ESX products.
Fixed Fixed image. Only allowed for base images.

Diff Differencing image. Only allowed for child images.

284

10 Enumerations (enums)

10.23 MouseButtonState

Mouse button state.
LeftButton
RightButton
MiddleButton
WheelUp
WheelDown
XButton1
XButton2
MouseStateMask

10.24 NATAliasMode

AliasLog
AliasProxyOnly

AliasUseSamePorts

10.25 NATProtocol

Protocol definitions used with NAT port-forwarding rules.

UDP Port-forwarding uses UDP protocol.
TCP Port-forwarding uses TCP protocol.

10.26 NetworkAdapterType

Network adapter type.

Null Null value (never used by the API).

Am79C970A AMD PCNet-PCI II network card (Am79C970A).

Am79C973 AMD PCNet-FAST III network card (Am79C973).

1I82540EM Intel PRO/1000 MT Desktop network card (82540EM).

285

10 Enumerations (enums)

182543GC Intel PRO/1000 T Server network card (82543GC).
182545EM Intel PRO/1000 MT Server network card (82545EM).

Virtio Virtio network device.

10.27 NetworkAttachmentType

Network attachment type.

Null Null value, also means “not attached”.
NAT

Bridged

Internal

HostOnly

VDE

10.28 PointingHidType

Type of pointing device used in a virtual machine.
None No mouse.

PS2Mouse PS/2 auxillary device, a.k.a. mouse.
USBMouse USB mouse (relative pointer).

USBTablet USB tablet (absolute pointer).

ComboMouse Combined device, working as PS/2 or USB mouse, depending on guest
behavior. Using of such device can have negative performance implications.

10.29 PortMode

The PortMode enumeration represents possible communication modes for the virtual

serial port device.

Disconnected Virtual device is not attached to any real host device.

HostPipe Virtual device is attached to a host pipe.
HostDevice Virtual device is attached to a host device.

RawgFile Virtual device is attached to a raw file.

286

10 Enumerations (enums)

10.30 ProcessorFeature
CPU features.

HWVirtEx
PAE
LongMode
NestedPaging

10.31 Scope

Scope of the operation.
A generic enumeration used in various methods to define the action or argument
scope.

Global
Machine

Session

10.32 SessionState

Session state. This enumeration represents possible values of IMachine::sessionState
and ISession::state attributes. See individual enumerator descriptions for the meaning
for every value.

Null Null value (never used by the API).

Closed The machine has no open sessions (IMachine::sessionState); the session is
closed (ISession::state)

Open The machine has an open direct session (IMachine::sessionState); the session
is open (ISession::state)

Spawning A new (direct) session is being opened for the machine as a result of IVir-
tualBox::openRemoteSession() call (IMachine::sessionState or ISession::state).
This state also occurs as a short transient state when a new direct session is
opened by calling IVirtualBox::openSession().

Closing The direct session is being closed (IMachine::sessionState); the session is
being closed (ISession::state)

287

10 Enumerations (enums)

10.33 SessionType

Session type. This enumeration represents possible values of the ISession::type at-
tribute.

Null Null value (never used by the API).
Direct Direct session (opened by IVirtualBox::openSession())
Remote Remote session (opened by IVirtualBox::openRemoteSession())

Existing Existing session (opened by IVirtualBox::openExistingSession())

10.34 SettingsVersion

Settings version of VirtualBox settings files. This is written to the “version” attribute of
the root “VirtualBox” element in the settings file XML and indicates which VirtualBox
version wrote the file.

Null Null value, indicates invalid version.

v1_0 Legacy settings version, not currently supported.

v1_1 Legacy settings version, not currently supported.

v1_2 Legacy settings version, not currently supported.

v1_3pre Legacy settings version, not currently supported.

v1_3 Settings version “1.3”, written by VirtualBox 2.0.12.

v1_4 Intermediate settings version, understood by VirtualBox 2.1.x.
v1_5 Intermediate settings version, understood by VirtualBox 2.1.x.
v1_6 Settings version “1.6”, written by VirtualBox 2.1.4 (at least).
v1_7 Settings version “1.7”, written by VirtualBox 2.2.x and 3.0.x.
v1_8 Intermediate settings version “1.8”, understood by VirtualBox 3.1.x.
v1_9 Settings version “1.9”, written by VirtualBox 3.1.x.

v1_10 Settings version “1.10”, written by VirtualBox 3.2.x.

Future Settings version greater than “1.10”, written by a future VirtualBox version.

288

10 Enumerations (enums)

10.35 StorageBus

The bus type of the storage controller (IDE, SATA, SCSI, SAS or Floppy); see IStorage-
Controller::bus.

Null null value. Never used by the API.
IDE

SATA

Scsi

Floppy
SAS

10.36 StorageControllerType

The exact variant of storage controller hardware presented to the guest; see IStorage-
Controller::controllerType.

Null null value. Never used by the APIL.

LsiLogic A SCSI controller of the LsiLogic variant.

BusLogic A SCSI controller of the BusLogic variant.

IntelAhci An Intel AHCI SATA controller; this is the only variant for SATA.
PIIX3 An IDE controller of the PIIX3 variant.

PlIX4 An IDE controller of the PIIX4 variant.

ICH6 An IDE controller of the ICH6 variant.

182078 A floppy disk controller; this is the only variant for floppy drives.

LsiLogicSas A variant of the LsiLogic controller using SAS.

10.37 USBDeviceFilterAction

Actions for host USB device filters. See also: IHostUSBDeviceFilter, USBDeviceState

Null Null value (never used by the API).
Ignore Ignore the matched USB device.

Hold Hold the matched USB device.

289

10 Enumerations (enums)

10.38 USBDeviceState

USB device state. This enumeration represents all possible states of the USB device
physically attached to the host computer regarding its state on the host computer and
availability to guest computers (all currently running virtual machines).

Once a supported USB device is attached to the host, global USB filters
(IHost::USBDeviceFilters[]) are activated. They can either ignore the device, or
put it to USBDeviceState Held state, or do nothing. Unless the device is ignored by
global filters, filters of all currently running guests (IUSBController::deviceFilters[])
are activated that can put it to USBDeviceState Captured state.

If the device was ignored by global filters, or didn’t match any filters at all (including
guest ones), it is handled by the host in a normal way. In this case, the device state is
determined by the host and can be one of USBDeviceState Unavailable, USBDeviceS-
tate_Busy or USBDeviceState Available, depending on the current device usage.

Besides auto-capturing based on filters, the device can be manually captured by
guests (IConsole::attachUSBDevice()) if its state is USBDeviceState Busy, USBDe-
viceState_Available or USBDeviceState Held.

Note: Due to differences in USB stack implementations in Linux and
Win32, states USBDeviceState Busy and USBDeviceState vailable are appli-
cable only to the Linux version of the product. This also means that (ICon-
sole::attachUSBDevice()) can only succeed on Win32 if the device state is
USBDeviceState Held.

See also: IHostUSBDevice, [HostUSBDeviceFilter

NotSupported Not supported by the VirtualBox server, not available to guests.
Unavailable Being used by the host computer exclusively, not available to guests.
Busy Being used by the host computer, potentially available to guests.

Available Not used by the host computer, available to guests (the host computer can
also start using the device at any time).

Held Held by the VirtualBox server (ignored by the host computer), available to
guests.

Captured Captured by one of the guest computers, not available to anybody else.

10.39 VFSFileType

File types known by VFSExplorer.

Unknown

290

10 Enumerations (enums)

Fifo
DevChar
Directory
DevBlock
File
SymLink
Socket
WhiteOut

10.40 VFSType

Virtual file systems supported by VFSExplorer.
File

Cloud

S3

WebDav

10.41 VRDPAuthType

VRDP authentication type.

Null Null value, also means “no authentication”.
External

Guest

10.42 VirtualSystemDescriptionType

Used with IVirtualSystemDescription to describe the type of a configuration value.

Ignore
oS

Name

291

10 Enumerations (enums)

Product

Vendor

Version

ProductUrl

VendorUrl

Description

License

Miscellaneous

CPU

Memory
HardDiskControllerIDE
HardDiskControllerSATA
HardDiskControllerSCSI
HardDiskControllerSAS
HardDiskimage

Floppy

CDROM
NetworkAdapter
USBController
SoundCard

10.43 VirtualSystemDescriptionValueType

Used with IVirtualSystemDescription::getValuesByType() to describe the value type to
fetch.

Reference
Original
Auto
ExtraConfig

292

11 Host-Guest Communication
Manager

The VirtualBox Host-Guest Communication Manager (HGCM) allows a guest applica-
tion or a guest driver to call a host shared library. The following features of VirtualBox
are implemented using HGCM:

e Shared Folders
e Shared Clipboard

e Guest configuration interface

The shared library contains a so called HGCM service. The guest HGCM clients
establish connections to the service to call it. When calling a HGCM service the client
supplies a function code and a number of parameters for the function.

11.1 Virtual Hardware Implementation

HGCM uses the VMM virtual PCI device to exchange data between the guest and the
host. The guest always acts as an initiator of requests. A request is constructed in
the guest physical memory, which must be locked by the guest. The physical address
is passed to the VMM device using a 32 bit out edx, eax instruction. The physical
memory must be allocated below 4GB by 64 bit guests.

The host parses the request header and data and queues the request for a host
HGCM service. The guest continues execution and usually waits on a HGCM event
semaphore.

When the request has been processed by the HGCM service, the VMM device sets
the completion flag in the request header, sets the HGCM event and raises an IRQ for
the guest. The IRQ handler signals the HGCM event semaphore and all HGCM callers
check the completion flag in the corresponding request header. If the flag is set, the
request is considered completed.

11.2 Protocol Specification

The HGCM protocol definitions are contained in the VBox/VBoxGuest.h

293

11 Host-Guest Communication Manager

11.2.1 Request Header
HGCM request structures contains a generic header (VMMDevHGCMRequestHeader):

Name Description

size Size of the entire request.

version Version of the header, must be set to 0x10001.

type Type of the request.

rc HGCM return code, which will be set by the VMM device.

reserved]l | A reserved field 1.
reserved2 | A reserved field 2.

flags HGCM flags, set by the VMM device.
result The HGCM result code, set by the VMM device.
Note:

o All fields are 32 bit.

e Fields from size to reserved2 are a standard VMM device request
header, which is used for other interfaces as well.

The type field indicates the type of the HGCM request:

Name (decimal value) | Description
VMMDe- Connect to a HGCM service.
vReq HGCMConnect
(60)
VMMDe- Disconnect from the service.
vReq HGCMDisconnect
(61)
VMMDe- Call a HGCM function using the 32 bit
vReq HGCMCall32 interface.
(62)
VMMDe- Call a HGCM function using the 64 bit
vReq HGCMCall64 interface.
(63)
VMMDe- Cancel a HGCM request currently being
vReq HGCMCancel processed by a host HGCM service.
(64)
The flags field may contain:
Name (hexadecimal value) Description
VBOX HGCM_REQ_DONE The request has been processed by
(0x00000001) the host service.
VBOX HGCM_REQ_CANCELLED | This request was cancelled.
(0x00000002)

294

11 Host-Guest Communication Manager

11.2.2 Connect

The connection request must be issued by the guest HGCM client before it can call the
HGCM service (VMMDevHGCMConnect):

Name | Description

header| The generic HGCM request header with type equal to
VMMDevReq HGCMConnect (60).

type The type of the service location information (32 bit).
loca- The service location information (128 bytes).

tion
clien- | The client identifier assigned to the connecting client by the
tld HGCM subsystem (32 bit).

The type field tells the HGCM how to look for the requested service:

Name Description

(hexadecimal

value)

VMMDevHGCM- The requested service is a shared library located on
Loc_LocalHost the host and the location information contains the
(0x1) library name.

VMMDevHGCM- The requested service is a preloaded one and the
Loc_LocalHost_Existingocation information contains the service name.
(6x2)

Note: Currently preloaded HGCM services are hard-coded in VirtualBox:
e VBoxSharedFolders
e VBoxSharedClipboard

e VBoxGuestPropSvc

e VBoxSharedOpenGL

There is no difference between both types of HGCM services, only the location mech-
anism is different.

The client identifier is returned by the host and must be used in all subsequent
requests by the client.

11.2.3 Disconnect

This request disconnects the client and makes the client identifier invalid (VMMDe-
vHGCMDisconnect):

295

11 Host-Guest Communication Manager

Name | Description
header] The generic HGCM request header with type equal to
VMMDevReq HGCMDisconnect (61).

clien- | The client identifier previously returned by the connect request
tld (32 bit).

11.2.4 Call32 and Call64

Calls the HGCM service entry point (VMMDevHGCMCall) using 32 bit or 64 bit ad-
dresses:

Name Description
header The generic HGCM request header with type equal to either
VMMDevReq HGCMCall32 (62) or VMMDevReq HGCMCall64

(63).
cli- | The client identifier previously returned by the connect request
en- (32 bit).
tld
func-| The function code to be processed by the service (32 bit).
tion

cParmsThe number of following parameters (32 bit). This value is 0 if the
function requires no parameters.

parms An array of parameter description structures
(HGCMFunctionParameter32 or HGCMFunctionParameter64).

The 32 bit parameter description (HGCMFunctionParameter32) consists of 32 bit
type field and 8 bytes of an opaque value, so 12 bytes in total. The 64 bit variant
(HGCMFunctionParameter64) consists of the type and 12 bytes of a value, so 16 bytes
in total.

296

11 Host-Guest Communication Manager

Type Format of the value
VMMDevHGCM- A 32 bit value.
ParmType 32bit
€3]
VMMDevHGCM- A 64 bit value.
ParmType_64bit
(2)
VMMDevHGCM- A 32 bit size followed by a 32 bit or 64 bit guest
Parm- physical address.
Type PhysAddr
€)
VMMDevHGCM- A 32 bit size followed by a 32 bit or 64 bit guest
ParmType LinAddr | linear address. The buffer is used both for guest to
4 host and for host to guest data.
VMMDevHGCM- Same as VMMDevHGCMParmType LinAddr but
Parm- the buffer is used only for host to guest data.
Type LinAddr In
)
VMMDevHGCM- Same as VMMDevHGCMParmType_LinAddr but
Parm- the buffer is used only for guest to host data.
Type LinAddr Out
(6)
VMMDevHGCM- Same as VMMDevHGCMParmType_LinAddr but
Parm- the buffer is already locked by the guest.
Type_LinAddr Locked
(7)
VMMDevHGCM- Same as VMMDevHGCMParmType LinAddr In but
Parm- the buffer is already locked by the guest.
Type LinAddr Locked In
€3]
VMMDevHGCM- Same as VMMDevHGCMParmType LinAddr Out
Parm- but the buffer is already locked by the guest.
Type_LinAddr Locked Out
€3]

The

11.2.5 Cancel
This request cancels a call request (VMMDevHGCMCancel):

Name

Description

header

The generic HGCM request header with type equal to
VMMDevReq HGCMCancel (64).

297

11 Host-Guest Communication Manager

11.3 Guest Software Interface

The guest HGCM clients can call HGCM services from both drivers and applications.

11.3.1 The Guest Driver Interface

The driver interface is implemented in the VirtualBox guest additions driver
(VBoxGuest), which works with the VMM virtual device. Drivers must use
the VBox Guest Library (VBGL), which provides an API for HGCM clients
(VBox/VBoxGuestLib.h and VBox/VBoxGuest.h).

DECLVBGL (int) VbglHGCMConnect (VBGLHGCMHANDLE xpHandle, VBoxGuestHGCMConnectInfo xpData);

Connects to the service:

VBoxGuestHGCMConnectInfo data;
memset (&data, sizeof (VBoxGuestHGCMConnectInfo));
data.result = VINF_SUCCESS;

data.Loc.type = VMMDevHGCMLoc_LocalHost_Existing;
strcpy (data.Loc.u.host.achName, "VBoxSharedFolders");

rc = VbglHGCMConnect (&handle, &data);

if (RT_SUCCESS (rc))

{
rc = data.result;

}

if (RT_SUCCESS (rc))

{
/* Get the assigned client identifier. x/
ulClientID = data.u32ClientID;

}

DECLVBGL (int) VbglHGCMDisconnect (VBGLHGCMHANDLE handle, VBoxGuestHGCMDisconnectInfo *pData);

Disconnects from the service.

VBoxGuestHGCMDisconnectInfo data;
RtlZeroMemory (&data, sizeof (VBoxGuestHGCMDisconnectInfo));

data.result VINF_SUCCESS;
data.u32ClientID = ulClientID;

298

11 Host-Guest Communication Manager

rc = VbglHGCMDisconnect (handle, &data);

DECLVBGL(int) VbglHGCMCall (VBGLHGCMHANDLE handle, VBoxGuestHGCMCallInfo *pData, uint32_t cbData);

Calls a function in the service.

typedef struct _VBoxSFRead

{
VBoxGuestHGCMCallInfo calllnfo;

/*% pointer, in: SHFLROOT
*+ Root handle of the mapping which name is queried.
*/

HGCMFunctionParameter root;

/** value64, in:
* SHFLHANDLE of object to read from.
*/

HGCMFunctionParameter handle;

/** value64, in:
*+ 0ffset to read from.
*/
HGCMFunctionParameter offset;

/*x value64, in/out:
* Bytes to read/How many were read.
*/

HGCMFunctionParameter cb;

/** pointer, out:
* Buffer to place data to.
x/
HGCMFunctionParameter buffer;
} VBoxSFRead;

/** Number of parameters x*/
#define SHFL_CPARMS_READ (5)

VBoxSFRead data;

/* The call information. x*/

data.calllnfo.result = VINF_SUCCESS; /* Will be returned by HGCM. x/
data.callInfo.u32ClientID = ulClientID; /*x Client identifier. x/
data.callInfo.u32Function = SHFL_FN_READ; /* The function code. x*/

data.callInfo.cParms

SHFL_CPARMS_READ; /* Number of parameters. x/

/* Initialize parameters. x/

299

11 Host-Guest Communication Manager

data.root.type
data.root.u.value32

VMMDevHGCMParmType_32bit;
pMap->root;

data.handle.type
data.handle.u.value64

VMMDevHGCMParmType_64bit;
hFile;

data.offset.type
data.offset.u.value64

VMMDevHGCMParmType_64bit;
offset;

data.cb.type
data.cb.u.value32

VMMDevHGCMParmType_32bit;
*pcbBuffer;

data.buffer.type
data.buffer.u.Pointer.size
data.buffer.u.Pointer.u.linearAddr

VMMDevHGCMParmType_LinAddr_Out;
*pcbBuffer;
(uintptr_t)pBuffer;

rc = VbglHGCMCall (handle, &data.callInfo, sizeof (data));
if (RT_SUCCESS (rc))
{

rc = data.callInfo.result;
*pcbBuffer = data.cb.u.value32; /*x This is returned by the HGCM service. x/

11.3.2 Guest Application Interface

Applications call the VirtualBox Guest Additions driver to utilize the HGCM interface.
There are IOCTL’s which correspond to the Vbgl* functions:

e VBOXGUEST IOCTL HGCM_CONNECT
e VBOXGUEST IOCTL HGCM_DISCONNECT
e VBOXGUEST_IOCTL_HGCM_CALL

These IOCTL’s get the same input buffer as VbglHGCM* functions and the output
buffer has the same format as the input buffer. The same address can be used as the
input and output buffers.

For example see the guest part of shared clipboard, which runs as an application
and uses the HGCM interface.

11.4 HGCM Service Implementation

The HGCM service is a shared library with a specific set of entry points. The library
must export the VBoxHGCMSvcLoad entry point:

extern "C" DECLCALLBACK(DECLEXPORT(int)) VBoxHGCMSvclLoad (VBOXHGCMSVCFNTABLE *ptable)

300

11 Host-Guest Communication Manager

The service must check the ptable->cbSize and ptable->u32Version fields of
the input structure and fill the remaining fields with function pointers of entry points
and the size of the required client buffer size.

The HGCM service gets a dedicated thread, which calls service entry points syn-
chronously, that is the service will be called again only when a previous call has re-
turned. However, the guest calls can be processed asynchronously. The service must
call a completion callback when the operation is actually completed. The callback can
be issued from another thread as well.

Service entry points are listed in the VBox/hgcmsvc. h in the VBOXHGCMSVCFNTABLE
structure.

En- Description

try

pf- The service is being unloaded.

nUn-

load

pfn- A client u32ClientID is connected to the service. The pvClient

Con- | parameter points to an allocated memory buffer which can be
nect | used by the service to store the client information.

pfnDis{ A client is being disconnected.

con-
nect
pfn- A guest client calls a service function. The callHandle must be
Call used in the VBOXHGCMSVCHELPERS::pfnCallComplete callback
when the call has been processed.

pfn- Called by the VirtualBox host components to perform functions
Host- | which should be not accessible by the guest. Usually this entry
Call point is used by VirtualBox to configure the service.

pfn- The VM state is being saved and the service must save relevant
SaveS-| information using the SSM API (VBox/ssm.h).

tate

pfn- The VM is being restored from the saved state and the service

Load- | must load the saved information and be able to continue
State | operations from the saved state.

301

12 RDP Web Control

The VirtualBox RDP Web Control (RDPWeb) provides remote access to a running VM.
RDPWeb is a RDP (Remote Desktop Protocol) client based on Flash technology and
can be used from a Web browser with a Flash plugin.

12.1 RDPWeb features

RDPWeb is embedded into a Web page and can connect to VRDP server in order to
displays the VM screen and pass keyboard and mouse events to the VM.

12.2 RDPWeb reference

RDPWeb consists of two required components:

e Flash movie RDPClientUI. swf

e JavaScript helpers webclient.js
The VirtualBox SDK contains sample HTML code including:

e JavaScript library for embedding Flash content SWFObject. js
e Sample HTML page webclient3.html

12.2.1 RDPWeb functions

RDPClientUI.swf and webclient.js work with each other. JavaScript code is re-
sponsible for a proper SWF initialization, delivering mouse events to the SWF and
processing resize requests from the SWF. On the other hand, the SWF contains a few
JavaScript callable methods, which are used both from webclient.js and the user
HTML page.

12.2.1.1 JavaScript functions

webclient. js contains helper functions. In the following table Elementld refers to
an HTML element name or attribute, and Element to the HTML element itself. HTML
code

302

12 RDP Web Control

<div id=“FlashRDP">
</div>

would have Elementld equal to FlashRDP and Element equal to the div element.
o RDPWebClient.embedSWF (SWFFileName, ElementId)
Uses SWFObject library to replace the HTML element with the Flash movie.
e RDPWebClient.isRDPWebControlByld (ElementId)
Returns true if the given id refers to a RDPWeb Flash element.
e RDPWebClient.isRDPWebControlByElement(Element)

Returns true if the given element is a RDPWeb Flash element.

e RDPWebClient.getFlashByld (ElementId)
Returns an element, which is referenced by the given id. This function will try

to resolve any element, event if it is not a Flash movie.
12.2.1.2 Flash methods callable from JavaScript

RDPWebClienUI. swf methods can be called directly from JavaScript code on a HTML
page.

e getProperty(Name)

setProperty(Name)

connect()

disconnect()

keyboardSendCAD()

keyboardSendScancodes(Scancodes)

12.2.1.3 Flash JavaScript callbacks
RDPWebClienUI. swf calls JavaScript functions provided by the HTML page.

303

12 RDP Web Control

12.2.2 Embedding RDPWeb in a HTML page

It is necessary to include webclient.js helper script. If SWFObject library is used,
the swfobject. js must be also included and RDPWeb flash content can be embedded
to a Web page using dynamic HTML. The HTML must include a “placeholder”, which

consists of 2 div elements.

304

	1 Introduction
	1.1 Modularity: the building blocks of VirtualBox
	1.2 Two guises of the same "Main API": the web service or COM/XPCOM
	1.3 About web services in general
	1.4 Running the web service
	1.4.1 Command line options of vboxwebsrv
	1.4.2 Authenticating at web service logon
	1.4.3 Solaris host: starting the web service via SMF

	2 The object-oriented web service (OOWS)
	2.1 The object-oriented web service for JAX-WS
	2.1.1 Preparations
	2.1.2 Getting started: running the sample code
	2.1.3 Logging on to the web service
	2.1.4 Obtaining basic machine information. Reading attributes
	2.1.5 Changing machine settings. Sessions
	2.1.6 Starting machines
	2.1.7 Object management

	2.2 The object-oriented web service for Python
	2.3 The object-oriented web service for PHP

	3 Using the raw web service with any language
	3.1 Raw web service example for Java with Axis
	3.2 Raw web service example for Perl
	3.3 Programming considerations for the raw web service
	3.3.1 Fundamental conventions
	3.3.2 Example: A typical web service client session
	3.3.3 Managed object references
	3.3.4 Some more detail about web service operation

	4 Using the Main API documentation to write web service clients
	5 The VirtualBox COM/XPCOM API
	5.1 Python COM API
	5.2 Common Python bindings layer
	5.3 C++ COM API
	5.4 Event queue processing
	5.5 Visual Basic and Visual Basic Script (VBS) on Windows hosts
	5.6 C binding to XPCOM API
	5.6.1 Getting started
	5.6.2 XPCOM initialization
	5.6.3 XPCOM method invocation
	5.6.4 XPCOM attribute access
	5.6.5 String handling
	5.6.6 XPCOM uninitialization
	5.6.7 Compiling and linking

	6 The VirtualBox shell
	7 Main API change log
	7.1 Incompatible API changes with version 3.2
	7.2 Incompatible API changes with version 3.1
	7.3 Incompatible API changes with version 3.0
	7.4 Incompatible API changes with version 2.2
	7.5 Incompatible API changes with version 2.1

	8 License information
	9 Classes (interfaces)
	9.1 IAppliance
	9.1.1 Attributes
	9.1.2 createVFSExplorer
	9.1.3 getWarnings
	9.1.4 importMachines
	9.1.5 interpret
	9.1.6 read
	9.1.7 write

	9.2 IAudioAdapter
	9.2.1 Attributes

	9.3 IBIOSSettings
	9.3.1 Attributes

	9.4 IConsole
	9.4.1 Attributes
	9.4.2 adoptSavedState
	9.4.3 attachUSBDevice
	9.4.4 createSharedFolder
	9.4.5 deleteSnapshot
	9.4.6 detachUSBDevice
	9.4.7 findUSBDeviceByAddress
	9.4.8 findUSBDeviceById
	9.4.9 forgetSavedState
	9.4.10 getDeviceActivity
	9.4.11 getGuestEnteredACPIMode
	9.4.12 getPowerButtonHandled
	9.4.13 pause
	9.4.14 powerButton
	9.4.15 powerDown
	9.4.16 powerUp
	9.4.17 powerUpPaused
	9.4.18 registerCallback
	9.4.19 removeSharedFolder
	9.4.20 reset
	9.4.21 restoreSnapshot
	9.4.22 resume
	9.4.23 saveState
	9.4.24 sleepButton
	9.4.25 takeSnapshot
	9.4.26 teleport
	9.4.27 unregisterCallback

	9.5 IConsoleCallback
	9.5.1 onAdditionsStateChange
	9.5.2 onCPUChange
	9.5.3 onCanShowWindow
	9.5.4 onKeyboardLedsChange
	9.5.5 onMediumChange
	9.5.6 onMouseCapabilityChange
	9.5.7 onMousePointerShapeChange
	9.5.8 onNetworkAdapterChange
	9.5.9 onParallelPortChange
	9.5.10 onRemoteDisplayInfoChange
	9.5.11 onRuntimeError
	9.5.12 onSerialPortChange
	9.5.13 onSharedFolderChange
	9.5.14 onShowWindow
	9.5.15 onStateChange
	9.5.16 onStorageControllerChange
	9.5.17 onUSBControllerChange
	9.5.18 onUSBDeviceStateChange
	9.5.19 onVRDPServerChange

	9.6 IDHCPServer
	9.6.1 Attributes
	9.6.2 setConfiguration
	9.6.3 start
	9.6.4 stop

	9.7 IDisplay
	9.7.1 completeVHWACommand
	9.7.2 drawToScreen
	9.7.3 getFramebuffer
	9.7.4 getScreenResolution
	9.7.5 invalidateAndUpdate
	9.7.6 resizeCompleted
	9.7.7 setFramebuffer
	9.7.8 setSeamlessMode
	9.7.9 setVideoModeHint
	9.7.10 takeScreenShot
	9.7.11 takeScreenShotToArray

	9.8 IFramebuffer
	9.8.1 Attributes
	9.8.2 getVisibleRegion
	9.8.3 lock
	9.8.4 notifyUpdate
	9.8.5 processVHWACommand
	9.8.6 requestResize
	9.8.7 setVisibleRegion
	9.8.8 unlock
	9.8.9 videoModeSupported

	9.9 IFramebufferOverlay
	9.9.1 Attributes
	9.9.2 move

	9.10 IGuest
	9.10.1 Attributes
	9.10.2 executeProcess
	9.10.3 getProcessOutput
	9.10.4 getProcessStatus
	9.10.5 internalGetStatistics
	9.10.6 setCredentials

	9.11 IGuestOSType
	9.11.1 Attributes

	9.12 IHost
	9.12.1 Attributes
	9.12.2 createHostOnlyNetworkInterface
	9.12.3 createUSBDeviceFilter
	9.12.4 findHostDVDDrive
	9.12.5 findHostFloppyDrive
	9.12.6 findHostNetworkInterfaceById
	9.12.7 findHostNetworkInterfaceByName
	9.12.8 findHostNetworkInterfacesOfType
	9.12.9 findUSBDeviceByAddress
	9.12.10 findUSBDeviceById
	9.12.11 getProcessorCPUIDLeaf
	9.12.12 getProcessorDescription
	9.12.13 getProcessorFeature
	9.12.14 getProcessorSpeed
	9.12.15 insertUSBDeviceFilter
	9.12.16 removeHostOnlyNetworkInterface
	9.12.17 removeUSBDeviceFilter

	9.13 IHostNetworkInterface
	9.13.1 Attributes
	9.13.2 dhcpRediscover
	9.13.3 enableDynamicIpConfig
	9.13.4 enableStaticIpConfig
	9.13.5 enableStaticIpConfigV6

	9.14 IHostUSBDevice
	9.14.1 Attributes

	9.15 IHostUSBDeviceFilter
	9.15.1 Attributes

	9.16 IInternalMachineControl
	9.16.1 adoptSavedState
	9.16.2 autoCaptureUSBDevices
	9.16.3 beginPowerUp
	9.16.4 beginSavingState
	9.16.5 beginTakingSnapshot
	9.16.6 captureUSBDevice
	9.16.7 deleteSnapshot
	9.16.8 detachAllUSBDevices
	9.16.9 detachUSBDevice
	9.16.10 endPowerUp
	9.16.11 endSavingState
	9.16.12 endTakingSnapshot
	9.16.13 finishOnlineMergeMedium
	9.16.14 getIPCId
	9.16.15 lockMedia
	9.16.16 onSessionEnd
	9.16.17 pullGuestProperties
	9.16.18 pushGuestProperty
	9.16.19 restoreSnapshot
	9.16.20 runUSBDeviceFilters
	9.16.21 setRemoveSavedState
	9.16.22 unlockMedia
	9.16.23 updateState

	9.17 IInternalSessionControl
	9.17.1 accessGuestProperty
	9.17.2 assignMachine
	9.17.3 assignRemoteMachine
	9.17.4 enumerateGuestProperties
	9.17.5 getPID
	9.17.6 getRemoteConsole
	9.17.7 onCPUChange
	9.17.8 onMediumChange
	9.17.9 onNetworkAdapterChange
	9.17.10 onParallelPortChange
	9.17.11 onSerialPortChange
	9.17.12 onSharedFolderChange
	9.17.13 onShowWindow
	9.17.14 onStorageControllerChange
	9.17.15 onUSBControllerChange
	9.17.16 onUSBDeviceAttach
	9.17.17 onUSBDeviceDetach
	9.17.18 onVRDPServerChange
	9.17.19 onlineMergeMedium
	9.17.20 uninitialize
	9.17.21 updateMachineState

	9.18 IKeyboard
	9.18.1 putCAD
	9.18.2 putScancode
	9.18.3 putScancodes

	9.19 ILocalOwner
	9.19.1 setLocalObject

	9.20 IMachine
	9.20.1 Attributes
	9.20.2 addStorageController
	9.20.3 attachDevice
	9.20.4 canShowConsoleWindow
	9.20.5 createSharedFolder
	9.20.6 deleteSettings
	9.20.7 detachDevice
	9.20.8 discardSettings
	9.20.9 enumerateGuestProperties
	9.20.10 export
	9.20.11 findSnapshot
	9.20.12 getBootOrder
	9.20.13 getCPUIDLeaf
	9.20.14 getCPUProperty
	9.20.15 getCPUStatus
	9.20.16 getExtraData
	9.20.17 getExtraDataKeys
	9.20.18 getGuestProperty
	9.20.19 getGuestPropertyTimestamp
	9.20.20 getGuestPropertyValue
	9.20.21 getHWVirtExProperty
	9.20.22 getMedium
	9.20.23 getMediumAttachment
	9.20.24 getMediumAttachmentsOfController
	9.20.25 getNetworkAdapter
	9.20.26 getParallelPort
	9.20.27 getSerialPort
	9.20.28 getSnapshot
	9.20.29 getStorageControllerByInstance
	9.20.30 getStorageControllerByName
	9.20.31 hotPlugCPU
	9.20.32 hotUnplugCPU
	9.20.33 mountMedium
	9.20.34 passthroughDevice
	9.20.35 queryLogFilename
	9.20.36 querySavedScreenshotPNGSize
	9.20.37 querySavedThumbnailSize
	9.20.38 readLog
	9.20.39 readSavedScreenshotPNGToArray
	9.20.40 readSavedThumbnailToArray
	9.20.41 removeAllCPUIDLeaves
	9.20.42 removeCPUIDLeaf
	9.20.43 removeSharedFolder
	9.20.44 removeStorageController
	9.20.45 saveSettings
	9.20.46 setBootOrder
	9.20.47 setCPUIDLeaf
	9.20.48 setCPUProperty
	9.20.49 setCurrentSnapshot
	9.20.50 setExtraData
	9.20.51 setGuestProperty
	9.20.52 setGuestPropertyValue
	9.20.53 setHWVirtExProperty
	9.20.54 showConsoleWindow

	9.21 IMachineDebugger
	9.21.1 Attributes
	9.21.2 dumpStats
	9.21.3 getStats
	9.21.4 injectNMI
	9.21.5 resetStats

	9.22 IManagedObjectRef
	9.22.1 getInterfaceName
	9.22.2 release

	9.23 IMedium
	9.23.1 Attributes
	9.23.2 cloneTo
	9.23.3 close
	9.23.4 compact
	9.23.5 createBaseStorage
	9.23.6 createDiffStorage
	9.23.7 deleteStorage
	9.23.8 getProperties
	9.23.9 getProperty
	9.23.10 getSnapshotIds
	9.23.11 lockRead
	9.23.12 lockWrite
	9.23.13 mergeTo
	9.23.14 refreshState
	9.23.15 reset
	9.23.16 resize
	9.23.17 setProperties
	9.23.18 setProperty
	9.23.19 unlockRead
	9.23.20 unlockWrite

	9.24 IMediumAttachment
	9.24.1 Attributes

	9.25 IMediumFormat
	9.25.1 Attributes
	9.25.2 describeProperties

	9.26 IMouse
	9.26.1 Attributes
	9.26.2 putMouseEvent
	9.26.3 putMouseEventAbsolute

	9.27 INATEngine
	9.27.1 Attributes
	9.27.2 addRedirect
	9.27.3 getNetworkSettings
	9.27.4 removeRedirect
	9.27.5 setNetworkSettings

	9.28 INetworkAdapter
	9.28.1 Attributes
	9.28.2 attachToBridgedInterface
	9.28.3 attachToHostOnlyInterface
	9.28.4 attachToInternalNetwork
	9.28.5 attachToNAT
	9.28.6 attachToVDE
	9.28.7 detach

	9.29 IParallelPort
	9.29.1 Attributes

	9.30 IPerformanceCollector
	9.30.1 Attributes
	9.30.2 disableMetrics
	9.30.3 enableMetrics
	9.30.4 getMetrics
	9.30.5 queryMetricsData
	9.30.6 setupMetrics

	9.31 IPerformanceMetric
	9.31.1 Attributes

	9.32 IProgress
	9.32.1 Attributes
	9.32.2 cancel
	9.32.3 setCurrentOperationProgress
	9.32.4 setNextOperation
	9.32.5 waitForCompletion
	9.32.6 waitForOperationCompletion

	9.33 IRemoteDisplayInfo
	9.33.1 Attributes

	9.34 ISerialPort
	9.34.1 Attributes

	9.35 ISession
	9.35.1 Attributes
	9.35.2 close

	9.36 ISharedFolder
	9.36.1 Attributes

	9.37 ISnapshot
	9.37.1 Attributes

	9.38 IStorageController
	9.38.1 Attributes
	9.38.2 getIDEEmulationPort
	9.38.3 setIDEEmulationPort

	9.39 ISystemProperties
	9.39.1 Attributes
	9.39.2 getDeviceTypesForStorageBus
	9.39.3 getMaxDevicesPerPortForStorageBus
	9.39.4 getMaxInstancesOfStorageBus
	9.39.5 getMaxPortCountForStorageBus
	9.39.6 getMinPortCountForStorageBus

	9.40 IUSBController
	9.40.1 Attributes
	9.40.2 createDeviceFilter
	9.40.3 insertDeviceFilter
	9.40.4 removeDeviceFilter

	9.41 IUSBDevice
	9.41.1 Attributes

	9.42 IUSBDeviceFilter
	9.42.1 Attributes

	9.43 IVFSExplorer
	9.43.1 Attributes
	9.43.2 cd
	9.43.3 cdUp
	9.43.4 entryList
	9.43.5 exists
	9.43.6 remove
	9.43.7 update

	9.44 IVRDPServer
	9.44.1 Attributes

	9.45 IVirtualBox
	9.45.1 Attributes
	9.45.2 checkFirmwarePresent
	9.45.3 createAppliance
	9.45.4 createDHCPServer
	9.45.5 createHardDisk
	9.45.6 createLegacyMachine
	9.45.7 createMachine
	9.45.8 createSharedFolder
	9.45.9 findDHCPServerByNetworkName
	9.45.10 findDVDImage
	9.45.11 findFloppyImage
	9.45.12 findHardDisk
	9.45.13 findMachine
	9.45.14 getDVDImage
	9.45.15 getExtraData
	9.45.16 getExtraDataKeys
	9.45.17 getFloppyImage
	9.45.18 getGuestOSType
	9.45.19 getHardDisk
	9.45.20 getMachine
	9.45.21 openDVDImage
	9.45.22 openExistingSession
	9.45.23 openFloppyImage
	9.45.24 openHardDisk
	9.45.25 openMachine
	9.45.26 openRemoteSession
	9.45.27 openSession
	9.45.28 registerCallback
	9.45.29 registerMachine
	9.45.30 removeDHCPServer
	9.45.31 removeSharedFolder
	9.45.32 setExtraData
	9.45.33 unregisterCallback
	9.45.34 unregisterMachine
	9.45.35 waitForPropertyChange

	9.46 IVirtualBoxCallback
	9.46.1 onExtraDataCanChange
	9.46.2 onExtraDataChange
	9.46.3 onGuestPropertyChange
	9.46.4 onMachineDataChange
	9.46.5 onMachineRegistered
	9.46.6 onMachineStateChange
	9.46.7 onMediumRegistered
	9.46.8 onSessionStateChange
	9.46.9 onSnapshotChange
	9.46.10 onSnapshotDeleted
	9.46.11 onSnapshotTaken

	9.47 IVirtualBoxErrorInfo
	9.47.1 Attributes

	9.48 IVirtualSystemDescription
	9.48.1 Attributes
	9.48.2 addDescription
	9.48.3 getDescription
	9.48.4 getDescriptionByType
	9.48.5 getValuesByType
	9.48.6 setFinalValues

	9.49 IWebsessionManager
	9.49.1 getSessionObject
	9.49.2 logoff
	9.49.3 logon

	10 Enumerations (enums)
	10.1 AccessMode
	10.2 AudioControllerType
	10.3 AudioDriverType
	10.4 BIOSBootMenuMode
	10.5 CPUPropertyType
	10.6 ClipboardMode
	10.7 DataFlags
	10.8 DataType
	10.9 DeviceActivity
	10.10 DeviceType
	10.11 FirmwareType
	10.12 FramebufferPixelFormat
	10.13 HWVirtExPropertyType
	10.14 HostNetworkInterfaceMediumType
	10.15 HostNetworkInterfaceStatus
	10.16 HostNetworkInterfaceType
	10.17 KeyboardHidType
	10.18 MachineState
	10.19 MediumFormatCapabilities
	10.20 MediumState
	10.21 MediumType
	10.22 MediumVariant
	10.23 MouseButtonState
	10.24 NATAliasMode
	10.25 NATProtocol
	10.26 NetworkAdapterType
	10.27 NetworkAttachmentType
	10.28 PointingHidType
	10.29 PortMode
	10.30 ProcessorFeature
	10.31 Scope
	10.32 SessionState
	10.33 SessionType
	10.34 SettingsVersion
	10.35 StorageBus
	10.36 StorageControllerType
	10.37 USBDeviceFilterAction
	10.38 USBDeviceState
	10.39 VFSFileType
	10.40 VFSType
	10.41 VRDPAuthType
	10.42 VirtualSystemDescriptionType
	10.43 VirtualSystemDescriptionValueType

	11 Host-Guest Communication Manager
	11.1 Virtual Hardware Implementation
	11.2 Protocol Specification
	11.2.1 Request Header
	11.2.2 Connect
	11.2.3 Disconnect
	11.2.4 Call32 and Call64
	11.2.5 Cancel

	11.3 Guest Software Interface
	11.3.1 The Guest Driver Interface
	11.3.2 Guest Application Interface

	11.4 HGCM Service Implementation

	12 RDP Web Control
	12.1 RDPWeb features
	12.2 RDPWeb reference
	12.2.1 RDPWeb functions
	12.2.2 Embedding RDPWeb in a HTML page

