NG

Oracle VM
VirtualBox®

Programming Guide and
Reference

Version 4.1.14
(©) 2004-2012 Oracle Corporation

http://www.virtualbox.org

Contents

1 Introduction

1.1
1.2
1.3
1.4

Modularity: the building blocks of VirtualBox
Two guises of the same “Main API”: the web service or COM/XPCOM
About web servicesin general e
Running the web service
1.4.1 Command line options of vboxwebsrv
1.4.2 Authenticating at web servicelogon

2 Environment-specific notes
2.1 Using the object-oriented web service (OOWS)
2.1.1 The object-oriented web service for JAXWS.
2.1.2 The object-oriented web service for Python
2.1.3 The object-oriented web service for PHP
2.2 Using the raw web service with any language
2.2.1 Raw web service example for Java with Axis
2.2.2 Raw web service example for Perl
2.2.3 Programming considerations for the raw web service
2.3 Using COM/XPCOMdirectly
2.3.1 Python COMAPI e ettt e
2.3.2 Common Python bindings layer
2.3.3 CH+COMAPI e
2.3.4 Event queue ProCesSing v v v v v v v v vt e e e e e
2.3.5 Visual Basic and Visual Basic Script (VBS) on Windows hosts
2.3.6 Cbindingto XPCOMAPIttt i i
3 Basic VirtualBox concepts; some examples
3.1 Obtaining basic machine information. Reading attributes
3.2 Changing machine settings. Sessions
3.3 Launching virtual machines
3.4 VirtualBoX eVENtS it e e e e e e e e e e e e e e e e e
4 The VirtualBox shell
5 Classes (interfaces)
5.1 IAdditionsFacility e e e
5.1.1 Attributes e
5.2 IAdditionsStateChangedEvent (IEvent)
5.3 IAppliance e e e e e e e e
5.3.1 Attributes
5.3.2 createVFSEXpIOTer v i i e e e e e e
5.3.3 getWarnings e e e e e
5.3.4 importMachines e
5.3.5 dnterpret e e e e e e e e e e e e e e
5.3.6 read e
5.3.7 WIIte e e e e e e e e e e
5.4 TAudioAdapter e

16
16
17
18
19
19
20

22
22
22
24
25
25
25
26
27
31
31
31
32
33
34
34

39
39
39
40
40

42

5.5

5.6

5.7

5.8

5.9

5.10

5.11
5.12

5.13

5.14

Contents

5.4.1 Attributes e 48
IBIOSSEttings v v v vt e e e e e e e e e e e e e e e e 48
5.5.1 Attributes 49
IBandwidthControl e 50
5.6.1 Attributes 50
5.6.2 createBandwidthGroup, 50
5.6.3 deleteBandwidthGroup 50
5.6.4 getAllBandwidthGroups. Lo 50
5.6.5 getBandwidthGroup e 50
BandwidthGroup e e e 50
5.7.1 Attributes e e 51
IBandwidthGroupChangedEvent (IEvent) 51
5.8.1 Attributes e 51
ICPUChangedEvent (IEvent) i v v ittt it e et e 51
5.9.1 Attributes e 51
ICPUExecutionCapChangedEvent (IEvent) 52
5.10.1 Attributes e e 52
ICanShowWindowEvent (IVetoEvent) v v v v v v i i e e e e 52
IConsole e e 52
5.12.1 Attributes e 52
5.12.2 adoptSavedState. e e e 55
5.12.3 attachUSBDevice i i ittt e e i et 55
5.12.4 createSharedFolder 55
5.12.5 deleteSnapshot 56
5.12.6 deleteSnapshotAndAllChildren 57
5.12.7 deleteSnapshotRange 57
5.12.8 detachUSBDEVICE v v i ittt e e e e e e e e e e 58
5.12.9 discardSavedState e e e e e 58
5.12.10 findUSBDeviceByAddress i e 58
5.12.11 findUSBDeviceById i it 59
5.12.12 getDeviceACtiVILY v v it e e e e e e e e e 59
5.12.13 getGuestEnteredACPIMode 59
5.12.14 getPowerButtonHandled 59
5.12.15 PaUSe . . o ¢ o i e e e e e e e e e e e e e e e 59
5.12.16 powerButton L. Lo e e e 60
5.12.17 powerDown e e e e e e e e e e e e 60
51218 powerUp o o o i e e e e e e e e e e e e 60
5.12.19 powerUpPaused v vttt e e e e 61
5.12.20 removeSharedFolder 61
5.12.21 TeSEt . . . v i e e e e e e e e e e e e e e e e e 61
5.12.22 restoreSnapshot 61
5.12.23 TESUME . .« . v v v v i e et e e e e e e e e e e e e e e e 62
5.12.24 saveState e e e e e e e e e e e e e e 62
5.12.25 sleepBUtton e e e e e e e 62
5.12.26 takeSnapshot 63
5.12.27 teleport o e e e e e e e e 63
IDHCPSeIrver i it ittt i e e e e e e e 64
5.13.1 Attributes e 64
5.13.2 setConfiguration e 64
5.13.3 Starto i e e e e e e e e e e e e e e e 65
SA3.4 SOD . . v v e e e e 65
IDisplay e e e e e e e e e e e 65
5.14.1 completeVHWACommand 65

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

Contents

5.14.2 drawToSCreen v v i i i i e e e e e e e 66
5.14.3 getFramebuffer oo 66
5.14.4 getScreenResolution. o e 67
5.14.5 invalidateAndUpdate i 67
5.14.6 resizeCompleted 67
5.14.7 setFramebuffer 67
5.14.8 setSeamlessMode e 68
5.14.9 setVideoModeHint. i 68
5.14.10 takeScreenShot 68
5.14.11 takeScreenShotPNGTOAITAY v v v v v v v v i e et e e e e e e e 69
5.14.12 takeScreenShotToArray o v v v v i i it 69
IEvent o e e e e e e e e e e 70
5.15.1 Attributes e e e e e e e e 71
5.15.2 setProcessed e e e e e 71
5.15.3 waitProcessed e e 71
IEventListener i i e e e e e e e e e e e e e e e 71
5.16.1 handleEvent e e e 71
IEventSource e e e e e e e e e e e e e 72
5.17.1 createAggregatort i e e 72
5.17.2 createlistener i i i e e e e e e 72
5.17.3 eventProcessed it e e e e 72
5.17.4 fireEVent i i e e e e e e e e e 72
5.17.5 getEvent 73
5.17.6 registerListener e 73
5.17.7 unregisterLiStener i i e e e e e e e e e e 73
[EventSourceChangedEvent (IEvent) 74
5.18.1 Attributes e e e e e e 74
IExtPack (IExtPackBase) o i v i it e et 74
5.19.1 queryObject e e 74
IExtPackBase i i e e e e e e e e 74
5.20.1 Attributes e e e e e e e e e 75
5.20.2 queryLiCenset e e e e e e e e e e e e 76
IExtPackFile (IExtPackBase) v v v v i i it et e e e e e e 76
5.21.1 Attributes e e e e e e e e 76
521.2 install. e e e 77
[EXtPackManager v v v v v e et e e e e e e e e e e e e e e e 77
5.22.1 Attributes e e e e e e e e e 77
5.22.2 cleanup e e e e 77
5223 find e e e 77
5.22.4 isExtPackUsable 78
5.22.5 openExtPackFile 78
5.22.6 queryAllPlugInsForFrontend 78
5.22.7 wuninstall e e 78
IExtPackPlugln e e 78
5.23.1 Attributes e e e e e e e e e 79
[ExtraDataCanChangeEvent (IVetoEvent) 79
5.24.1 Attributes e e e e e e e e e 79
[ExtraDataChangedEvent (IEvent) v v v v v v i i i e e e . 80
5.25.1 Attributes e e e e e e 80
IFramebuffer. e e 80
5.26.1 Attributes e e e e e e e e 80
5.26.2 getVisibleRegion 82
5.26.3 lock e e e 82

5.27

5.28

5.29

5.30

5.31

5.32

5.33

5.34

5.35

Contents

5.26.4 notifyUpdate e 82
5.26.5 processVHWACommand 83
5.26.6 requestResize 83
5.26.7 setVisibleRegion 84
5.26.8 wunlock e 85
5.26.9 videoModeSupported 85
[FramebufferOverlay (IFramebuffer) 85
5.27.1 Attributes e 86
527.2 MOVE e e e e e e e e e e e 86
IGuest e e 86
5.28.1 Attributes e 87
5.28.2 copyFromGuest e 87
5.28.3 copyToGuest 88
5.28.4 directoryClose e e e e e 88
5.28.5 directoryCreate i i it e e e e e e e e e 89
5.28.6 directoryOpen o i it e e e e e e e 89
5.28.7 directoryRead e 89
5.28.8 executeProcess. 90
5289 fileEXiSts e e e 90
5.28.10 fileQuerySize e e e e 91
5.28.11 getAdditionsStatust e 91
5.28.12 getFacilityStatus e 91
5.28.13 getProcessOutput o ..o e e e 92
5.28.14 getProcessStatus oL 92
5.28.15 internalGetStatisticso oo 92
5.28.16 setCredentials e 93
5.28.17 setProcessInput L L Lo 94
5.28.18 updateGuestAdditions o 94
IGuestDirEntry e e 94
5.29.1 Attributes e 94
IGuestKeyboardEvent (IEvent) i i it i i et 95
5.30.1 Attributes e 95
IGuestMonitorChangedEvent (IEvent) 95
5.31.1 Attributes e e 95
IGuestMouseEvent (IReusableEvent) o v v v v v v v v .. 96
5.32.1 Attributes 96
IGuestOSTYPE v o v i et e e e e e e e e e e e e 97
5.33.1 Attributes e 97
IGuestPropertyChangedEvent (IMachineEvent) 99
5.34.1 Attributes e 99
THOSt . . . o o o e e e e e 100
5.35.1 Attributes 100
5.35.2 createHostOnlyNetworkInterface 102
5.35.3 createUSBDeviceFilter 102
5.35.4 findHoStDVDDIIVe v v v it e e e e e e e 102
5.35.5 findHostFloppyDrive e 102
5.35.6 findHostNetworkInterfaceByld 102
5.35.7 findHostNetworkInterfaceByName 103
5.35.8 findHostNetworkInterfacesOfType 103
5.35.9 findUSBDeviceByAddress 103
5.35.10 findUSBDeviceByld 103
5.35.11 generateMACAddress o v v i i i it e e 103
5.35.12 getProcessorCPUIDLeaf, 104

5.36

5.37

5.38

5.39

5.40

541

Contents

5.35.13 getProcessorDescriptiono 104
5.35.14 getProcessorFeature Lo oo 104
5.35.15 getProcessorSpeed e e e 105
5.35.16 insertUSBDeviceFilter 105
5.35.17 removeHostOnlyNetworkInterface 105
5.35.18 removeUSBDeviceFilter 106
[HostNetworkInterface o ittt t it 106
5.36.1 Attributes e 106
5.36.2 dhcpRediscover e e e e 107
5.36.3 enableDynamicIlpConfig., 107
5.36.4 enableStaticIpConfig 108
5.36.5 enableStaticIpConfigVo 108
[HostPciDevicePlugEvent (IMachineEvent) 108
5.37.1 Attributes 108
IHostUSBDevice (IUSBDevice) o v v i it e e e e e e e e e 109
5.38.1 Attributes e e 109
IHostUSBDeviceFilter (IUSBDeviceFilter) 109
5.39.1 Attributes e e 109
IInternalMachineControl 109
5.40.1 adoptSavedState. i i i e e 110
5.40.2 autoCaptureUSBDevices 110
5.40.3 beginPowerUp o i e e 110
5.40.4 beginPoweringDown 110
5.40.5 beginSavingState o e 110
5.40.6 beginTakingSnapshot 111
5.40.7 captureUSBDevice i i i e 111
5.40.8 deleteSnapshot e 111
5.40.9 detachAllUSBDevViCeS v i i i it e e e e et e e 112
5.40.10 detachUSBDevice i i i ittt e et et e 112
5.40.11 ejectMedium e e e 112
5.40.12 endPowerUp o o e e e e e e 113
5.40.13 endPoweringDOWn il e e e 113
5.40.14 endSavingState e 113
5.40.15 endTakingSnapshot, 113
5.40.16 finishOnlineMergeMedium 114
5.40.17 getIPCId e e e e 114
5.40.18 lockMedia e 114
5.40.19 onSessionEnd e e e 114
5.40.20 pullGuestPropertieso 114
5.40.21 pushGuUestPIoperty v v v i i i i i i 115
5.40.22 reportGuestStatisticso e e e e 115
5.40.23 restoreSnapshot L. 116
5.40.24 runUSBDeviceFilters i 116
5.40.25 setRemoveSavedStateFile, 116
5.40.26 unlockMedia e 117
5.40.27 updateState e e 117
IInternalSessionControl 117
5.41.1 accessGuestProperty. Lo o e 117
5.41.2 assignMachine 118
5.41.3 assignRemoteMachine, 118
5.41.4 enableVMMStatistics e 118
5.41.5 enumerateGuestProperties e 118
5.41.6 getPID e 119

5.42

5.43

5.44

Contents

5.41.7 getRemoteConsole e e 119
5.41.8 onBandwidthGroupChange 119
541.9 onCPUChanget 119
5.41.10 onCPUExecutionCapChange 120
5.41.11 onMediumChange e 120
5.41.12 onNetworkAdapterChange 120
5.41.13 onParallelPortChange 120
5.41.14 onSerialPortChange L. 121
5.41.15 onSharedFolderChange 121
5.41.16 onShowWindow o oo 121
5.41.17 onStorageControllerChange 121
5.41.18 onStorageDeviceChange 122
5.41.19 onUSBControllerChange 122
5.41.20 onUSBDeviceAttach 122
5.41.21 onUSBDeviceDetach 123
5.41.22 onVRDEServerChange, 123
5.41.23 onlineMergeMedium e 123
5.41.24 uninitializeo 124
5.41.25 updateMachineState o o Lo 124
IKeyboard e e e e e 124
5.42.1 Attributes e e e e 124
5.42.2 putCAD L e e e e 124
5.42.3 putScancodeo e e e 125
5.42.4 putScancodeso e e e e e 125
IKeyboardLedsChangedEvent (IEvent)o.... 125
5.43.1 Attributes 125
IMachine e e e e e e 126
5.44.1 Attributes e 126
5.44.2 addStorageController L. 135
5.44.3 attachDevice e 136
5.44.4 attachHostPciDevice 137
5.44.5 canShowConsoleWindow 137
544.6 cloneTo e e e 138
5.44.7 createSharedFolder 138
5448 delete. 138
5.44.9 detachDevice. 139
5.44.10 detachHostPciDevice 140
5.44.11 discardSettings i i e e e e e e e e 140
5.44.12 enumerateGuestProperties oo 141
54413 XPOTt . . . o i e e e 141
5.44.14 findSnapshot 141
5.44.15 getBootOrder i e e e e 142
5.44.16 getCPUIDLeaf ittt 142
5.44.17 getCPUPIOPErty o v v v i i ittt i e et e e e 142
5.44.18 getCPUStatus o v v vt i e e e 143
5.44.19 getExtraData L e 143
5.44.20 getExtraDataKeys e 143
5.44.21 getGuestPropertyo e 143
5.44.22 getGuestPropertyTimestamp oot 144
5.44.23 getGuestPropertyValue 144
5.44.24 getHWVirtExProperty v i 144
5.44.25 getMedium e e 144
5.44.26 getMediumAttachment, 145

5.45

5.46

Contents

5.44.27 getMediumAttachmentsOfController 145
5.44.28 getNetworkAdapter e 145
5.44.29 getParallelPort e 145
5.44.30 getSerialPort e e 146
5.44.31 getStorageControllerBylnstance 146
5.44.32 getStorageControllerByName 146
5.44.33 hotPlugCPU i e e e 146
5.44.34 hotUnplugCPU ittt 146
5.44.35 launchVMProcess it e 147
5.44.36 lockMachine o e 148
5.44.37 mountMedium e e e e e e e 149
5.44.38 nonRotationalDevice 150
5.44.39 passthroughDevice 150
5.44.40 queryLogFilename 151
5.44.41 querySavedGuestSize i e e e e e e 151
5.44.42 querySavedScreenshotPNGSize 151
5.44.43 querySavedThumbnailSize 152
5.44.44 readlog e e e 152
5.44.45 readSavedScreenshotPNGToArray 152
5.44.46 readSavedThumbnailPNGToArray oo .. 152
5.44.47 readSavedThumbnailToArrayo v v v oo .. 153
5.44.48 removeAllCPUIDLEAVES+ v v v v v v e e e e e e e e e e e 153
5.44.49 removeCPUIDLeaf e 153
5.44.50 removeSharedFolder, 153
5.44.51 removeStorageController 153
5.44.52 saveSettings e e e e e e e e e e e 154
5.44.53 setBandwidthGroupForDevice 154
5.44.54 setBootOrder. e e 155
5.44.55 setCPUIDLeaf it 155
5.44.56 setCPUPIoperty i i i i i it it 155
5.44.57 setExtraData L L e 156
5.44.58 setGuestProperty e 156
5.44.59 setGuestPropertyValue, 157
5.44.60 setHWVirtExProperty v v .. 157
5.44.61 setStorageControllerBootable 157
5.44.62 showConsoleWindow 158
5.44.63 temporaryEjectDevice oL oo e 158
5.44.64 unregister L. e e e e e e e 159
IMachineDataChangedEvent (IMachineEvent) 160
5.45.1 Attributes e e 160
IMachineDebugger e 160
5.46.1 Attributes e 160
5.46.2 detectOS e e e e 162
5.46.3 dumpGuestCore it e e e e 162
5.46.4 dumpGuestStack L. e 163
5.46.5 dumpHostProcessCore i 163
5.46.6 dumpStats e e e e e e 163
5.46.7 getRegister L. e e 163
5.46.8 getRegisters e 163
5.46.9 getStats e e e e e e 164
546.100nfo e e 164
5.46.11 injectNMI L e 164
5.46.12 modifyLogDestinations e 164

5.47

5.48

5.49

5.50

5.51

5.52

5.53

5.54

5.55

5.56

Contents

5.46.13 modifyLogFlags 164
5.46.14 modifyLogGroups« « v it e e e e 165
5.46.15 readPhysicalMemory e 165
5.46.16 readVirtualMemory o v v i it e e e e 165
5.46.17 resetStats oL e e e e e e e e e e e 165
5.46.18 setRegister e e 165
5.46.19 setRegisters e e e 166
5.46.20 writePhysicalMemoryo o oo e 166
5.46.21 writeVirtualMemory e e e e e e e e e 166
IMachineEvent (IEvent) i v i i i i e e e e e e e e 167
5.47.1 Attributes e e e e e e 167
IMachineRegisteredEvent (IMachineEvent) 167
5.48.1 Attributes e e e e e e e e 167
IMachineStateChangedEvent (IMachineEvent) 167
5.49.1 Attributes e e e e e 167
IManagedObjectRef e 168
5.50.1 getlnterfaceName e 168
5.50.2 release e e e e e 168
IMedium e e e e e e e e e e 168
5.51.1 Attributes e e e e e e e e 170
5.51.2 cloneTo o v v i e e e e e e e e 175
5.51.3 close e e e e e 175
5.51.4 compact i e e e e 176
5.51.5 createBaseStorage o e 176
5.51.6 createDiffStorage 177
5.51.7 deleteStorage 177
5.51.8 getProperties. L e 178
5.51.9 getProperty 178
5.51.10 getSnapshotlds e 178
5.51.11 lockRead e e 179
5.51.12 lockWrite o e e e e e e 179
55113 mergeTo oL e 180
5.51.14 refreshState e 181
55115 1reset e e e e e e e e e e e e e e e e e 181
551.16 1esize e e e e e e e e e e e e e 182
5.51.17 setIDS o o e e e e e e e e e e e 182
5.51.18 setProperties e e e e 182
5.51.19 setProperty e e 183
5.51.20 unlockRead e 183
5.51.21 unlockWrite e e 183
IMediumAttachment e 184
5.52.1 Attributes e e e e e 186
IMediumChangedEvent (IEvent) v v v v vttt it 187
5.53.1 Attributes e e e e 187
IMediumFormat v i it e e e e e e e e e e e e e e 187
5.54.1 Attributes e e e e e e e 188
5.54.2 describeFileExtensions 188
5.54.3 describeProperties 188
IMediumRegisteredEvent (IEvent) v v v v v v v i i 189
5.55.1 Attributes e e e e 189
IMOUSE . . . o o o e e e e e e e e e e e e e e e e 189
5.56.1 Attributes e e e e e e 190
5.56.2 putMouseEvent e e 190

5.57

5.58

5.59

5.60

5.61

5.62

5.63

5.64

5.65

5.66

5.67

5.68

5.69

5.70

5.71

5.72

Contents

5.56.3 putMouseEventAbsolute, 191
IMouseCapabilityChangedEvent (IEvent) 192
5.57.1 Attributes e e e e e e e e e e e 192
IMousePointerShapeChangedEvent (IEvent) 192
5.58.1 Attributes e e e e e 192
INATENGINE o o et e e e e e e e e e e e 193
5.59.1 Attributes e e e e e e e 193
5.59.2 addRedirect e e 195
5.59.3 getNetworkSettings v i i i it e 195
5.59.4 removeRedirect 196
5.59.5 setNetworkSettings 196
INATRedirectEvent (IMachineEvent) v v v v ... 196
5.60.1 Attributes e e e e e e e e e 196
INetworkAdapter i i i e e e e e 197
5.61.1 Attributes e e e e e e e e 197
5.61.2 getProperties. L e 199
5.61.3 getProperty i e e e e e e e 200
5.61.4 setProperty e e e 200
INetworkAdapterChangedEvent (IEvent) 200
5.62.1 Attributes e e e e e e e e 201
IParallelPort e e e e 201
5.63.1 Attributes e e e e e e e 201
[ParallelPortChangedEvent (IEvent) v v i v v v v .. 202
5.64.1 Attributes e e e e e e e e e e e 202
IPciAddress o i i e e e e e e e e e 202
5.65.1 Attributes e e e e e e e e e e e e 202
5.65.2 asLong e e 202
5.65.3 fromLONg. v v it e e e e e e e e e e 203
IPciDeviceAttachment o i i i i e e e e e 203
5.66.1 Attributes e e e e e e e e 203
IPerformanceCollector i i e e e e 203
5.67.1 Attributes e e e e e e e 205
5.67.2 disableMetrics e e e e e e e 205
5.67.3 enableMetrics e e e e e e e e e e 205
5.67.4 getMetrics e 206
5.67.5 queryMetricsData L 206
5.67.6 setupMetriCs e e e e e e e e e e 207
IPerformanceMetriC v v v e e e e e e e e e e e e e 207
5.68.1 Attributes e e e e e e e e 207
IProgress o i e e e e e e e e e e 208
5.69.1 Attributes e e e e e e e e 209
5.60.2 cancel e e 211
5.69.3 setCurrentOperationProgress 211
5.69.4 setNextOperation v v v v, 211
5.69.5 waitForAsyncProgressCompletion 211
5.69.6 waitForCompletion 212
5.69.7 waitForOperationCompletion 212
IReusableEvent (IEVENt) v v v v i e e e e e e e e e e 212
5.70.1 Attributes e e e e e e e 212
5.70.2 TEUSE e e e e e e e e e e e e e e e e e 212
IRuntimeErrorEvent (IEvent) o v v v v v e e s e e e e e e e 213
5.71.1 Attributes e e e e e e e e e e 213
ISerialPort e e e e e e e e 214

10

5.73

5.74

5.75
5.76
5.77
5.78
5.79
5.80
5.81

5.82

5.83
5.84

5.85

5.86
5.87

5.88

5.89

5.90
591

5.92

5.93

Contents

5.72.1 Attributes e e e e e e e 214
ISerialPortChangedEvent (IEvent) v v v v v i v v v v e .. 215
5.73.1 Attributes e e e e e e e e e 215
ISession e e e e e e e e e e e e e 215
5.74.1 Attributes e e e e 216
5.74.2 unlockMachine e 216
ISessionStateChangedEvent (IMachineEvent) 217
5.75.1 Attributes e e e e e e e e e e 217
ISharedFolder e e e e 217
5.76.1 Attributes e e e e e e e e 218
ISharedFolderChangedEvent (IEvent) v v v v v v v v .. 219
5.77.1 Attributes e e e e e e e e 219
IShowWindowEvent (IEvent) ¢ o v v v v v i i e e e e et e 219
5.78.1 Attributes e e e e e e e e e e 219
ISnapshot e e e 220
5.79.1 Attributes e e e e e e 220
5.79.2 getChildrenCount 222
ISnapshotChangedEvent (ISnapshotEvent) 222
ISnapshotDeletedEvent (ISnapshotEvent) 222
ISnapshotEvent (IMachineEvent) 222
5.82.1 Attributes e e e e 222
ISnapshotTakenEvent (ISnapshotEvent) 223
IStateChangedEvent (IEvent) o i v v v v v i ittt 223
5.84.1 Attributes e e e e e e e e e e 223
IStorageController e e e 223
5.85.1 Attributes e e e e e e e e 223
5.85.2 getIDEEmulationPort 225
5.85.3 setIDEEmulationPort 225
IStorageControllerChangedEvent (IEvent) 225
IStorageDeviceChangedEvent (IEvent) 225
5.87.1 Attributes e e e e e e e e 226
ISystemProperties e e e 226
5.88.1 Attributes e e e e e 226
5.88.2 getDefaultloCacheSettingForStorageController 230
5.88.3 getDeviceTypesForStorageBus 230
5.88.4 getMaxDevicesPerPortForStorageBus 230
5.88.5 getMaxInstancesOfStorageBus 230
5.88.6 getMaxNetworkAdapters 230
5.88.7 getMaxNetworkAdaptersOfType 231
5.88.8 getMaxPortCountForStorageBus 231
5.88.9 getMinPortCountForStorageBus 231
IUSBController e e e e 231
5.89.1 Attributes e e e e e 231
5.89.2 createDeviceFilter 232
5.89.3 insertDeviceFilter e e 232
5.89.4 removeDeviceFilter 233
IUSBControllerChangedEvent (IEvent) 233
TUSBDEVICE it e e e e e e e e e e e e e e e e e e 233
5.91.1 Attributes e e e e e e e 233
IUSBDeviceFilter o e e e e e e e e 235
5.92.1 Attributes e e e e e e e e e e 235
IUSBDeviceStateChangedEvent (IEvent) 237
5.93.1 Attributes e e e e e e e e e e 237

11

Contents

5.94 IVBoxSVCAvailabilityChangedEvent (IEvent) 238
5941 Attributes e e e e e e e e e e 238
5.95 IVESEXplorer it e 238
5.95.1 Attributes e e e e e e e e e 238
5952 cd. ... e e e e e e 238
5.953 CAUDP .« o vt vt 238
5.95.4 entryList e e 239
5.95.5 eXiStS e e e e e e e e e e e e e e e 239
5.95.6 TEMOVEt v v i i e 239
5.95.7 update e e 239
5.96 IVRDESEIVEI v v i i e i e e e e e e e e e e e e e e e e e e 239
5.96.1 Attributes e e e e e e e e e 239
5.96.2 getVRDEProperty 240
5.96.3 setVRDEProperty ot iii it 240
5.97 IVRDEServerChangedEvent (IEvent) 241
5.98 IVRDEServerInfo @ . i i i i it e e e 241
5.98.1 Attributes e e e e e e e 241
5.99 IVRDEServerInfoChangedEvent (IEvent) 243
5.100 IVetoEvent (IEvent) i i i i e e e e e e e e e e e e e e 243
5.100.1 addVeto e e e e e e 243
5.100.2 getVetos oo e e e e e e e e 243
5.100.3 isVetoed e e e e 243
5.101 IVirtualBoX o o o e e e e e e e e e e e e e 243
5.101.1 Attributes e e e e e e e e e e e e e 244
5.101.2 checkFirmwarePresent i v v v v i i e 246
5.101.3 composeMachineFilename 247
5.101.4 createAppliance e 247
5.101.5 createDHCPServer i i i i e e e i e e e e e e e e 247
5.101.6 createHardDisk 247
5.101.7 createMachine e 248
5.101.8 createSharedFolder 249
5.101.9 findDHCPServerByNetworkName 250
5.101.10findMachine e e e e 250
5.101.11findMedium e e e e e 250
5.101.12getExtraDatao e e e e e e e e e 251
5.101.13getExtraDataKeys e 251
5.101.14getGuestOSType o o i e e e 251
5.101.150penMachine i i i e e e e 251
5.101.160penMeditm vt e e e e e e e e e 252
5.101.17registerMachine e 253
5.101.18removeDHCPServer v i it e e e e e e e e e 253
5.101.19removeSharedFolder, 253
5.101.20setExtraData i e e e e e e e e e e e e e e e e 254
5.102 IVirtualBoxClient e e e e e 254
5.102.1 Attributes e e e e e e e e e e e e 254
5.103 IVirtualBoxErrorInfo 255
5.103.1 Attributes e e e e e e e e e e e 255
5.104 IVirtualSystemDescriptiono e 256
5.104.1 Attributes e e e e e e e e e e 256
5.104.2 addDescription e 257
5.104.3 getDescription o e 257
5.104.4 getDescriptionByType o i e 259
5.104.5 getValuesByType o i i e 259

12

Contents

5.104.6 setFinalValues e 260
5.105 IWebsessionManager v v v v v i i e e e e e e e e 260

5.105.1 getSessionObject e 260

5.105.2 logoff e 260

5.105.3 10800 e e e e 261
Enumerations (enums) 262
6.1 AccessMode e e e e e 262
6.2 AdditionsFacilityClass e 262
6.3 AdditionsFacilityStatus e e e e 262
6.4 AdditionsFacilityType 263
6.5 AdditionsRunLevelType e 263
6.6 AdditionsUpdateFlag i e 263
6.7 AudioControllerType v v i ittt e e e e e e 263
6.8 AudioDriverType o i i e e e e e e e e e 264
6.9 AuthType. e e 264
6.10 BIOSBootMenuMode i i e e e e e 264
6.11 BandwidthGroupType o v v i i e e e e e e e e e e e 264
6.12 CPUPropertyType o o i e e e e e e e e 265
6.13 ChipsetType o o o i e e e e e e e e e e e e 265
6.14 CleanupMode e e e 265
6.15 ClipboardMode e e e e 265
6.16 CloneMode e e e e 266
6.17 CloneOptionS v v v v e e e e e e e e e e e e e e e e e 266
6.18 CopyFileFlag o o e 266
6.19 DataFlags o i i e e e e 266
6.20 DataType o i e e e e e e e e e e e e 266
6.21 DevVICeACHIVILY o o i e e e e 267
6.22 DeviceType o i e e e e e e e e e 267
6.23 DirectoryCreateFlag e 267
6.24 DirectoryOpenFlag e e 267
6.25 ExecuteProcessFlag 267
6.26 ExecuteProcessStatus i it e e e e e e e 268
6.27 FaultToleranceState i i i it e e e e e 268
6.28 FirmwareType o e e e e e e e e e e e 268
6.29 FramebufferPixelFormat ittt 269
6.30 GuestDIrEntryType o i i e e e e e e e 269
6.31 GuestMonitorChangedEventType 269
6.32 HWVIrtExPropertyType o o o i 269
6.33 HostNetworkInterfaceMediumType vt i i i v v e e .. 270
6.34 HostNetworkInterfaceStatus o v v v v vt i e e e e e 270
6.35 HostNetworkInterfaceType oo i i i it 270
6.36 ImportOpLionS o v v e e e e e 270
6.37 KeyboardHidType e 270
6.38 LOCKTYPE o o i e e e e e e e e e e e e e 271
6.39 MachineState e e e 271
6.40 MediumFormatCapabilities L 274
6.41 MediumState e e e e e e e e 274
6.42 MediumType o e e 275
6.43 MediumVariant e e e e e e e e 275
6.44 MouseButtonState Lo e e 276
6.45 NATAliasMode o it e e e e e e e e 276
6.46 NATProtocol o o i i e e e e 276
6.47 NetworkAdapterPromiscModePolicy 276

13

6.48
6.49
6.50
6.51
6.52
6.53
6.54
6.55
6.56
6.57
6.58
6.59
6.60
6.61
6.62
6.63
6.64
6.65
6.66
6.67

Contents

NetworkAdapterType i i i i e e e e e e
NetworkAttachmentType o o v i i i e e e et
PointingHidType o i i e e e e e
PortMode @ e
ProcessInputFlag e e e
ProcessOutputFlag e
ProcessorFeature e
SCOPE . . . e e e
SessionStateo e e
SessionType L e e e e e e e e e
SettingsVersiont i e e e e e e e e e
StorageBus. e e e e
StorageControllerType o i i i e e e e e e
USBDeviceFilterAction i i i i it e e e e e e e
USBDeviceState v v v ittt e e e
VBoxEventIype e e e e
VESFIleTypE o i e e e e e e e e e e e e e e e e e
VESTYPE . . . o o o e e e e e e
VirtualSystemDescriptionType e
VirtualSystemDescriptionValueType

7 Host-Guest Communication Manager

7.1
7.2

7.3

7.4

Virtual hardware implementation
Protocol specification i e e e e .
7.2.1 Requestheader
7.2.2 CONNECL v vttt e e e e
7.2.3 DISCONNECt i e e e e e e e
724 Call32and Call64
725 Cancel
Guest software interface e
7.3.1 Theguestdriverinterface.
7.3.2 Guest application interface
HGCM Service Implementation,

8 RDP Web Control

8.1
8.2

8.3

RDPWeb features v v i i i et e e e e e e e e e
RDPWeb reference o i i i i e e e e e
8.2.1 RDPWebfunctions. e
8.2.2 Embedding RDPWeb inan HTMLpage
RDPWeb changelog e
8.3.1 Version 1.2.28 e e e
8.3.2 Version 1.1.26 e e e e
8.3.3 Version 1.0.24 e e e

9 VirtualBox external authentication modules

10 Using Java API

10.1
10.2
10.3

Introduction e e e e e
Requirements L e e e
Example e e e

11 License information

14

Contents

12 Main API change log 299
12.1 Incompatible API changes with version4.1 299
12.2 Incompatible API changes with version4.0 300
12.3 Incompatible API changes with version 3.2 302
12.4 Incompatible API changes with version3.1 303
12.5 Incompatible API changes with version3.0 304
12.6 Incompatible API changes with version2.2 305
12.7 Incompatible API changes with version2.1 306

15

1 Introduction

VirtualBox comes with comprehensive support for third-party developers. This Software Devel-
opment Kit (SDK) contains all the documentation and interface files that are needed to write
code that interacts with VirtualBox.

1.1 Modularity: the building blocks of VirtualBox

VirtualBox is cleanly separated into several layers, which can be visualized like in the picture
below:

VirtualBox GUI VBoxManage

VirtualBox Main API

VirtualBox
RDP
Server Virtual
Devices

binary
Portability compatible

Laver VirtualBox hypervisor Hhani

cross platform 39 part
abstraction layer Windows, Linux, OS X, Solaris, FreeBSD plug—iny

Resource
Monitor
Windows

Kernel mode

The orange area represents code that runs in kernel mode, the blue area represents userspace
code.

At the bottom of the stack resides the hypervisor — the core of the virtualization engine, con-
trolling execution of the virtual machines and making sure they do not conflict with each other
or whatever the host computer is doing otherwise.

On top of the hypervisor, additional internal modules provide extra functionality. For example,
the RDP server, which can deliver the graphical output of a VM remotely to an RDP client, is a
separate module that is only loosely tacked into the virtual graphics device. Live Migration and
Resource Monitor are additional modules currently in the process of being added to VirtualBox.

What is primarily of interest for purposes of the SDK is the API layer block that sits on top of
all the previously mentioned blocks. This API, which we call the “Main API”, exposes the entire
feature set of the virtualization engine below. It is completely documented in this SDK Reference
— see chapter 5, Classes (interfaces), page 44 and chapter 6, Enumerations (enums), page 262
- and available to anyone who wishes to control VirtualBox programmatically. We chose the
name “Main API” to differentiate it from other programming interfaces of VirtualBox that may
be publicly accessible.

With the Main API, you can create, configure, start, stop and delete virtual machines, retrieve
performance statistics about running VMs, configure the VirtualBox installation in general, and

16

1 Introduction

more. In fact, internally, the front-end programs VirtualBox and VBoxManage use nothing but
this API as well — there are no hidden backdoors into the virtualization engine for our own front-
ends. This ensures the entire Main API is both well-documented and well-tested. (The same
applies to VBoxHeadless, which is not shown in the image.)

1.2 Two guises of the same “Main API”: the web service or
COM/XPCOM

There are several ways in which the Main API can be called by other code:

1. VirtualBox comes with a web service that maps nearly the entire Main API. The web ser-
vice ships in a stand-alone executable (vboxwebsrv) that, when running, acts as an HTTP
server, accepts SOAP connections and processes them.

Since the entire web service API is publicly described in a web service description file (in
WSDL format), you can write client programs that call the web service in any language with
a toolkit that understands WSDL. These days, that includes most programming languages
that are available: Java, C++, .NET, PHP, Python, Perl and probably many more.

All of this is explained in detail in subsequent chapters of this book.

There are two ways in which you can write client code that uses the web service:

a) For Java as well as Python, the SDK contains easy-to-use classes that allow you to use
the web service in an object-oriented, straightforward manner. We shall refer to this
as the “object-oriented web service (OOWS)“.

The OO bindings for Java are described in chapter 10, Using Java API, page 296, those
for Python in chapter 2.1.2, The object-oriented web service for Python, page 24.

b) Alternatively, you can use the web service directly, without the object-oriented client
layer. We shall refer to this as the “raw web service”.

You will then have neither native object orientation nor full type safety, since web
services are neither object-oriented nor stateful. However, in this way, you can write
client code even in languages for which we do not ship object-oriented client code; all
you need is a programming language with a toolkit that can parse WSDL and generate
client wrapper code from it.

We describe this further in chapter 2.2, Using the raw web service with any language,
page 25, with samples for Java and Perl.

2. Internally, for portability and easier maintenance, the Main API is implemented using the
Component Object Model (COM), an interprocess mechanism for software components
originally introduced by Microsoft for Microsoft Windows. On a Windows host, VirtualBox
will use Microsoft COM; on other hosts where COM is not present, it ships with XPCOM,
a free software implementation of COM originally created by the Mozilla project for their
browsers.

So, if you are familiar with COM and the C++ programming language (or with any other
programming language that can handle COM/XPCOM objects, such as Java, Visual Basic or
C#), then you can use the COM/XPCOM API directly. VirtualBox comes with all necessary
files and documentation to build fully functional COM applications. For an introduction,
please see chapter 2.3, Using COM/XPCOM directly, page 31 below.

The VirtualBox front-ends (the graphical user interfaces as well as the command line),
which are all written in C++, use COM/XPCOM to call the Main API. Technically, the web
service is another front-end to this COM API, mapping almost all of it to SOAP clients.

If you wonder which way to choose, here are a few comparisons:

17

1 Introduction

Web service COM/XPCOM

Pro: Easy to use with Java and Python with the Con: Usable from languages where

object-oriented web service; extensive support COM bridge available (most languages

even with other languages (C+ +, .NET, PHP, on Windows platform, Python and C+ +

Perl and others) on other hosts)

Pro: Client can be on remote machine Con: Client must be on the same host
where virtual machine is executed

Con: Significant overhead due to XML Pro: Relatively low invocation overhead

marshalling over the wire for each method call

In the following chapters, we will describe the different ways in which to program VirtualBox,
starting with the method that is easiest to use and then increase complexity as we go along.

1.3 About web services in general

Web services are a particular type of programming interface. Whereas, with “normal” program-
ming, a program calls an application programming interface (API) defined by another program
or the operating system and both sides of the interface have to agree on the calling convention
and, in most cases, use the same programming language, web services use Internet standards
such as HTTP and XML to communicate.!

In order to successfully use a web service, a number of things are required — primarily, a web
service accepting connections; service descriptions; and then a client that connects to that web
service. The connections are governed by the SOAP standard, which describes how messages
are to be exchanged between a service and its clients; the service descriptions are governed by
WSDL.

In the case of VirtualBox, this translates into the following three components:

1. The VirtualBox web service (the “server”): this is the vboxwebsrv executable shipped with
VirtualBox. Once you start this executable (which acts as a HTTP server on a specific
TCP/IP port), clients can connect to the web service and thus control a VirtualBox installa-
tion.

2. VirtualBox also comes with WSDL files that describe the services provided by the web ser-
vice. You can find these files in the sdk/bindings/webservice/ directory. These files are
understood by the web service toolkits that are shipped with most programming languages
and enable you to easily access a web service even if you don’t use our object-oriented
client layers. VirtualBox is shipped with pregenerated web service glue code for several
languages (Python, Perl, Java).

3. A client that connects to the web service in order to control the VirtualBox installation.

Unless you play with some of the samples shipped with VirtualBox, this needs to be written
by you.

'In some ways, web services promise to deliver the same thing as CORBA and DCOM did years ago. However, while
these previous technologies relied on specific binary protocols and thus proved to be difficult to use between diverging
platforms, web services circumvent these incompatibilities by using text-only standards like HTTP and XML. On the
downside (and, one could say, typical of things related to XML), a lot of standards are involved before a web service
can be implemented. Many of the standards invented around XML are used one way or another. As a result, web
services are slow and verbose, and the details can be incredibly messy. The relevant standards here are called SOAP
and WSDL, where SOAP describes the format of the messages that are exchanged (an XML document wrapped in
an HTTP header), and WSDL is an XML format that describes a complete API provided by a web service. WSDL in
turn uses XML Schema to describe types, which is not exactly terse either. However, as you will see from the samples
provided in this chapter, the VirtualBox web service shields you from these details and is easy to use.

18

1.4

1 Introduction

Running the web service

The web service ships in an stand-alone executable, vboxwebsrv, that, when running, acts as
a HTTP server, accepts SOAP connections and processes them — remotely or from the same
machine.

Note: The web service executable is not contained with the VirtualBox SDK, but instead
ships with the standard VirtualBox binary package for your specific platform. Since the
SDK contains only platform-independent text files and documentation, the binaries are
instead shipped with the platform-specific packages. For this reason the information
how to run it as a service is included in the VirtualBox documentation.

The vboxwebsrv program, which implements the web service, is a text-mode (console) pro-
gram which, after being started, simply runs until it is interrupted with Ctrl-C or a kill command.

Once the web service is started, it acts as a front-end to the VirtualBox installation of the user
account that it is running under. In other words, if the web service is run under the user account
of userl, it will see and manipulate the virtual machines and other data represented by the
VirtualBox data of that user (e.g., on a Linux machine, under /home/userl/.VirtualBox; see
the VirtualBox User Manual for details on where this data is stored).

1.4.1 Command line options of vboxwebsrv

The web service supports the following command line options:

--help (or -h): print a brief summary of command line options.

- -background (or -b): run the web service as a background daemon. This option is not
supported on Windows hosts.

--host (or -H): This specifies the host to bind to and defaults to “localhost”.
--port (or -p): This specifies which port to bind to on the host and defaults to 18083.
--ssl (or -s): This enables SSL support.

--keyfile (or -K): This specifies the file name containing the server private key and the
certificate. This is a mandatory parameter if SSL is enabled.

--passwordfile (or -a): This specifies the file name containing the password for the
server private key. If unspecified or an empty string is specified this is interpreted as an
empty password (i.e. the private key is not protected by a password). If the file name
- is specified then then the password is read from the standard input stream, otherwise
from the specified file. The user is responsible for appropriate access rights to protect the
confidential password.

--cacert (or -c): This specifies the file name containing the CA certificate appropriate for
the server certificate.

- -capath (or -C): This specifies the directory containing several CA certificates appropriate
for the server certificate.

--dhfile (or -D): This specifies the file name containing the DH key. Alternatively it can
contain the number of bits of the DH key to generate. If left empty, RSA is used.

--randfile (or - r): This specifies the file name containing the seed for the random num-
ber generator. If left empty, an operating system specific source of the seed.

19

1 Introduction

e --timeout (or -t): This specifies the session timeout, in seconds, and defaults to 300 (five
minutes). A web service client that has logged on but makes no calls to the web service
will automatically be disconnected after the number of seconds specified here, as if it had
called the IWebSessionManager: : logoff () method provided by the web service itself.

It is normally vital that each web service client call this method, as the web service can
accumulate large amounts of memory when running, especially if a web service client does
not properly release managed object references. As a result, this timeout value should not
be set too high, especially on machines with a high load on the web service, or the web
service may eventually deny service.

e --check-interval (or -i): This specifies the interval in which the web service checks
for timed-out clients, in seconds, and defaults to 5. This normally does not need to be
changed.

e --threads (or -T): This specifies the maximum number or worker threads, and defaults
to 100. This normally does not need to be changed.

e --keepalive (or -k): This specifies the maximum number of requests which can be sent
in one web service connection, and defaults to 100. This normally does not need to be
changed.

e --authentication (or -A): This specifies the desired web service authentication method.
If the parameter is not specified or the empty string is specified it does not change the
authentication method, otherwise it is set to the specified value. Using this parameter is a
good measure against accidental misconfiguration, as the web service ensures periodically
that it isn’t changed.

e --verbose (or -v): Normally, the web service outputs only brief messages to the console
each time a request is served. With this option, the web service prints much more de-
tailed data about every request and the COM methods that those requests are mapped to
internally, which can be useful for debugging client programs.

e --pidfile (or -P): Name of the PID file which is created when the daemon was started.

e --logfile (or -F) <file>: If this is specified, the web service not only prints its output
to the console, but also writes it to the specified file. The file is created if it does not exist;
if it does exist, new output is appended to it. This is useful if you run the web service
unattended and need to debug problems after they have occurred.

e --logrotate (or -R): Number of old log files to keep, defaults to 10. Log rotation is
disabled if set to 0.

e --logsize (or -S): Maximum size of log file in bytes, defaults to 100MB. Log rotation is
triggered if the file grows beyond this limit.

e --loginterval (or -I): Maximum time interval to be put in a log file before rotation is
triggered, in seconds, and defaults to one day.

1.4.2 Authenticating at web service logon

As opposed to the COM/XPCOM variant of the Main API, a client that wants to use the web ser-
vice must first log on by calling the IWebsessionManager: :logon() API (see chapter 5.105.3,
logon, page 261) that is specific to the web service. Logon is necessary for the web service to be
stateful; internally, it maintains a session for each client that connects to it.

The IWebsessionManager::logon() API takes a user name and a password as arguments,
which the web service then passes to a customizable authentication plugin that performs the
actual authentication.

20

1 Introduction

For testing purposes, it is recommended that you first disable authentication with this com-
mand:

VBoxManage setproperty websrvauthlibrary null

Warning: This will cause all logons to succeed, regardless of user name or password.
This should of course not be used in a production environment.

Generally, the mechanism by which clients are authenticated is configurable by way of the
VBoxManage command:

VBoxManage setproperty websrvauthlibrary default|null|<library>

This way you can specify any shared object/dynamic link module that conforms with the
specifications for VirtualBox external authentication modules as laid out in section VRDE au-
thentication of the VirtualBox User Manual; the web service uses the same kind of modules as
the VirtualBox VRDE server. For technical details on VirtualBox external authentication modules
see chapter 9, VirtualBox external authentication modules, page 294

By default, after installation, the web service uses the VBoxAuth module that ships with
VirtualBox. This module uses PAM on Linux hosts to authenticate users. Any valid user-
name/password combination is accepted, it does not have to be the username and password
of the user running the web service daemon. Unless vboxwebsrv runs as root, PAM authenti-
cation can fail, because sometimes the file /etc/shadow, which is used by PAM, is not read-
able. On most Linux distribution PAM uses a suid root helper internally, so make sure you test
this before deploying it. One can override this behavior by setting the environment variable
VBOX_PAM_ALLOW_INACTIVE which will suppress failures when unable to read the shadow pass-
word file. Please use this variable carefully, and only if you fully understand what you’re doing.

21

2 Environment-specific notes

The Main API described in chapter 5, Classes (interfaces), page 44 and chapter 6, Enumerations
(enums), page 262 is mostly identical in all the supported programming environments which
have been briefly mentioned in the introduction of this book. As a result, the Main API's general
concepts described in chapter 3, Basic VirtualBox concepts; some examples, page 39 are the same
whether you use the object-oriented web service (OOWS) for JAX-WS or a raw web service
connection via, say, Perl, or whether you use C++ COM bindings.

Some things are different depending on your environment, however. These differences are
explained in this chapter.

2.1 Using the object-oriented web service (OOWS)

As explained in chapter 1.2, Two guises of the same “Main API”: the web service or COM/XPCOM,
page 17, VirtualBox ships with client-side libraries for Java, Python and PHP that allow you to use
the VirtualBox web service in an intuitive, object-oriented way. These libraries shield you from
the client-side complications of managed object references and other implementation details that
come with the VirtualBox web service. (If you are interested in these complications, have a look
at chapter 2.2, Using the raw web service with any language, page 25).

We recommend that you start your experiments with the VirtualBox web service by using our
object-oriented client libraries for JAX-WS, a web service toolkit for Java, which enables you to
write code to interact with VirtualBox in the simplest manner possible.

As “interfaces”, “attributes” and “methods” are COM concepts, please read the documentation
in chapter 5, Classes (interfaces), page 44 and chapter 6, Enumerations (enums), page 262 with
the following notes in mind.

The OOWS bindings attempt to map the Main API as closely as possible to the Java, Python
and PHP languages. In other words, objects are objects, interfaces become classes, and you can
call methods on objects as you would on local objects.

The main difference remains with attributes: to read an attribute, call a “getXXX” method,
with “XXX” being the attribute name with a capitalized first letter. So when the Main API Ref-
erence says that IMachine has a “name” attribute (see IMachine::name), call getName() on an
IMachine object to obtain a machine’s name. Unless the attribute is marked as read-only in the
documentation, there will also be a corresponding “set” method.

2.1.1 The object-oriented web service for JAX-WS

JAX-WS is a powerful toolkit by Sun Microsystems to build both server and client code with Java.
It is part of Java 6 (JDK 1.6), but can also be obtained separately for Java 5 (JDK 1.5). The
VirtualBox SDK comes with precompiled OOWS bindings working with both Java 5 and 6.

The following sections explain how to get the JAX-WS sample code running and explain a few
common practices when using the JAX-WS object-oriented web service.

2.1.1.1 Preparations

Since JAX-WS is already integrated into Java 6, no additional preparations are needed for Java
6.

If you are using Java 5 (JDK 1.5.x), you will first need to download and install an external
JAX-WS implementation, as Java 5 does not support JAX-WS out of the box; for example, you can

22

2 Environment-specific notes

download one from here: https://jax-ws.dev.java.net/2.1.4/JAXWS2.1.4-20080502.
jar. Then perform the installation (java -jar JAXWS2.1.4-20080502.jar).

2.1.1.2 Getting started: running the sample code
To run the OOWS for JAX-WS samples that we ship with the SDK, perform the following steps:

1. Open a terminal and change to the directory where the JAX-WS samples reside.! Examine
the header of Makefile to see if the supplied variables (Java compiler, Java executable)
and a few other details match your system settings.

2. To start the VirtualBox web service, open a second terminal and change to the directory
where the VirtualBox executables are located. Then type:

./vboxwebsrv -v
The web service now waits for connections and will run until you press Ctrl+C in this

second terminal. The -v argument causes it to log all connections to the terminal. (See
chapter 1.4, Running the web service, page 19 for details on how to run the web service.)

3. Back in the first terminal and still in the samples directory, to start a simple client example
just type:
make runl6é
if you're on a Java 6 system; on a Java 5 system, run make runl5 instead.

This should work on all Unix-like systems such as Linux and Solaris. For Windows systems,
use commands similar to what is used in the Makefile.

This will compile the clienttest. java code on the first call and then execute the resulting
clienttest class to show the locally installed VMs (see below).

The clienttest sample imitates a few typical command line tasks that VBoxManage,
VirtualBox’s regular command-line front-end, would provide (see the VirtualBox User Manual
for details). In particular, you can run:

e java clienttest show vms: show the virtual machines that are registered locally.

e java clienttest list hostinfo: show various information about the host this
VirtualBox installation runs on.

e java clienttest startvm <vmname|uuid>: start the given virtual machine.

The clienttest.java sample code illustrates common basic practices how to use the
VirtualBox OOWS for JAX-WS, which we will explain in more detail in the following chapters.

2.1.1.3 Logging on to the web service

Before a web service client can do anything useful, two objects need to be created, as can be
seen in the clienttest constructor:

1. An instance of IWebsessionManager, which is an interface provided by the web service to
manage “web sessions” — that is, stateful connections to the web service with persistent
objects upon which methods can be invoked.

In the OOWS for JAX-WS, the [WebsessionManager class must be constructed explicitly, and
a URL must be provided in the constructor that specifies where the web service (the server)
awaits connections. The code in clienttest. java connects to “http://localhost:18083/“,
which is the default.

The port number, by default 18083, must match the port number given to the vboxwebsrv
command line; see chapter 1.4.1, Command line options of vboxwebsrv, page 19.

1In sdk/bindings/glue/java/.

23

https://jax-ws.dev.java.net/2.1.4/JAXWS2.1.4-20080502.jar
https://jax-ws.dev.java.net/2.1.4/JAXWS2.1.4-20080502.jar

2 Environment-specific notes

2. After that, the code calls IWebsessionManager::logon(), which is the first call that actually
communicates with the server. This authenticates the client with the web service and
returns an instance of IVirtualBox, the most fundamental interface of the VirtualBox web
service, from which all other functionality can be derived.

If logon doesn’t work, please take another look at chapter 1.4.2, Authenticating at web
service logon, page 20.

2.1.1.4 Object management

The current OOWS for JAX-WS has certain memory management related limitations. When
you no longer need an object, call its IManagedObjectRef::release() method explicitly, which
frees appropriate managed reference, as is required by the raw web service; see chapter 2.2.3.3,
Managed object references, page 29 for details. This limitation may be reconsidered in a future
version of the VirtualBox SDK.

2.1.2 The object-oriented web service for Python

VirtualBox comes with two flavors of a Python API: one for web service, discussed here, and
one for the COM/XPCOM API discussed in chapter 2.3.1, Python COM API, page 31. The client
code is mostly similar, except for the initialization part, so it is up to the application developer
to choose the appropriate technology. Moreover, a common Python glue layer exists, abstracting
out concrete platform access details, see chapter 2.3.2, Common Python bindings layer, page 31.

As indicated in chapter 1.2, Two guises of the same “Main API”: the web service or COM/XPCOM,
page 17, the COM/XPCOM API gives better performance without the SOAP overhead, and does
not require a web server to be running. On the other hand, the COM/XPCOM Python API requires
a suitable Python bridge for your Python installation (VirtualBox ships the most important ones
for each platform?). On Windows, you can use the Main API from Python if the Win32 extensions
package for Python? is installed. Version of Python Win32 extensions earlier than 2.16 are known
to have bugs, leading to issues with VirtualBox Python bindings, and also some early builds of
Python 2.5 for Windows have issues with reporting platform name on some Windows versions,
so please make sure to use latest available Python and Win32 extensions.

The VirtualBox OOWS for Python relies on the Python ZSI SOAP implementation (see http:
//pywebsvcs.sourceforge.net/zsi.html), which you will need to install locally before trying
the examples. Most Linux distributions come with package for ZSI, such as python-zsi in
Ubuntu.

To get started, open a terminal and change to the bindings/glue/python/sample direc-
tory, which contains an example of a simple interactive shell able to control a VirtualBox in-
stance. The shell is written using the API layer, thereby hiding different implementation de-
tails, so it is actually an example of code share among XPCOM, MSCOM and web services.
If you are interested in how to interact with the web services layer directly, have a look at
install/vboxapi/__init__.py which contains the glue layer for all target platforms (i.e. XP-
COM, MSCOM and web services).

To start the shell, perform the following commands:

/opt/VirtualBox/vboxwebsrv -t 0
start web service with object autocollection disabled
export VBOX_PROGRAM_PATH=/opt/VirtualBox
your VirtualBox installation directory
export VBOX_SDK_PATH=/home/youruser/vbox-sdk
where you’ve extracted the SDK
./vboxshell.py -w

20n On Mac OS X only the Python versions bundled with the OS are officially supported. This means Python 2.3 for
10.4, Python 2.5 for 10.5 and Python 2.5 and 2.6 for 10.6.
3See http://sourceforge.net/project/showfiles.php?group_id=78018

24

http://pywebsvcs.sourceforge.net/zsi.html
http://pywebsvcs.sourceforge.net/zsi.html
http://sourceforge.net/project/showfiles.php?group_id=78018

2 Environment-specific notes

See chapter 4, The VirtualBox shell, page 42 for more details on the shell’s functionality. For you,
as a VirtualBox application developer, the vboxshell sample could be interesting as an example of
how to write code targeting both local and remote cases (COM/XPCOM and SOAP). The common
part of the shell is the same — the only difference is how it interacts with the invocation layer.
You can use the connect shell command to connect to remote VirtualBox servers; in this case
you can skip starting the local web server.

2.1.3 The object-oriented web service for PHP

VirtualBox also comes with object-oriented web service (OOWS) wrappers for PHP5. These
wrappers rely on the PHP SOAP Extension*, which can be installed by configuring PHP with
--enable-soap.

2.2 Using the raw web service with any language

The following examples show you how to use the raw web service, without the object-oriented
client-side code that was described in the previous chapter.

Generally, when reading the documentation in chapter 5, Classes (interfaces), page 44 and
chapter 6, Enumerations (enums), page 262, due to the limitations of SOAP and WSDL lined out
in chapter 2.2.3.1, Fundamental conventions, page 27, please have the following notes in mind:

1. Any COM method call becomes a plain function call in the raw web service, with the
object as an additional first parameter (before the “real” parameters listed in the docu-
mentation). So when the documentation says that the IVirtualBox interface supports
the createMachine() method (see IVirtualBox::createMachine()), the web service op-
eration is IVirtualBox_createMachine(...), and a managed object reference to an
IVirtualBox object must be passed as the first argument.

2. For attributes in interfaces, there will be at least one “get” function; there will also be a
“set” function, unless the attribute is “readonly”. The attribute name will be appended to
the “get” or “set” prefix, with a capitalized first letter. So, the “version” readonly attribute of
the IVirtualBox interface can be retrieved by calling IVirtualBox_getVersion(vbox),
with vbox being the VirtualBox object.

3. Whenever the API documentation says that a method (or an attribute getter) returns an
object, it will returned a managed object reference in the web service instead. As said
above, managed object references should be released if the web service client does not log
off again immediately!

2.2.1 Raw web service example for Java with Axis

Axis is an older web service toolkit created by the Apache foundation. If your distribution does
not have it installed, you can get a binary from http://www.apache.org. The following exam-
ples assume that you have Axis 1.4 installed.

The VirtualBox SDK ships with an example for Axis that, again, is called clienttest. java
and that imitates a few of the commands of VBoxManage over the wire.

Then perform the following steps:

1. Create a working directory somewhere. Under your VirtualBox installation directory, find
the sdk/webservice/samples/java/axis/ directory and copy the file clienttest.java
to your working directory.

2. Open a terminal in your working directory. Execute the following command:

4See http://www.php.net/soap.

25

http://www.apache.org
http://www.php.net/soap

2 Environment-specific notes

java org.apache.axis.wsdl.WSDL2Java /path/to/vboxwebService.wsdl

The vboxwebService.wsdl file should be located in the sdk/webservice/ directory.

If this fails, your Apache Axis may not be located on your system classpath, and you may
have to adjust the CLASSPATH environment variable. Something like this:

export CLASSPATH="/path-to-axis-1_4/lib/x*":$CLASSPATH

Use the directory where the Axis JAR files are located. Mind the quotes so that your shell
passes the “*“ character to the java executable without expanding. Alternatively, add a
corresponding - classpath argument to the “java” call above.

If the command executes successfully, you should see an “org” directory with subdirecto-
ries containing Java source files in your working directory. These classes represent the
interfaces that the VirtualBox web service offers, as described by the WSDL file.

This is the bit that makes using web services so attractive to client developers: if a lan-
guage’s toolkit understands WSDL, it can generate large amounts of support code auto-
matically. Clients can then easily use this support code and can be done with just a few
lines of code.

3. Next, compile the clienttest. java source:

javac clienttest.java

This should yield a “clienttest.class” file.

4. To start the VirtualBox web service, open a second terminal and change to the directory
where the VirtualBox executables are located. Then type:

./vboxwebsrv -v

The web service now waits for connections and will run until you press Ctrl+C in this
second terminal. The -v argument causes it to log all connections to the terminal. (See
chapter 1.4, Running the web service, page 19 for details on how to run the web service.)

5. Back in the original terminal where you compiled the Java source, run the resulting binary,
which will then connect to the web service:

java clienttest

The client sample will connect to the web service (on localhost, but the code could be
changed to connect remotely if the web service was running on a different machine) and
make a number of method calls. It will output the version number of your VirtualBox
installation and a list of all virtual machines that are currently registered (with a bit of
seemingly random data, which will be explained later).

2.2.2 Raw web service example for Perl

We also ship a small sample for Perl. It uses the SOAP::Lite perl module to communicate with
the VirtualBox web service.

The sdk/bindings/webservice/perl/lib/ directory contains a pre-generated Perl module
that allows for communicating with the web service from Perl. You can generate such a module
yourself using the “stubmaker” tool that comes with SOAP::Lite, but since that tool is slow as well
as sometimes unreliable, we are shipping a working module with the SDK for your convenience.

Perform the following steps:

1. If SOAP::Lite is not yet installed on your system, you will need to install the package
first. On Debian-based systems, the package is called libsoap-lite-perl; on Gentoo, it’s
dev-perl/SOAP-Lite.

2. Open a terminal in the sdk/bindings/webservice/perl/samples/ directory.

26

2 Environment-specific notes

3. To start the VirtualBox web service, open a second terminal and change to the directory
where the VirtualBox executables are located. Then type:

./vboxwebsrv -v

The web service now waits for connections and will run until you press Ctrl+C in this
second terminal. The -v argument causes it to log all connections to the terminal. (See
chapter 1.4, Running the web service, page 19 for details on how to run the web service.)

4. In the first terminal with the Perl sample, run the clienttest.pl script:
perl -I ../lib clienttest.pl

2.2.3 Programming considerations for the raw web service

If you use the raw web service, you need to keep a number of things in mind, or you will sooner
or later run into issues that are not immediately obvious. By contrast, the object-oriented client-
side libraries described in chapter 2.1, Using the object-oriented web service (OOWS), page 22 take
care of these things automatically and thus greatly simplify using the web service.

2.2.3.1 Fundamental conventions

If you are familiar with other web services, you may find the VirtualBox web service to behave
a bit differently to accommodate for the fact that VirtualBox web service more or less maps the
VirtualBox Main COM API. The following main differences had to be taken care of:

e Web services, as expressed by WSDL, are not object-oriented. Even worse, they are nor-
mally stateless (or, in web services terminology, “loosely coupled”). Web service operations
are entirely procedural, and one cannot normally make assumptions about the state of a
web service between function calls.

In particular, this normally means that you cannot work on objects in one method call that
were created by another call.

e By contrast, the VirtualBox Main API, being expressed in COM, is object-oriented and works
entirely on objects, which are grouped into public interfaces, which in turn have attributes
and methods associated with them.

For the VirtualBox web service, this results in three fundamental conventions:

1. All function names in the VirtualBox web service consist of an interface name and a
method name, joined together by an underscore. This is because there are only functions
(“operations”) in WSDL, but no classes, interfaces, or methods.

In addition, all calls to the VirtualBox web service (except for logon, see below) take a
managed object reference as the first argument, representing the object upon which the
underlying method is invoked. (Managed object references are explained in detail below;
see chapter 2.2.3.3, Managed object references, page 29.)

So, when one would normally code, in the pseudo-code of an object-oriented language, to
invoke a method upon an object:

IMachine machine;
result = machine.getName();

In the VirtualBox web service, this looks something like this (again, pseudo-code):

IMachineRef machine;
result = IMachine_getName(machine);

27

2 Environment-specific notes

2. To make the web service stateful, and objects persistent between method calls, the
VirtualBox web service introduces a session manager (by way of the IWebsessionManager
interface), which manages object references. Any client wishing to interact with the web
service must first log on to the session manager and in turn receives a managed object ref-
erence to an object that supports the IVirtualBox interface (the basic interface in the Main
API).

In other words, as opposed to other web services, the VirtualBox web service is both object-
oriented and stateful.

2.2.3.2 Example: A typical web service client session

A typical short web service session to retrieve the version number of the VirtualBox web service
(to be precise, the underlying Main API version number) looks like this:

1. A client logs on to the web service by calling IWebsessionManager::logon() with a valid
user name and password. See chapter 1.4.2, Authenticating at web service logon, page 20
for details about how authentication works.

2. On the server side, vboxwebsrv creates a session, which persists until the client calls
IWebsessionManager::logoff() or the session times out after a configurable period of in-
activity (see chapter 1.4.1, Command line options of vboxwebsrv, page 19).

For the new session, the web service creates an instance of IVirtualBox. This interface is the
most central one in the Main API and allows access to all other interfaces, either through
attributes or method calls. For example, [VirtualBox contains a list of all virtual machines
that are currently registered (as they would be listed on the left side of the VirtualBox main
program).

The web service then creates a managed object reference for this instance of IVirtualBox
and returns it to the calling client, which receives it as the return value of the logon call.
Something like this:

string oVirtualBox;
oVirtualBox = webservice.IWebsessionManager_logon("user", "pass");

(The managed object reference “oVirtualBox” is just a string consisting of digits and dashes.
However, it is a string with a meaning and will be checked by the web service. For details,
see below. As hinted above, IWebsessionManager::logon() is the only operation provided
by the web service which does not take a managed object reference as the first argument!)

3. The VirtualBox Main API documentation says that the IVirtualBox interface has a version
attribute, which is a string. For each attribute, there is a “get” and a “set” method in
COM, which maps to according operations in the web service. So, to retrieve the “version”
attribute of this IVirtualBox object, the web service client does this:

string version;
version = webservice.IVirtualBox_getVersion(oVirtualBox);

print version;

And it will print “4.1.14”.

4. The web service client calls IWebsessionManager::logoff() with the VirtualBox managed
object reference. This will clean up all allocated resources.

28

2 Environment-specific notes

2.2.3.3 Managed object references

To a web service client, a managed object reference looks like a string: two 64-bit hex numbers
separated by a dash. This string, however, represents a COM object that “lives” in the web service
process. The two 64-bit numbers encoded in the managed object reference represent a session
ID (which is the same for all objects in the same web service session, i.e. for all objects after one
logon) and a unique object ID within that session.

Managed object references are created in two situations:

1. When a client logs on, by calling IWebsessionManager::logon().

Upon logon, the websession manager creates one instance of IVirtualBox and another
object of ISession representing the web service session. This can be retrieved using
IWebsessionManager::getSessionObject().

(Technically, there is always only one IVirtualBox object, which is shared between all ses-
sions and clients, as it is a COM singleton. However, each session receives its own managed
object reference to it. The ISession object, however, is created and destroyed for each ses-
sion.)

2. Whenever a web service clients invokes an operation whose COM implementation creates
COM objects.

For example, IVirtualBox::createMachine() creates a new instance of IMachine; the COM
object returned by the COM method call is then wrapped into a managed object reference
by the web server, and this reference is returned to the web service client.

Internally, in the web service process, each managed object reference is simply a small data
structure, containing a COM pointer to the “real” COM object, the web session ID and the object
ID. This structure is allocated on creation and stored efficiently in hashes, so that the web service
can look up the COM object quickly whenever a web service client wishes to make a method call.
The random session ID also ensures that one web service client cannot intercept the objects of
another.

Managed object references are not destroyed automatically and must be released by explicitly
calling IManagedObjectRef::release(). This is important, as otherwise hundreds or thousands of
managed object references (and corresponding COM objects, which can consume much more
memory!) can pile up in the web service process and eventually cause it to deny service.

To reiterate: The underlying COM object, which the reference points to, is only freed if the
managed object reference is released. It is therefore vital that web service clients properly clean
up after the managed object references that are returned to them.

When a web service client calls IWebsessionManager::logoff(), all managed object references
created during the session are automatically freed. For short-lived sessions that do not create a
lot of objects, logging off may therefore be sufficient, although it is certainly not “best practice”.

2.2.3.4 Some more detail about web service operation

SOAP messages Whenever a client makes a call to a web service, this involves a complicated
procedure internally. These calls are remote procedure calls. Each such procedure call typically
consists of two “message” being passed, where each message is a plain-text HTTP request with a
standard HTTP header and a special XML document following. This XML document encodes the
name of the procedure to call and the argument names and values passed to it.

To give you an idea of what such a message looks like, assuming that a web service provides
a procedure called “SayHello”, which takes a string “name” as an argument and returns “Hello”
with a space and that name appended, the request message could look like this:

<?xml version="1.0" encoding="UTF-8"7>

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

29

2 Environment-specific notes

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:test="http://test/">
<SOAP-ENV:Body>
<test:SayHello>
<name>Peter</name>
</test:SayHello>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A similar message — the “response” message — would be sent back from the web service to the
client, containing the return value “Hello Peter”.

Most programming languages provide automatic support to generate such messages whenever
code in that programming language makes such a request. In other words, these programming
languages allow for writing something like this (in pseudo-C++ code):

webServiceClass service("localhost", 18083); // server and port
string result = service.SayHello("Peter"); // invoke remote procedure

and would, for these two pseudo-lines, automatically perform these steps:
1. prepare a connection to a web service running on port 18083 of “localhost”;

2. for the SayHello() function of the web service, generate a SOAP message like in the above
example by encoding all arguments of the remote procedure call (which could involve all
kinds of type conversions and complex marshalling for arrays and structures);

3. connect to the web service via HTTP and send that message;
4. wait for the web service to send a response message;

5. decode that response message and put the return value of the remote procedure into the
“result” variable.

Service descriptions in WSDL In the above explanations about SOAP, it was left open how
the programming language learns about how to translate function calls in its own syntax into
proper SOAP messages. In other words, the programming language needs to know what opera-
tions the web service supports and what types of arguments are required for the operation’s data
in order to be able to properly serialize and deserialize the data to and from the web service.
For example, if a web service operation expects a number in “double” floating point format for a
particular parameter, the programming language cannot send to it a string instead.

For this, the Web Service Definition Language (WSDL) was invented, another XML substandard
that describes exactly what operations the web service supports and, for each operation, which
parameters and types are needed with each request and response message. WSDL descriptions
can be incredibly verbose, and one of the few good things that can be said about this standard is
that it is indeed supported by most programming languages.

So, if it is said that a programming language “supports” web services, this typically means
that a programming language has support for parsing WSDL files and somehow integrating the
remote procedure calls into the native language syntax — for example, like in the Java sample
shown in chapter 2.2.1, Raw web service example for Java with Axis, page 25.

For details about how programming languages support web services, please refer to the docu-
mentation that comes with the individual languages. Here are a few pointers:

1. For C++, among many others, the gSOAP toolkit is a good option. Parts of gSOAP are also
used in VirtualBox to implement the VirtualBox web service.

2. For Java, there are several implementations already described in this document (see chap-
ter 2.1.1, The object-oriented web service for JAX-WS, page 22 and chapter 2.2.1, Raw web
service example for Java with Axis, page 25).

30

2 Environment-specific notes

3. Perl supports WSDL via the SOAP::Lite package. This in turn comes with a tool called
stubmaker.pl that allows you to turn any WSDL file into a Perl package that you can
import. (You can also import any WSDL file “live” by having it parsed every time the script
runs, but that can take a while.) You can then code (again, assuming the above example):

my $result = servicename->sayHello("Peter");

A sample that uses SOAP::Lite was described in chapter 2.2.2, Raw web service example for
Perl, page 26.

2.3 Using COM/XPCOM directly

If you do not require remote procedure calls such as those offered by the VirtualBox web ser-
vice, and if you know Python or C++ as well as COM, you might find it preferable to program
VirtualBox’s Main API directly via COM.

COM stands for “Component Object Model” and is a standard originally introduced by Mi-
crosoft in the 1990s for Microsoft Windows. It allows for organizing software in an object-
oriented way and across processes; code in one process may access objects that live in another
process.

COM has several advantages: it is language-neutral, meaning that even though all of
VirtualBox is internally written in C+ +, programs written in other languages could communicate
with it. COM also cleanly separates interface from implementation, so that external programs
need not know anything about the messy and complicated details of VirtualBox internals.

On a Windows host, all parts of VirtualBox will use the COM functionality that is native to
Windows. On other hosts (including Linux), VirtualBox comes with a built-in implementation
of XPCOM, as originally created by the Mozilla project, which we have enhanced to support
interprocess communication on a level comparable to Microsoft COM. Internally, VirtualBox has
an abstraction layer that allows the same VirtualBox code to work both with native COM as well
as our XPCOM implementation.

2.3.1 Python COM API

On Windows, Python scripts can use COM and VirtualBox interfaces to control almost all aspects
of virtual machine execution. As an example, use the following commands to instantiate the
VirtualBox object and start a VM:

vbox = win32com.client.Dispatch("VirtualBox.VirtualBox")
session = win32com.client.Dispatch("VirtualBox.Session")
mach = vbox.findMachine("uuid or name of machine to start")
progress = mach.launchVMProcess(session, "gui", "")
progress.waitForCompletion(-1)

Also, see /bindings/glue/python/samples/vboxshell.py for more advanced usage scenari-
ous. However, unless you have specific requirements, we strongly recommend to use the generic
glue layer described in the next section to access MS COM objects.

2.3.2 Common Python bindings layer

As different wrappers ultimately provide access to the same underlying API, and to simplify
porting and development of Python application using the VirtualBox Main API, we developed
a common glue layer that abstracts out most platform-specific details from the application and
allows the developer to focus on application logic. The VirtualBox installer automatically sets up
this glue layer for the system default Python install. See below for details on how to set up the
glue layer if you want to use a different Python installation.

31

2 Environment-specific notes

In this layer, the class VirtualBoxManager hides most platform-specific details. It can be used
to access both the local (COM) and the web service based API. The following code can be used
by an application to use the glue layer.

This code assumes vboxapi.py from VirtualBox distribution
being in PYTHONPATH, or installed system-wide
from vboxapi import VirtualBoxManager

This code initializes VirtualBox manager with default style
and parameters
virtualBoxManager = VirtualBoxManager(None, None)

Alternatively, one can be more verbose, and initialize

glue with web service backend, and provide authentication

information

virtualBoxManager = VirtualBoxManager("WEBSERVICE",
{'url’:'http://myhost.com::18083/",
"user’:’'me’,
"password’:’'secret’})

We supply the VirtualBoxManager constructor with 2 arguments: style and parameters. Style
defines which bindings style to use (could be “MSCOM”, “XPCOM” or “WEBSERVICE”), and if set
to None defaults to usable platform bindings (MS COM on Windows, XPCOM on other platforms).
The second argument defines parameters, passed to the platform-specific module, as we do in
the second example, where we pass username and password to be used to authenticate against
the web service.

After obtaining the VirtualBoxManager instance, one can perform operations on the IVirtu-
alBox class. For example, the following code will a start virtual machine by name or ID:

from vboxapi import VirtualBoxManager

mgr = VirtualBoxManager(None, None)

vbox = mgr.vbox

name = "Linux"

mach = vbox.findMachine(name)

session = mgr.mgr.getSessionObject(vbox)

progress = mach.launchVMProcess(session, "gui", "")
progress.waitForCompletion(-1)
mgr.closeMachineSession(session)

Following code will print all registered machines and their log folders

from vboxapi import VirtualBoxManager
mgr = VirtualBoxManager(None, None)
vbox = mgr.vbox

for m in mgr.getArray(vbox, ’'machines’):
print "Machine ’%s’ logs in '%s’" %(m.name, m.logFolder)

Code above demonstartes cross-platform access to array properties (certain limitations prevent
one from using vbox.machines to access a list of available virtual machines in case of XPCOM),
and a mechanism of uniform session creation and closing (mgr.mgr.getSessionObject()).

In case you want to use the glue layer with a different Python installation, use these steps in a
shell to add the necessary files:

cd VBOX_INSTALL_PATH/sdk/installer
PYTHON vboxapisetup.py install

2.3.3 C++ COM API

C++ is the language that VirtualBox itself is written in, so C++ is the most direct way to use
the Main API - but it is not necessarily the easiest, as using COM and XPCOM has its own set of
complications.

32

2 Environment-specific notes

VirtualBox ships with sample programs that demonstrate how to use the Main API to im-
plement a number of tasks on your host platform. These samples can be found in the
/bindings/xpcom/samples directory for Linux, Mac OS X and Solaris and /bindings/mscom/samples
for Windows. The two samples are actually different, because the one for Windows uses native
COM, whereas the other uses our XPCOM implementation, as described above.

Since COM and XPCOM are conceptually very similar but vary in the implementation details,
we have created a “glue” layer that shields COM client code from these differences. All VirtualBox
uses is this glue layer, so the same code written once works on both Windows hosts (with native
COM) as well as on other hosts (with our XPCOM implementation). It is recommended to always
use this glue code instead of using the COM and XPCOM APIs directly, as it is very easy to make
your code completely independent from the platform it is running on.

In order to encapsulate platform differences between Microsoft COM and XPCOM, the follow-
ing items should be kept in mind when using the glue layer:

1. Attribute getters and setters. COM has the notion of “attributes” in interfaces, which
roughly compare to C++ member variables in classes. The difference is that for each
attribute declared in an interface, COM automatically provides a “get” method to return
the attribute’s value. Unless the attribute has been marked as “readonly”, a “set” attribute
is also provided.

To illustrate, the IVirtualBox interface has a “version” attribute, which is read-only and of
the “wstring” type (the standard string type in COM). As a result, you can call the “get”
method for this attribute to retrieve the version number of VirtualBox.

Unfortunately, the implementation differs between COM and XPCOM. Microsoft COM
names the “get” method like this: get_Attribute(), whereas XPCOM uses this syn-
tax: GetAttribute() (and accordingly for “set” methods). To hide these differences, the
VirtualBox glue code provides the COMGETTER (attrib) and COMSETTER(attrib) macros.
So, COMGETTER(version) () (note, two pairs of brackets) expands to get_Version() on
Windows and GetVersion() on other platforms.

2. Unicode conversions. While the rest of the modern world has pretty much settled on
encoding strings in UTF-8, COM, unfortunately, uses UCS-16 encoding. This requires a lot
of conversions, in particular between the VirtualBox Main API and the Qt GUI, which, like
the rest of Qt, likes to use UTF-8.

To facilitate these conversions, VirtualBox provides the com::Bstr and com::Utf8Str
classes, which support all kinds of conversions back and forth.

3. COM autopointers. Possibly the greatest pain of using COM - reference counting — is
alleviated by the ComPtr<> template provided by the ptr.h file in the glue layer.

2.3.4 Event queue processing

Both VirtualBox client programs and frontends should periodically perform processing of the
main event queue, and do that on the application’s main thread. In case of a typical GUI
Windows/Mac OS application this happens automatically in the GUI’s dispatch loop. However,
for CLI only application, the appropriate actions have to be taken. For C++ applications, the
VirtualBox SDK provided glue method

int EventQueue::processEventQueue(uint32_t cMsTimeout)

can be used for both blocking and non-blocking operations. For the Python bindings, a common
layer provides the method

33

2 Environment-specific notes

VirtualBoxManager.waitForEvents(ms)

with similar semantics.

Things get somewhat more complicated for situations where an application using VirtualBox
cannot directly control the main event loop and the main event queue is separated from the event
queue of the programming librarly (for example in case of Qt on Unix platforms). In such a case,
the application developer is advised to use a platform/toolkit specific event injection mechanism
to force event queue checks either based on periodical timer events delivered to the main thread,
or by using custom platform messages to notify the main thread when events are available. See
the VBoxSDL and Qt (VirtualBox) frontends as examples.

2.3.5 Visual Basic and Visual Basic Script (VBS) on Windows hosts

On Windows hosts, one can control some of the VirtualBox Main API functionality from VBS
scripts, and pretty much everything from Visual Basic programs.®

VBS is scripting language available in any recent Windows environment. As an example, the
following VBS code will print VirtualBox version:

set vb = CreateObject("VirtualBox.VirtualBox")
Wscript.Echo "VirtualBox version " & vb.version

See bindings/mscom/vbs/sample/vboxinfo.vbs for the complete sample.
Visual Basic is a popular high level language capable of accessing COM objects. The following
VB code will iterate over all available virtual machines:

Dim vb As VirtualBox.IVirtualBox

vb = CreateObject("VirtualBox.VirtualBox")

machines = ""

For Each m In vb.Machines
m=mé&" " & m.Name

Next

See bindings/mscom/vb/sample/vboxinfo.vb for the complete sample.

2.3.6 C binding to XPCOM API

’ Note: This section currently applies to Linux hosts only.

Starting with version 2.2, VirtualBox offers a C binding for the XPCOM API.
The C binding provides a layer enabling object creation, method invocation and attribute
access from C.

5The difference results from the way VBS treats COM safearrays, which are used to keep lists in the Main API. VBS
expects every array element to be a VARIANT, which is too strict a limitation for any high performance API. We may
lift this restriction for interface APIs in a future version, or alternatively provide conversion APIs.

34

2 Environment-specific notes

2.3.6.1 Getting started

The following sections describe how to use the C binding in a C program.

For Linux, a sample program is provided which demonstrates use of the C binding to initialize
XPCOM, get handles for VirtualBox and Session objects, make calls to list and start virtual ma-
chines, and uninitialize resources when done. The program uses the VBoxGlue library to open
the C binding layer during runtime.

The sample program tstXPCOMCGlue is located in the bin directory and can be run with-
out arguments. It lists registered machines on the host along with some additional in-
formation and ask for a machine to start. The source for this program is available in
sdk/bindings/xpcom/cbinding/samples/ directory. The source for the VBoxGlue library is
available in the sdk/bindings/xpcom/cbinding/ directory.

2.3.6.2 XPCOM initialization

Just like in C++, XPCOM needs to be initialized before it can be used. The VBoxCAPI_v2_5.h
header provides the interface to the C binding. Here’s how to initialize XPCOM:

#include "VBoxCAPI_v2_5.h"

PCVBOXXPCOM g_pVBoxFuncs = NULL;

IVirtualBox *vbox = NULL;

ISession *session = NULL;
/%

* VBoxGetXPCOMCFunctions() is the only function exported by

* VBoxXPCOMC.so and the only one needed to make virtualbox

* work with C. This functions gives you the pointer to the

* function table (g_pVBoxFuncs).

*

* Once you get the function table, then how and which functions

* to use is explained below.

*

* g_pVBoxFuncs->pfnComInitialize does all the necessary startup

* action and provides us with pointers to vbox and session handles.
* It should be matched by a call to g_pVBoxFuncs->pfnComUninitialize()
* when done.

*/

g_pVBoxFuncs = VBoxGetXPCOMCFunctions (VBOX_XPCOMC_VERSION) ;
g_pVBoxFuncs->pfnComInitialize(&vbox, &session);

If either vbox or session is still NULL, initialization failed and the XPCOM API cannot be used.

2.3.6.3 XPCOM method invocation

Method invocation is straightforward. It looks pretty much like the C+ + way, augmented with
an extra indirection due to accessing the vtable and passing a pointer to the object as the first
argument to serve as the this pointer.

Using the C binding, all method invocations return a numeric result code.

If an interface is specified as returning an object, a pointer to a pointer to the appropriate
object must be passed as the last argument. The method will then store an object pointer in that
location.

In other words, to call an object’s method what you need is

IObject *object;

nsresult rc;

/%

* Calling void IObject::method(arg, ...)
*/

35

2 Environment-specific notes

rc = object->vtbl->Method(object, arg, ...);
IFoo *foo;
/%
* Calling IFoo IObject::method(arg, ...)
*/
rc = object->vtbl->Method(object, args, ..., &foo);

As a real-world example of a method invocation, let’s call IMachine::launchVMProcess which
returns an IProgress object. Note again that the method name is capitalized.

IProgress x*progress;

rc = vbox->vtbl->LaunchVMProcess(

machine, /* this x/
session, /* arg 1 x/
sessionType, /* arg 2 */
env, /* arg 3 */
&progress /* Out */

2.3.6.4 XPCOM attribute access

A construct similar to calling non-void methods is used to access object attributes. For each
attribute there exists a getter method, the name of which is composed of Get followed by the
capitalized attribute name. Unless the attribute is read-only, an analogous Set method exists.
Let’s apply these rules to read the IVirtualBox::revision attribute.

Using the IVirtualBox handle vbox obtained above, calling its GetRevision method looks
like this:

PRUint32 rev;

rc = vbox->vtbl->GetRevision(vbox, &rev);
if (NS_SUCCEEDED(rc))
{

printf("Revision: %u\n", (unsigned)rev);

}

All objects with their methods and attributes are documented in chapter 5, Classes (interfaces),
page 44.

2.3.6.5 String handling

When dealing with strings you have to be aware of a string’s encoding and ownership.

Internally, XPCOM uses UTF-16 encoded strings. A set of conversion functions is pro-
vided to convert other encodings to and from UTF-16. The type of a UTF-16 character is
PRUnichar. Strings of UTF-16 characters are arrays of that type. Most string handling func-
tions take pointers to that type. Prototypes for the following conversion functions are declared
in VBoxCAPI_v2_5.h.

Conversion of UTF-16 to and from UTF-8

int (*pfnUtfl6ToUtf8) (const PRUnichar xpwszString, char xxppszString);
int (*pfnUtf8ToUtf1l6) (const char *pszString, PRUnichar **ppwszString);

36

2 Environment-specific notes

Ownership The ownership of a string determines who is responsible for releasing resources
associated with the string. Whenever XPCOM creates a string, ownership is transferred to the
caller. To avoid resource leaks, the caller should release resources once the string is no longer
needed.

2.3.6.6 XPCOM uninitialization

Uninitialization is performed by g_pVBoxFuncs->pfnComUninitialize() . If your program can
exit from more than one place, it is a good idea to install this function as an exit handler with
Standard C’s atexit () just after calling g_pVBoxFuncs->pfnComInitialize() , e.g.

#include <stdlib.h>
#include <stdio.h>

/%

Make sure g_pVBoxFuncs->pfnComUninitialize() is called at exit, no
matter if we return from the initial call to main or call exit()
somewhere else. Note that atexit registered functions are not
called upon abnormal termination, i.e. when calling abort() or
signal(). Separate provisions must be taken for these cases.

* X X ¥ ¥

*/

if (atexit(g_pVBoxFuncs->pfnComUninitialize()) != 0) {
fprintf(stderr, "failed to register g_pVBoxFuncs->pfnComUninitialize()\n");
exit (EXIT_FAILURE);

Another idea would be to write your own void myexit(int status) function, calling
g_pVBoxFuncs->pfnComUninitialize() followed by the real exit(), and use it instead of
exit () throughout your program and at the end of main.

If you expect the program to be terminated by a signal (e.g. user types CTRL-C sending
SIGINT) you might want to install a signal handler setting a flag noting that a signal was sent and
then calling g_pVBoxFuncs->pfnComUninitialize() later on (usually not from the handler
itself .)

That said, if a client program forgets to call g_pVBoxFuncs->pfnComUninitialize() before
it terminates, there is a mechanism in place which will eventually release references held by the
client. You should not rely on this, however.

2.3.6.7 Compiling and linking

A program using the C binding has to open the library during runtime using the help of glue
code provided and as shown in the example tstXPCOMCGlue. c. Compilation and linking can be
achieved, e.g., with a makefile fragment similar to

Where is the XPCOM include directory?

INCS_XPCOM = -I../../include

Where is the glue code directory?
GLUE_DIR = ..

GLUE_INC = -I..

#Compile Glue Library
VBoxXPCOMCGlue.o: $(GLUE_DIR)/VBoxXPCOMCGlue.c
$(CC) $(CFLAGS) $(INCS_XPCOM) $(GLUE_INC) -0 $@ -c $<

Compile.

program.o: program.c VBoxCAPI_v2_5.h
$(CC) $(CFLAGS) $(INCS_XPCOM) $(GLUE_INC) -0 $@ -c $<

37

2 Environment-specific notes

Link.
program: program.o VBoxXPCOMCGlue.o
$(CC) -0 3@ $~ -ldl

38

3 Basic VirtualBox concepts; some
examples

The following explains some basic VirtualBox concepts such as the VirtualBox object, sessions and
how virtual machines are manipulated and launched using the Main API. The coding examples
use a pseudo-code style closely related to the object-oriented web service (OOWS) for JAX-WS.
Depending on which environment you are using, you will need to adjust the examples.

3.1 Obtaining basic machine information. Reading attributes

Any program using the Main API will first need access to the global VirtualBox object (see
IVirtualBox), from which all other functionality of the API is derived. With the OOWS for JAX-
WS, this is returned from the IWebsessionManager::logon() call.

To enumerate virtual machines, one would look at the “machines” array attribute in the
VirtualBox object (see IVirtualBox::machines). This array contains all virtual machines currently
registered with the host, each of them being an instance of IMachine. From each such instance,
one can query additional information, such as the UUID, the name, memory, operating system
and more by looking at the attributes; see the attributes list in IMachine documentation.

As mentioned in the preceding chapters, depending on your programming environment, at-
tributes are mapped to corresponding “get” and (if the attribute is not read-only) “set” methods.
So when the documentation says that IMachine has a “name* attribute, this means you need to
code something like the following to get the machine’s name:

IMachine machine = ...;
String name = machine.getName();

Boolean attribute getters can sometimes be called isAttribute() due to JAX-WS naming con-
ventions.

3.2 Changing machine settings. Sessions

As said in the previous section, to read a machine’s attribute, one invokes the corresponding
“get” method. One would think that to change settings of a machine, it would suffice to call the
corresponding “set” method — for example, to set a VM’s memory to 1024 MB, one would call
setMemorySize(1024). Try that, and you will get an error: “The machine is not mutable.“

So unfortunately, things are not that easy. VirtualBox is a complicated environment in which
multiple processes compete for possibly the same resources, especially machine settings. As a
result, machines must be “locked” before they can either be modified or started. This is to prevent
multiple processes from making conflicting changes to a machine: it should, for example, not be
allowed to change the memory size of a virtual machine while it is running. (You can’t add more
memory to a real computer while it is running either, at least not to an ordinary PC.) Also, two
processes must not change settings at the same time, or start a machine at the same time.

These requirements are implemented in the Main API by way of “sessions”, in particular, the
ISession interface. Each process which talks to VirtualBox needs its own instance of ISession. In
the web service, you cannot create such an object, but vboxwebsrv creates one for you when
you log on, which you can obtain by calling IWebsessionManager::getSessionObject().

39

3 Basic VirtualBox concepts; some examples

This session object must then be used like a mutex semaphore in common programming envi-
ronments. Before you can change machine settings, you must write-lock the machine by calling
IMachine::lockMachine() with your process’s session object.

After the machine has been locked, the ISession::machine attribute contains a copy of the
original IMachine object upon which the session was opened, but this copy is “mutable”: you can
invoke “set” methods on it.

When done making the changes to the machine, you must call IMachine::saveSettings(), which
will copy the changes you have made from your “mutable” machine back to the real machine and
write them out to the machine settings XML file. This will make your changes permanent.

Finally, it is important to always unlock the machine again, by calling ISession::unlockMachine().
Otherwise, when the calling process end, the machine will receive the “aborted” state, which can
lead to loss of data.

So, as an example, the sequence to change a machine’s memory to 1024 MB is something like
this:

IWebsessionManager mgr ...;
IVirtualBox vbox = mgr.logon(user, pass);

IMachine machine ..; // read-only machine
ISession session = mgr.getSessionObject();
machine.lockMachine(session, LockType.Write); // machine is now locked for writing

IMachine mutable = session.getMachine(); // obtain the mutable machine copy
mutable.setMemorySize(1024);
mutable.saveSettings(); // write settings to XML

session.unlockMachine();

3.3 Launching virtual machines

To launch a virtual machine, you call IMachine::launchVMProcess(). In doing so, the caller
instructs the VirtualBox engine to start a new process with the virtual machine in it, since to the
host, each virtual machine looks like a single process, even if it has hundreds of its own processes
inside. (This new VM process in turn obtains a write lock on the machine, as described above,
to prevent conflicting changes from other processes; this is why opening another session will fail
while the VM is running.)

Starting a machine looks something like this:

IWebsessionManager mgr ...;
IVirtualBox vbox = mgr.logon(user, pass);

IMachine machine = ...; // read-only machine
ISession session = mgr.getSessionObject();
IProgress prog = machine.launchVMProcess(session,
"gui", // session type
") // possibly environment setting
prog.waitForCompletion(10000); // give the process 10 secs
if (prog.getResultCode() != 0) // check success
System.out.println("Cannot launch VM!")

The caller’s session object can then be used as a sort of remote control to the VM process that
was launched. It contains a “console” object (see ISession::console) with which the VM can be
paused, stopped, snapshotted or other things.

3.4 VirtualBox events

In VirtualBox, “events” provide a uniform mechanism to register for and consume specific events.
A VirtualBox client can register an “event listener” (represented by the IEventListener interface),

40

3 Basic VirtualBox concepts; some examples

which will then get notified by the server when an event (represented by the IEvent interface)
happens.

The IEvent interface is an abstract parent interface for all events that can occur in VirtualBox.
The actual events that the server sends out are then of one of the specific subclasses, for example
IMachineStateChangedEvent or IMediumChangedEvent.

As an example, the VirtualBox GUI waits for machine events and can thus update its display
when the machine state changes or machine settings are modified, even if this happens in another
client. This is how the GUI can automatically refresh its display even if you manipulate a machine
from another client, for example, from VBoxManage.

To register an event listener to listen to events, use code like this:

EventSource es = console.getEventSource();
IEventListener listener = es.createlListener();
VBoxEventType aTypes[] = (VBoxEventType.OnMachineStateChanged);
// list of event types to listen for
es.registerListener(listener, aTypes, false /* active */);
// register passive listener
IEvent ev = es.getEvent(listener, 1000);
// wait up to one second for event to happen
if (ev !'= null)

{
// downcast to specific event interface (in this case we have only registered
// for one type, otherwise IEvent::type would tell us)
IMachineStateChangedEvent mcse = IMachineStateChangedEvent.queryInterface(ev);
. // inspect and do something
es.eventProcessed(listener, ev);
}

es.unregisterListener(listener);

A graphical user interface would probably best start its own thread to wait for events and then
process these in a loop.

The events mechanism was introduced with VirtualBox 3.3 and replaces various callback in-
terfaces which were called for each event in the interface. The callback mechanism was not
compatible with scripting languages, local Java bindings and remote web services as they do not
support callbacks. The new mechanism with events and event listeners works with all of these.

To simplify developement of application using events, concept of event aggregator was intro-
duced. Essentially it’'s mechanism to aggregate multiple event sources into single one, and then
work with this single aggregated event source instead of original sources. As an example, one
can evaluate demo recorder in VirtualBox Python shell, shipped with SDK - it records mouse and
keyboard events, represented as separate event sources. Code is essentially like this:

listener = console.eventSource.createlListener()
agg = console.eventSource.createAggregator([console.keyboard.eventSource, console.mouse.eventSource])
agg.registerListener(listener, [ctx[’'global’].constants.VBoxEventType_Any], False)
registered = True
end = time.time() + dur
while time.time() < end:
ev = agg.getEvent(listener, 1000)
processEent(ev)
agg.unregisterListener(listener)

Without using aggregators consumer have to poll on both sources, or start multiple threads to
block on those sources.

41

4 The VirtualBox shell

VirtualBox comes with an extensible shell, which allows you to control your virtual machines
from the command line. It is also a nontrivial example of how to use the VirtualBox APIs from
Python, for all three COM/XPCOM/WS styles of the APIL.

You can easily extend this shell with your own commands. Create a subdirectory named
.VirtualBox/shexts below your home directory and put a Python file implementing your shell
extension commands in this directory. This file must contain an array named commands contain-
ing your command definitions:

commands = {

"cmdl’: [’'Command cmdl help’, cmdl],
"cmd2’: [’Command cmd2 help’, cmd2]
}

For example, to create a command for creating hard drive images, the following code can be
used:

def createHdd(ctx,args):
Show some meaningful error message on wrong input
if (len(args) < 3):
print "usage: createHdd sizeM location type"
return 0

Get arguments

size = int(args([1])

loc = args[2]

if len(args) > 3:
format = args[3]

else:
And provide some meaningful defaults
format = "vdi"

Call VirtualBox API, using context’s fields

hdd = ctx[’vb’].createHardDisk(format, loc)

Access constants using ctx[’global’].constants

progress = hdd.createBaseStorage(size, ctx[’global’].constants.HardDiskVariant_Standard)
use standard progress bar mechanism

ctx[’'progressBar’] (progress)

Report errors

if not hdd.id:
print "cannot create disk (file %s exist?)" %(loc)
return 0

Give user some feedback on success too
print "created HDD with id: %s" %(hdd.id)

0 means continue execution, other values mean exit from the interpreter
return 0

commands = {

"myCreateHDD’': [’'Create virtual HDD, createHdd size location type’, createHdd]
}

42

4 The VirtualBox shell

Just store the above text in the file createHdd (or any other meaningful name) in
.VirtualBox/shexts/. Start the VirtualBox shell, or just issue the reloadExts command,
if the shell is already running. Your new command will now be available.

43

5 Classes (interfaces)

5.1 IAdditionsFacility

Note: With the web service, this interface is mapped to a structure. Attributes that
return this interface will not return an object, but a complete structure containing the
attributes listed below as structure members.

Structure representing a Guest Additions facility.

5.1.1 Attributes
5.1.1.1 classType (read-only)

AdditionsFacilityClass IAdditionsFacility::classType

The class this facility is part of.

5.1.1.2 lastUpdated (read-only)

long long IAdditionsFacility::lastUpdated

Time stamp of the last status update, in milliseconds since 1970-01-01 UTC.

5.1.1.3 name (read-only)

wstring IAdditionsFacility::name

The facility’s friendly name.

5.1.1.4 status (read-only)

AdditionsFacilityStatus IAdditionsFacility::status

The current status.

5.1.1.5 type (read-only)
AdditionsFacilityType IAdditionsFacility::type

The facility’s type ID.

5.2 IAdditionsStateChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when a Guest Additions property changes. Interested callees should query IGuest
attributes to find out what has changed.

44

5 Classes (interfaces)

5.3 IAppliance

Represents a platform-independent appliance in OVF format. An instance of this is returned by
IVirtualBox::createAppliance(), which can then be used to import and export virtual machines
within an appliance with VirtualBox.

The OVF standard suggests two different physical file formats:

1.

If the appliance is distributed as a set of files, there must be at least one XML descriptor file
that conforms to the OVF standard and carries an .ovf file extension. If this descriptor file
references other files such as disk images, as OVF appliances typically do, those additional
files must be in the same directory as the descriptor file.

If the appliance is distributed as a single file, it must be in TAR format and have the . ova file
extension. This TAR file must then contain at least the OVF descriptor files and optionally
other files.

At this time, VirtualBox does not not yet support the packed (TAR) variant; support will be
added with a later version.

Importing an OVF appliance into VirtualBox as instances of IMachine involves the following
sequence of API calls:

1.
2.

Call IVirtualBox::createAppliance(). This will create an empty IAppliance object.

On the new object, call read() with the full path of the OVF file you would like to import.
So long as this file is syntactically valid, this will succeed and fill the appliance object with
the parsed data from the OVF file.

Next, call interpret(), which analyzes the OVF data and sets up the contents of the
IAppliance attributes accordingly. These can be inspected by a VirtualBox front-end
such as the GUI, and the suggestions can be displayed to the user. In particular, the
virtualSystemDescriptions[] array contains instances of IVirtualSystemDescription which
represent the virtual systems (machines) in the OVF, which in turn describe the virtual
hardware prescribed by the OVF (network and hardware adapters, virtual disk images,
memory size and so on). The GUI can then give the user the option to confirm and/or
change these suggestions.

If desired, call IVirtualSystemDescription::setFinalValues() for each virtual system (ma-
chine) to override the suggestions made by the interpret() routine.

. Finally, call importMachines() to create virtual machines in VirtualBox as instances of

IMachine that match the information in the virtual system descriptions. After this call
succeeded, the UUIDs of the machines created can be found in the machines[] array at-
tribute.

Exporting VirtualBox machines into an OVF appliance involves the following steps:

1.

As with importing, first call IVirtualBox::createAppliance() to create an empty IAppliance
object.

. For each machine you would like to export, call IMachine::export() with the IAppliance

object you just created. Each such call creates one instance of IVirtualSystemDescription
inside the appliance.

If desired, call IVirtualSystemDescription::setFinalValues() for each virtual system (ma-
chine) to override the suggestions made by the IMachine::export() routine.

Finally, call write() with a path specification to have the OVF file written.

45

5 Classes (interfaces)

5.3.1 Attributes
5.3.1.1 path (read-only)

wstring IAppliance::path

Path to the main file of the OVF appliance, which is either the .ovf or the .ova file passed to
read() (for import) or write() (for export). This attribute is empty until one of these methods
has been called.

5.3.1.2 disks (read-only)

wstring IAppliance::disks[]

Array of virtual disk definitions. One such description exists for each disk definition in the
OVF; each string array item represents one such piece of disk information, with the information
fields separated by tab (\\t) characters.

The caller should be prepared for additional fields being appended to this string in future
versions of VirtualBox and therefore check for the number of tabs in the strings returned.

In the current version, the following eight fields are returned per string in the array:

1. Disk ID (unique string identifier given to disk)
2. Capacity (unsigned integer indicating the maximum capacity of the disk)

3. Populated size (optional unsigned integer indicating the current size of the disk; can be
approximate; -1 if unspecified)

4. Format (string identifying the disk format, typically “http://www.vmware.com/specifications/vmdk.html#spars

5. Reference (where to find the disk image, typically a file name; if empty, then the disk
should be created on import)

6. Image size (optional unsigned integer indicating the size of the image, which need not
necessarily be the same as the values specified above, since the image may be compressed
or sparse; -1 if not specified)

7. Chunk size (optional unsigned integer if the image is split into chunks; presently unsup-
ported and always -1)

8. Compression (optional string equalling “gzip” if the image is gzip-compressed)

5.3.1.3 virtualSystemDescriptions (read-only)

IVirtualSystemDescription IAppliance::virtualSystemDescriptions|[]

Array of virtual system descriptions. One such description is created for each virtual sys-
tem (machine) found in the OVF. This array is empty until either interpret() (for import) or
IMachine::export() (for export) has been called.

5.3.1.4 machines (read-only)

wstring IAppliance::machines|[]

Contains the UUIDs of the machines created from the information in this appliances. This is
only relevant for the import case, and will only contain data after a call to importMachines()
succeeded.

46

5 Classes (interfaces)

5.3.2 createVFSExplorer

IVFSExplorer IAppliance::createVFSExplorer(
[in] wstring aUri)

aUri The URI describing the file system to use.

Returns a IVFSExplorer object for the given URI.

5.3.3 getWarnings

wstring[] IAppliance::getWarnings()

Returns textual warnings which occurred during execution of interpret().

5.3.4 importMachines

IProgress IAppliance::importMachines(
[in] ImportOptions options[])

options Options for the importing operation.

Imports the appliance into VirtualBox by creating instances of IMachine and other interfaces
that match the information contained in the appliance as closely as possible, as represented by
the import instructions in the virtualSystemDescriptions[] array.

Calling this method is the final step of importing an appliance into VirtualBox; see IAppliance
for an overview.

Since importing the appliance will most probably involve copying and converting disk images,
which can take a long time, this method operates asynchronously and returns an IProgress object
to allow the caller to monitor the progress.

After the import succeeded, the UUIDs of the IMachine instances created can be retrieved from
the machines[] array attribute.

5.3.5 interpret

void IAppliance::interpret()

Interprets the OVF data that was read when the appliance was constructed. After calling this
method, one can inspect the virtualSystemDescriptions[] array attribute, which will then contain
one IVirtualSystemDescription for each virtual machine found in the appliance.

Calling this method is the second step of importing an appliance into VirtualBox; see
IAppliance for an overview.

After calling this method, one should call getWarnings() to find out if problems were encoun-
tered during the processing which might later lead to errors.

5.3.6 read

IProgress IAppliance::read(
[in] wstring file)

file Name of appliance file to open (either with an .ovf or .ova extension, depending on
whether the appliance is distributed as a set of files or as a single file, respectively).

Reads an OVF file into the appliance object.

This method succeeds if the OVF is syntactically valid and, by itself, without errors. The mere
fact that this method returns successfully does not mean that VirtualBox supports all features
requested by the appliance; this can only be examined after a call to interpret().

47

5 Classes (interfaces)

5.3.7 write

IProgress IAppliance::write(
[in] wstring format,
[in] boolean manifest,
[in] wstring path)

format Output format, as a string. Currently supported formats are “ovf-0.9” and “ovf-1.0”;
future versions of VirtualBox may support additional formats.

manifest Indicate if the optional manifest file (.mf) should be written. The manifest file is used
for integrity checks prior import.

path Name of appliance file to open (either with an .ovf or .ova extension, depending on
whether the appliance is distributed as a set of files or as a single file, respectively).

Writes the contents of the appliance exports into a new OVF file.

Calling this method is the final step of exporting an appliance from VirtualBox; see IAppliance
for an overview.

Since exporting the appliance will most probably involve copying and converting disk images,
which can take a long time, this method operates asynchronously and returns an IProgress object
to allow the caller to monitor the progress.

5.4 |AudioAdapter

The IAudioAdapter interface represents the virtual audio adapter of the virtual machine. Used
in IMachine::audioAdapter.

5.4.1 Attributes
5.4.1.1 enabled (read/write)

boolean IAudioAdapter::enabled

Flag whether the audio adapter is present in the guest system. If disabled, the virtual guest
hardware will not contain any audio adapter. Can only be changed when the VM is not running.

5.4.1.2 audioController (read/write)

AudioControllerType IAudioAdapter::audioController
The audio hardware we emulate.

5.4.1.3 audioDriver (read/write)

AudioDriverType IAudioAdapter::audioDriver

Audio driver the adapter is connected to. This setting can only be changed when the VM is not
running.

5.5 IBIOSSettings

The IBIOSSettings interface represents BIOS settings of the virtual machine. This is used only in
the IMachine::BIOSSettings attribute.

48

5 Classes (interfaces)

5.5.1 Attributes
5.5.1.1 logoFadeln (read/write)

boolean IBIOSSettings::logoFadeln

Fade in flag for BIOS logo animation.

5.5.1.2 logoFadeOut (read/write)
boolean IBIOSSettings::logoFadeOut

Fade out flag for BIOS logo animation.

5.5.1.3 logoDisplayTime (read/write)
unsigned long IBIOSSettings::logoDisplayTime

BIOS logo display time in milliseconds (0 = default).

5.5.1.4 logolmagePath (read/write)

wstring IBIOSSettings::logoImagePath
Local file system path for external BIOS splash image. Empty string means the default image
is shown on boot.

5.5.1.5 bootMenuMode (read/write)

BIOSBootMenuMode IBIOSSettings::bootMenuMode

Mode of the BIOS boot device menu.

5.5.1.6 ACPIEnabled (read/write)
boolean IBIOSSettings::ACPIEnabled

ACPI support flag.

5.5.1.7 IOAPICEnabled (read/write)

boolean IBIOSSettings::IO0APICEnabled

IO APIC support flag. If set, VirtualBox will provide an IO APIC and support IRQs above 15.

5.5.1.8 timeOffset (read/write)
long long IBIOSSettings::timeOffset

Offset in milliseconds from the host system time. This allows for guests running with a dif-
ferent system date/time than the host. It is equivalent to setting the system date/time in the
BIOS except it is not an absolute value but a relative one. Guest Additions time synchronization
honors this offset.
5.5.1.9 PXEDebugEnabled (read/write)

boolean IBIOSSettings::PXEDebugEnabled

PXE debug logging flag. If set, VirtualBox will write extensive PXE trace information to the
release log.

49

5 Classes (interfaces)

5.6 IBandwidthControl

Controls the bandwidth groups of one machine used to cap I/0 done by a VM. This includes
network and disk I/0.

5.6.1 Attributes
5.6.1.1 numGroups (read-only)

unsigned long IBandwidthControl::numGroups

The current number of existing bandwidth groups managed.

5.6.2 createBandwidthGroup

void IBandwidthControl::createBandwidthGroup(
[in] wstring name,
[in] BandwidthGroupType type,
[in] unsigned long maxMbPerSec)

name Name of the bandwidth group.
type The type of the bandwidth group (network or disk).

maxMbPerSec The maximum number of MBytes which can be transfered by all entities at-
tached to this group during one second.

Creates a new bandwidth group.

5.6.3 deleteBandwidthGroup

void IBandwidthControl::deleteBandwidthGroup(
[in] wstring name)

name Name of the bandwidth group to delete.

Deletes a new bandwidth group.

5.6.4 getAliIBandwidthGroups

IBandwidthGroup[] IBandwidthControl::getAllBandwidthGroups()

Get all managed bandwidth groups.

5.6.5 getBandwidthGroup

IBandwidthGroup IBandwidthControl::getBandwidthGroup(
[in] wstring name)

name Name of the bandwidth group to get.

Get a bandwidth group by name.

5.7 IBandwidthGroup

Represents one bandwidth group.

50

5 Classes (interfaces)

5.7.1 Attributes
5.7.1.1 name (read-only)
wstring IBandwidthGroup::name

Name of the group.

5.7.1.2 type (read-only)
BandwidthGroupType IBandwidthGroup::type

Type of the group.

5.7.1.3 reference (read-only)
unsigned long IBandwidthGroup::reference

How many devices/medium attachements use this group.

5.7.1.4 maxMbPerSec (read/write)
unsigned long IBandwidthGroup::maxMbPerSec

The maximum number of MBytes which can be transfered by all entities attached to this group
during one second.

5.8 IBandwidthGroupChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when one of the bandwidth groups changed

5.8.1 Attributes
5.8.1.1 bandwidthGroup (read-only)
IBandwidthGroup IBandwidthGroupChangedEvent: :bandwidthGroup

The changed bandwidth group.

5.9 ICPUChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when a CPU changes.

5.9.1 Attributes

5.9.1.1 cpu (read-only)

unsigned long ICPUChangedEvent::cpu
The CPU which changed.

51

5 Classes (interfaces)

5.9.1.2 add (read-only)
boolean ICPUChangedEvent: :add

Flag whether the CPU was added or removed.

5.10 ICPUExecutionCapChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when the CPU execution cap changes.

5.10.1 Attributes
5.10.1.1 executionCap (read-only)
unsigned long ICPUExecutionCapChangedEvent::executionCap

The new CPU execution cap value. (1-100)

5.11 ICanShowWindowEvent (IVetoEvent)

Note: This interface extends IVetoEvent and therefore supports all its methods and
attributes as well.

Notification when a call to IMachine::canShowConsoleWindow() is made by a front-end to
check if a subsequent call to IMachine::showConsoleWindow() can succeed.

The callee should give an answer appropriate to the current machine state using event veto.
This answer must remain valid at least until the next machine state change.

5.12 IConsole

The IConsole interface represents an interface to control virtual machine execution.

A console object gets created when a machine has been locked for a particular session (client
process) using IMachine::lockMachine() or IMachine::launchVMProcess(). The console object
can then be found in the session’s ISession::console attribute.

Methods of the IConsole interface allow the caller to query the current virtual machine exe-
cution state, pause the machine or power it down, save the machine state or take a snapshot,
attach and detach removable media and so on.

See also: ISession

5.12.1 Attributes
5.12.1.1 machine (read-only)
IMachine IConsole::machine

Machine object for this console session.

Note: This is a convenience property, it has the same value as ISession::machine of the
corresponding session object.

52

5 Classes (interfaces)

5.12.1.2 state (read-only)

MachineState IConsole::state

Current execution state of the machine.

Note: This property always returns the same value as the corresponding property of
the IMachine object for this console session. For the process that owns (executes) the
VM, this is the preferable way of querying the VM state, because no IPC calls are made.

5.12.1.3 guest (read-only)

IGuest IConsole::guest

Guest object.

5.12.1.4 keyboard (read-only)

IKeyboard IConsole::keyboard

Virtual keyboard object.

Note: If the machine is not running, any attempt to use the returned object will result
in an error.

5.12.1.5 mouse (read-only)

IMouse IConsole::mouse

Virtual mouse object.

Note: If the machine is not running, any attempt to use the returned object will result
in an error.

5.12.1.6 display (read-only)
IDisplay IConsole::display

Virtual display object.

Note: If the machine is not running, any attempt to use the returned object will result
in an error.

5.12.1.7 debugger (read-only)

IMachineDebugger IConsole: :debugger

Note: This attribute is not supported in the web service.

Debugging interface.

53

5 Classes (interfaces)

5.12.1.8 USBDevices (read-only)

IUSBDevice IConsole::USBDevices][]

Collection of USB devices currently attached to the virtual USB controller.

Note: The collection is empty if the machine is not running.

5.12.1.9 remoteUSBDevices (read-only)

IHostUSBDevice IConsole::remoteUSBDevices]]

List of USB devices currently attached to the remote VRDE client. Once a new device is phys-
ically attached to the remote host computer, it appears in this list and remains there until de-
tached.

5.12.1.10 sharedFolders (read-only)

ISharedFolder IConsole::sharedFolders[]

Collection of shared folders for the current session. These folders are called transient shared
folders because they are available to the guest OS running inside the associated virtual machine
only for the duration of the session (as opposed to IMachine::sharedFolders[] which represent
permanent shared folders). When the session is closed (e.g. the machine is powered down),
these folders are automatically discarded.

New shared folders are added to the collection using createSharedFolder(). Existing shared
folders can be removed using removeSharedFolder().

5.12.1.11 VRDEServerinfo (read-only)

IVRDEServerInfo IConsole: :VRDEServerInfo

Interface that provides information on Remote Desktop Extension (VRDE) connection.

5.12.1.12 eventSource (read-only)

IEventSource IConsole::eventSource

Event source for console events.

5.12.1.13 attachedPciDevices (read-only)

IPciDeviceAttachment IConsole::attachedPciDevices][]

Array of PCI devices attached to this machine.

5.12.1.14 useHostClipboard (read/write)

boolean IConsole::useHostClipboard

Whether the guest clipboard should be connected to the host one or whether it should only
be allowed access to the VRDE clipboard. This setting may not affect existing guest clipboard
connections which are already connected to the host clipboard.

54

5 Classes (interfaces)

5.12.2 adoptSavedState

void IConsole::adoptSavedState(
[in] wstring savedStateFile)

savedStateFile Path to the saved state file to adopt.

Associates the given saved state file to the virtual machine.

On success, the machine will go to the Saved state. Next time it is powered up, it will be
restored from the adopted saved state and continue execution from the place where the saved
state file was created.

The specified saved state file path may be absolute or relative to the folder the VM normally
saves the state to (usually, IMachine::snapshotFolder).

Note: It’s a caller’s responsibility to make sure the given saved state file is compatible
with the settings of this virtual machine that represent its virtual hardware (memory
size, storage disk configuration etc.). If there is a mismatch, the behavior of the virtual
machine is undefined.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine state neither PoweredOff nor Aborted.

5.12.3 attachUSBDevice

void IConsole::attachUSBDevice(
[in] uuid id)

id UUID of the host USB device to attach.

Attaches a host USB device with the given UUID to the USB controller of the virtual machine.

The device needs to be in one of the following states: Busy, Available or Held, otherwise an
error is immediately returned.

When the device state is Busy, an error may also be returned if the host computer refuses to
release it for some reason.

See also: ITUSBController::deviceFilters[], USBDeviceState

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_ VM_STATE: Virtual machine state neither Running nor Paused.

e VBOX_E_PDM_ERROR: Virtual machine does not have a USB controller.

5.12.4 createSharedFolder

void IConsole::createSharedFolder(
[in] wstring name,
[in] wstring hostPath,
[in] boolean writable,
[in] boolean automount)

name Unique logical name of the shared folder.
hostPath Full path to the shared folder in the host file system.
writable Whether the share is writable or readonly

automount Whether the share gets automatically mounted by the guest or not.

55

5 Classes (interfaces)

Creates a transient new shared folder by associating the given logical name with the given host
path, adds it to the collection of shared folders and starts sharing it. Refer to the description of
ISharedFolder to read more about logical names.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID VM_STATE: Virtual machine in Saved state or currently changing state.
e VBOX_E_FILE_ERROR: Shared folder already exists or not accessible.

5.12.5 deleteSnapshot

IProgress IConsole::deleteSnapshot(
[in] uuid id)

id UUID of the snapshot to delete.

Starts deleting the specified snapshot asynchronously. See ISnapshot for an introduction to
snapshots.

The execution state and settings of the associated machine stored in the snapshot will be
deleted. The contents of all differencing media of this snapshot will be merged with the contents
of their dependent child media to keep the medium chain valid (in other words, all changes
represented by media being deleted will be propagated to their child medium). After that, this
snapshot’s differencing medium will be deleted. The parent of this snapshot will become a new
parent for all its child snapshots.

If the deleted snapshot is the current one, its parent snapshot will become a new current
snapshot. The current machine state is not directly affected in this case, except that currently
attached differencing media based on media of the deleted snapshot will be also merged as
described above.

If the deleted snapshot is the first or current snapshot, then the respective IMachine attributes
will be adjusted. Deleting the current snapshot will also implicitly call IMachine::saveSettings()
to make all current machine settings permanent.

Deleting a snapshot has the following preconditions:

e Child media of all normal media of the deleted snapshot must be accessible (see
IMedium::state) for this operation to succeed. If only one running VM refers to all images
which participates in merging the operation can be performed while the VM is running.
Otherwise all virtual machines whose media are directly or indirectly based on the media
of deleted snapshot must be powered off. In any case, online snapshot deleting usually is
slower than the same operation without any running VM.

e You cannot delete the snapshot if a medium attached to it has more than one child medium
(differencing images) because otherwise merging would be impossible. This might be the
case if there is more than one child snapshot or differencing images were created for other
reason (e.g. implicitly because of multiple machine attachments).

The virtual machine’s state is changed to “DeletingSnapshot”, “DeletingSnapshotOnline” or
“DeletingSnapshotPaused” while this operation is in progress.

Note: Merging medium contents can be very time and disk space consuming, if these
media are big in size and have many children. However, if the snapshot being deleted
is the last (head) snapshot on the branch, the operation will be rather quick.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID VM_STATE: The running virtual machine prevents deleting this snap-
shot. This happens only in very specific situations, usually snapshots can be deleted with-
out trouble while a VM is running. The error message text explains the reason for the
failure.

56

5 Classes (interfaces)

5.12.6 deleteSnapshotAndAllIChildren

IProgress IConsole::deleteSnapshotAndAllChildren(
[in] uuid id)

id UUID of the snapshot to delete, including all its children.

Starts deleting the specified snapshot and all its children asynchronously. See ISnapshot
for an introduction to snapshots. The conditions and many details are the same as with
deleteSnapshot().

This operation is very fast if the snapshot subtree does not include the current state. It is still
significantly faster than deleting the snapshots one by one if the current state is in the subtree and
there are more than one snapshots from current state to the snapshot which marks the subtree,
since it eliminates the incremental image merging.

Note: This API method is right now not implemented!

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: The running virtual machine prevents deleting this snap-
shot. This happens only in very specific situations, usually snapshots can be deleted with-
out trouble while a VM is running. The error message text explains the reason for the
failure.

e E_NOTIMPL: The method is not implemented yet.

5.12.7 deleteSnapshotRange

IProgress IConsole::deleteSnapshotRange(
[in] uuid startld,
[in] uuid endId)

startld UUID of the first snapshot to delete.

endld UUID of the last snapshot to delete.

Starts deleting the specified snapshot range. This is limited to linear snapshot lists, which
means there may not be any other child snapshots other than the direct sequence between the
start and end snapshot. If the start and end snapshot point to the same snapshot this method is
completely equivalent to deleteSnapshot(). See ISnapshot for an introduction to snapshots. The
conditions and many details are the same as with deleteSnapshot().

This operation is generally faster than deleting snapshots one by one and often also needs less
extra disk space before freeing up disk space by deleting the removed disk images corresponding
to the snapshot.

Note: This API method is right now not implemented!

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: The running virtual machine prevents deleting this snap-
shot. This happens only in very specific situations, usually snapshots can be deleted with-
out trouble while a VM is running. The error message text explains the reason for the
failure.

e E_NOTIMPL: The method is not implemented yet.

57

5 Classes (interfaces)

5.12.8 detachUSBDevice

IUSBDevice IConsole::detachUSBDevice(
[in] uuid id)

id UUID of the USB device to detach.

Detaches an USB device with the given UUID from the USB controller of the virtual machine.

After this method succeeds, the VirtualBox server re-initiates all USB filters as if the device
were just physically attached to the host, but filters of this machine are ignored to avoid a
possible automatic re-attachment.

See also: IUSBController::deviceFilters[], USBDeviceState

If this method fails, the following error codes may be reported:

e VBOX_E_PDM_ERROR: Virtual machine does not have a USB controller.

e E_INVALIDARG: USB device not attached to this virtual machine.

5.12.9 discardSavedState

void IConsole::discardSavedState(
[in] boolean fRemoveFile)

fRemoveFile Whether to also remove the saved state file.

Forcibly resets the machine to “Powered Off” state if it is currently in the “Saved” state (previ-
ously created by saveState()). Next time the machine is powered up, a clean boot will occur.

Note: This operation is equivalent to resetting or powering off the machine without
doing a proper shutdown of the guest operating system; as with resetting a running
phyiscal computer, it can can lead to data loss.

If fRemoveFile is true, the file in the machine directory into which the machine state
was saved is also deleted. If this is false, then the state can be recovered and later re-
inserted into a machine using adoptSavedState(). The location of the file can be found in the
IMachine::stateFilePath attribute.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine not in state Saved.

5.12.10 findUSBDeviceByAddress

IUSBDevice IConsole::findUSBDeviceByAddress (
[in] wstring name)

name Address of the USB device (as assigned by the host) to search for.

Searches for a USB device with the given host address.
See also: TUSBDevice::address
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Given name does not correspond to any USB device.

58

5 Classes (interfaces)

5.12.11 findUSBDeviceByld

IUSBDevice IConsole::findUSBDeviceById(
[in] uuid id)

id UUID of the USB device to search for.

Searches for a USB device with the given UUID.
See also: IUSBDevice::id
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Given id does not correspond to any USB device.

5.12.12 getDeviceActivity

DeviceActivity IConsole::getDeviceActivity(
[in] DeviceType type)

type

Gets the current activity type of a given device or device group.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid device type.

5.12.13 getGuestEnteredACPIMode

boolean IConsole::getGuestEnteredACPIMode ()

Checks if the guest entered the ACPI mode GO (working) or G1 (sleeping). If this method
returns false, the guest will most likely not respond to external ACPI events.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine notin Running state.

5.12.14 getPowerButtonHandled

boolean IConsole::getPowerButtonHandled()

Checks if the last power button event was handled by guest.
If this method fails, the following error codes may be reported:

e VBOX_E_PDM_ERROR: Checking if the event was handled by the guest OS failed.

5.12.15 pause

void IConsole::pause()

Pauses the virtual machine execution.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine notin Running state.

e VBOX_E_VM_ERROR: Virtual machine error in suspend operation.

59

5 Classes (interfaces)

5.12.16 powerButton

void IConsole::powerButton()

Sends the ACPI power button event to the guest.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine notin Running state.

e VBOX_E_PDM_ERROR: Controlled power off failed.

5.12.17 powerDown

IProgress IConsole: :powerDown()

Initiates the power down procedure to stop the virtual machine execution.

The completion of the power down procedure is tracked using the returned IProgress object.
After the operation is complete, the machine will go to the PoweredOff state.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine must be Running, Paused or Stuck to be

powered down.

5.12.18 powerUp

IProgress IConsole: :powerUp()

Starts the virtual machine execution using the current machine state (that is, its current exe-
cution state, current settings and current storage devices).

Note: This method is only useful for front-ends that want to actually execute virtual
machines in their own process (like the VirtualBox or VBoxSDL front-ends). Unless you
are intending to write such a front-end, do not call this method. If you simply want to
start virtual machine execution using one of the existing front-ends (for example the
VirtualBox GUI or headless server), use IMachine::launchVMProcess() instead; these
front-ends will power up the machine automatically for you.

If the machine is powered off or aborted, the execution will start from the beginning (as if the
real hardware were just powered on).

If the machine is in the Saved state, it will continue its execution the point where the state has
been saved.

If the machine IMachine::teleporterEnabled property is enabled on the machine being pow-
ered up, the machine will wait for an incoming teleportation in the TeleportingIn state. The
returned progress object will have at least three operations where the last three are defined as:
(1) powering up and starting TCP server, (2) waiting for incoming teleportations, and (3) per-
form teleportation. These operations will be reflected as the last three operations of the progress
objected returned by IMachine::launchVMProcess() as well.

See also: saveState()

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine already running.
e VBOX_E_HOST_ERROR: Host interface does not exist or name not set.

e VBOX_E_FILE_ERROR: Invalid saved state file.

60

5 Classes (interfaces)

5.12.19 powerUpPaused

IProgress IConsole::powerUpPaused()

Identical to powerUp except that the VM will enter the Paused state, instead of Running.
See also: powerUp()
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine already running.
e VBOX_E_HOST_ERROR: Host interface does not exist or name not set.

e VBOX_E_FILE_ERROR: Invalid saved state file.

5.12.20 removeSharedFolder

void IConsole::removeSharedFolder(
[in] wstring name)

name Logical name of the shared folder to remove.

Removes a transient shared folder with the given name previously created by createSharedFolder()
from the collection of shared folders and stops sharing it.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID VM_STATE: Virtual machine in Saved state or currently changing state.

e VBOX_E_FILE_ERROR: Shared folder does not exists.

5.12.21 reset

void IConsole::reset()

Resets the virtual machine.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine not in Running state.

e VBOX_E_VM_ERROR: Virtual machine error in reset operation.

5.12.22 restoreSnapshot

IProgress IConsole::restoreSnapshot(
[in] ISnapshot snapshot)

snapshot The snapshot to restore the VM state from.

Starts resetting the machine’s current state to the state contained in the given snapshot, asyn-
chronously. All current settings of the machine will be reset and changes stored in differencing
media will be lost. See ISnapshot for an introduction to snapshots.

After this operation is successfully completed, new empty differencing media are created for
all normal media of the machine.

If the given snapshot is an online snapshot, the machine will go to the Saved, so that the next
time it is powered on, the execution state will be restored from the state of the snapshot.

Note: The machine must not be running, otherwise the operation will fail.

61

5 Classes (interfaces)

Note: If the machine state is Saved prior to this operation, the saved state file will be
implicitly deleted (as if discardSavedState() were called).

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine is running.

5.12.23 resume
void IConsole::resume()

Resumes the virtual machine execution.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine not in Paused state.

e VBOX_E_VM_ERROR: Virtual machine error in resume operation.

5.12.24 saveState
IProgress IConsole::saveState()

Saves the current execution state of a running virtual machine and stops its execution.

After this operation completes, the machine will go to the Saved state. Next time it is powered
up, this state will be restored and the machine will continue its execution from the place where
it was saved.

This operation differs from taking a snapshot to the effect that it doesn’t create new differenc-
ing media. Also, once the machine is powered up from the state saved using this method, the
saved state is deleted, so it will be impossible to return to this state later.

Note: On success, this method implicitly calls IMachine::saveSettings() to save all cur-
rent machine settings (including runtime changes to the DVD medium, etc.). Together
with the impossibility to change any VM settings when it is in the Saved state, this
guarantees adequate hardware configuration of the machine when it is restored from
the saved state file.

Note: The machine must be in the Running or Paused state, otherwise the operation
will fail.

See also: takeSnapshot()
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine state neither Running nor Paused.
e VBOX_E_FILE_ERROR: Failed to create directory for saved state file.

5.12.25 sleepButton
void IConsole::sleepButton()

Sends the ACPI sleep button event to the guest.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine not in Running state.
e VBOX_E_PDM_ERROR: Sending sleep button event failed.

62

5 Classes (interfaces)

5.12.26 takeSnapshot

IProgress IConsole::takeSnapshot(
[in] wstring name,
[in] wstring description)

name Short name for the snapshot.

description Optional description of the snapshot.

Saves the current execution state and all settings of the machine and creates differencing
images for all normal (non-independent) media. See ISnapshot for an introduction to snapshots.

This method can be called for a PoweredOff, Saved (see saveState()), Running or Paused
virtual machine. When the machine is PoweredOff, an offline snapshot is created. When the
machine is Running a live snapshot is created, and an online snapshot is is created when Paused.

The taken snapshot is always based on the current snapshot of the associated virtual machine
and becomes a new current snapshot.

Note: This method implicitly calls IMachine::saveSettings() to save all current machine
settings before taking an offline snapshot.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine currently changing state.

5.12.27 teleport

IProgress IConsole::teleport(
[in] wstring hostname,
[in] unsigned long tcpport,
[in] wstring password,
[in] unsigned long maxDowntime)

hostname The name or IP of the host to teleport to.
tcpport The TCP port to connect to (1..65535).
password The password.

maxDowntime The maximum allowed downtime given as milliseconds. 0 is not a valid value.
Recommended value: 250 ms.

The higher the value is, the greater the chance for a successful teleportation. A small value
may easily result in the teleportation process taking hours and eventually fail.

Note: The current implementation treats this a guideline, not as an absolute rule.

Teleport the VM to a different host machine or process.
TODO explain the details.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine not running or paused.

63

5 Classes (interfaces)

5.13 IDHCPServer

The IDHCPServer interface represents the vbox dhcp server configuration.
To enumerate all the dhcp servers on the host, use the IVirtualBox::DHCPServers[] attribute.

5.13.1 Attributes
5.13.1.1 enabled (read/write)

boolean IDHCPServer::enabled

specifies if the dhcp server is enabled

5.13.1.2 IPAddress (read-only)

wstring IDHCPServer::IPAddress

specifies server IP

5.13.1.3 networkMask (read-only)

wstring IDHCPServer::networkMask

specifies server network mask

5.13.1.4 networkName (read-only)

wstring IDHCPServer::networkName

specifies internal network name the server is used for

5.13.1.5 lowerlP (read-only)

wstring IDHCPServer::lowerIP

specifies from IP address in server address range

5.13.1.6 upperlP (read-only)

wstring IDHCPServer: :upperIP

specifies to IP address in server address range

5.13.2 setConfiguration

void IDHCPServer::setConfiguration(
[in] wstring IPAddress,
[in] wstring networkMask,
[in] wstring FromIPAddress,
[in] wstring ToIPAddress)

IPAddress server IP address
networkMask server network mask
FromlPAddress server From IP address for address range

TolPAddress server To IP address for address range

64

5 Classes (interfaces)

configures the server
If this method fails, the following error codes may be reported:

e E_INVALIDARG: invalid configuration supplied

5.13.3 start

void IDHCPServer::start(
[in] wstring networkName,
[in] wstring trunkName,
[in] wstring trunkType)

networkName Name of internal network DHCP server should attach to.
trunkName Name of internal network trunk.

trunkType Type of internal network trunk.

Starts DHCP server process.
If this method fails, the following error codes may be reported:

e E_FAIL: Failed to start the process.

5.13.4 stop

void IDHCPServer::stop()

Stops DHCP server process.
If this method fails, the following error codes may be reported:

e E_FAIL: Failed to stop the process.

5.14 IDisplay

The IDisplay interface represents the virtual machine’s display.

The object implementing this interface is contained in each IConsole::display attribute and
represents the visual output of the virtual machine.

The virtual display supports pluggable output targets represented by the IFramebuffer inter-
face. Examples of the output target are a window on the host computer or an RDP session’s
display on a remote computer.

5.14.1 completeVHWACommand

’ Note: This method is not supported in the web service.

void IDisplay::completeVHWACommand (
[in] [ptr] octet command)

command Pointer to VBOXVHWACMD containing the completed command.

Signals that the Video HW Acceleration command has completed.

65

5 Classes (interfaces)

5.14.2 drawToScreen

’ Note: This method is not supported in the web service.

void IDisplay::drawToScreen(
[in] unsigned long screenId,
[in] [ptr] octet address,
[in] unsigned long x,
[in] unsigned long vy,
[in] unsigned long width,
[in] unsigned long height)

screenld Monitor to take the screenshot from.
address Address to store the screenshot to

X Relative to the screen top left corner.

y Relative to the screen top left corner.

width Desired image width.

height Desired image height.

Draws a 32-bpp image of the specified size from the given buffer to the given point on the VM
display.
If this method fails, the following error codes may be reported:

e E_NOTIMPL: Feature not implemented.

e VBOX_E_IPRT_ERROR: Could not draw to screen.

5.14.3 getFramebuffer

’ Note: This method is not supported in the web service.

void IDisplay::getFramebuffer(
[in] unsigned long screenId,
[out] IFramebuffer framebuffer,
[out] long xOrigin,
[out] long yOrigin)

screenld

framebuffer

xOrigin

yOrigin

Queries the framebuffer for given screen.

66

5 Classes (interfaces)

5.14.4 getScreenResolution

void IDisplay::getScreenResolution(
[in] unsigned long screenId,
[out] unsigned long width,
[out] unsigned long height,
[out] unsigned long bitsPerPixel)
screenid
width
height
bitsPerPixel

Queries display width, height and color depth for given screen.

5.14.5 invalidateAndUpdate

void IDisplay::invalidateAndUpdate()

Does a full invalidation of the VM display and instructs the VM to update it.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Could not invalidate and update screen.

5.14.6 resizeCompleted

void IDisplay::resizeCompleted(
[in] unsigned long screenId)

screenld

Signals that a framebuffer has completed the resize operation.
If this method fails, the following error codes may be reported:

e VBOX_E_NOT_SUPPORTED: Operation only valid for external frame buffers.

5.14.7 setFramebuffer

Note: This method is not supported in the web service.

void IDisplay::setFramebuffer(
[in] unsigned long screenld,
[in] IFramebuffer framebuffer)
screenld
framebuffer

Sets the framebuffer for given screen.

67

5 Classes (interfaces)

5.14.8 setSeamlessMode

void IDisplay::setSeamlessMode (
[in] boolean enabled)

enabled

Enables or disables seamless guest display rendering (seamless desktop integration) mode.

Note: Calling this method has no effect if IGuest::getFacilityStatus() with facility
Seamless does not return Active.

5.14.9 setVideoModeHint

void IDisplay::setVideoModeHint (
[in] unsigned long width,
[in] unsigned long height,
[in] unsigned long bitsPerPixel,
[in] unsigned long display)

width
height
bitsPerPixel
display

Asks VirtualBox to request the given video mode from the guest. This is just a hint and it
cannot be guaranteed that the requested resolution will be used. Guest Additions are required
for the request to be seen by guests. The caller should issue the request and wait for a resolution
change and after a timeout retry.

Specifying 0 for either width, height or bitsPerPixel parameters means that the corre-
sponding values should be taken from the current video mode (i.e. left unchanged).

If the guest OS supports multi-monitor configuration then the display parameter specifies the
number of the guest display to send the hint to: 0 is the primary display, 1 is the first secondary
and so on. If the multi-monitor configuration is not supported, display must be 0.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: The display is not associated with any monitor.

5.14.10 takeScreenShot

Note: This method is not supported in the web service.

void IDisplay::takeScreenShot(
[in] unsigned long screenId,
[in] [ptr] octet address,
[in] unsigned long width,
[in] unsigned long height)

screenld

address

68

5 Classes (interfaces)

width
height

Takes a screen shot of the requested size and copies it to the 32-bpp buffer allocated by the
caller and pointed to by address. A pixel consists of 4 bytes in order: B, G, R, 0.

Note: This API can be used only locally by a VM process through the COM/XPCOM
C++ API as it requires pointer support. It is not available for scripting langages,
Java or any webservice clients. Unless you are writing a new VM frontend use
takeScreenShotToArray().

If this method fails, the following error codes may be reported:
e E_NOTIMPL: Feature not implemented.

e VBOX_E_IPRT_ERROR: Could not take a screenshot.

5.14.11 takeScreenShotPNGToArray

octet[] IDisplay::takeScreenShotPNGToArray (
[in] unsigned long screenId,
[in] unsigned long width,
[in] unsigned long height)

screenld Monitor to take the screenshot from.
width Desired image width.
height Desired image height.

Takes a guest screen shot of the requested size and returns it as PNG image in array.
If this method fails, the following error codes may be reported:

e E_NOTIMPL: Feature not implemented.

e VBOX_E_IPRT_ERROR: Could not take a screenshot.

5.14.12 takeScreenShotToArray

octet[] IDisplay::takeScreenShotToArray(
[in] unsigned long screenId,
[in] unsigned long width,
[in] unsigned long height)

screenld Monitor to take screenshot from.
width Desired image width.
height Desired image height.

Takes a guest screen shot of the requested size and returns it as an array of bytes in uncom-
pressed 32-bit RGBA format. A pixel consists of 4 bytes in order: R, G, B, OxFF.

This API is slow, but could be the only option to get guest screenshot for scriptable languages
not allowed to manipulate with addresses directly.

If this method fails, the following error codes may be reported:

e E_NOTIMPL: Feature not implemented.

e VBOX_E_IPRT_ERROR: Could not take a screenshot.

69

5 Classes (interfaces)

5.15 IEvent

Abstract parent interface for VirtualBox events. Actual events will typically implement a more
specific interface which derives from this (see below).

Introduction to VirtualBox events

Generally speaking, an event (represented by this interface) signals that something happened,
while an event listener (see IEventListener) represents an entity that is interested in certain
events. In order for this to work with unidirectional protocols (i.e. web services), the concepts
of passive and active listener are used.

Event consumers can register themselves as listeners, providing an array of events they are in-
terested in (see IEventSource::registerListener()). When an event triggers, the listener is notified
about the event. The exact mechanism of the notification depends on whether the listener was
registered as an active or passive listener:

e An active listener is very similar to a callback: it is a function invoked by the API. As
opposed to the callbacks that were used in the API before VirtualBox 4.0 however, events
are now objects with an interface hierarchy.

e Passive listeners are somewhat trickier to implement, but do not require a client func-
tion to be callable, which is not an option with scripting languages or web service
clients. Internally the IEventSource implementation maintains an event queue for each
passive listener, and newly arrived events are put in this queue. When the listener calls
IEventSource::getEvent(), first element from its internal event queue is returned. When
the client completes processing of an event, the IEventSource::eventProcessed() function
must be called, acknowledging that the event was processed. It supports implementing
waitable events. On passive listener unregistration, all events from its queue are auto-
acknowledged.

Waitable events are useful in situations where the event generator wants to track delivery or
a party wants to wait until all listeners have completed the event. A typical example would be a
vetoable event (see [VetoEvent) where a listeners might veto a certain action, and thus the event
producer has to make sure that all listeners have processed the event and not vetoed before
taking the action.

A given event may have both passive and active listeners at the same time.

Using events

Any VirtualBox object capable of producing externally visible events provides an eventSource
read-only attribute, which is of the type IEventSource. This event source object is notified by
VirtualBox once something has happened, so consumers may register event listeners with this
event source. To register a listener, an object implementing the IEventListener interface must
be provided. For active listeners, such an object is typically created by the consumer, while
for passive listeners IEventSource::createListener() should be used. Please note that a listener
created with IEventSource::createListener() must not be used as an active listener.

Once created, the listener must be registered to listen for the desired events (see
IEventSource::registerListener()), providing an array of VBoxEventType enums. Those elements
can either be the individual event IDs or wildcards matching multiple event IDs.

After registration, the callback’s IEventListener::handleEvent() method is called automatically
when the event is triggered, while passive listeners have to call IEventSource::getEvent() and
IEventSource::eventProcessed() in an event processing loop.

The IEvent interface is an abstract parent interface for all such VirtualBox events coming in. As
a result, the standard use pattern inside [EventListener::handleEvent() or the event processing
loop is to check the type attribute of the event and then cast to the appropriate specific interface
using QueryInterface().

70

5 Classes (interfaces)

5.15.1 Attributes
5.15.1.1 type (read-only)
VBoxEventType IEvent::type

Event type.

5.15.1.2 source (read-only)
IEventSource IEvent::source

Source of this event.

5.15.1.3 waitable (read-only)

boolean IEvent::waitable

If we can wait for this event being processed. If false, waitProcessed() returns immediately,
and setProcessed() doesn’t make sense. Non-waitable events are generally better performing, as
no additional overhead associated with waitability imposed. Waitable events are needed when
one need to be able to wait for particular event processed, for example for vetoable changes, or
if event refers to some resource which need to be kept immutable until all consumers confirmed
events.

5.15.2 setProcessed
void IEvent::setProcessed()

Internal method called by the system when all listeners of a particular event have called
IEventSource::eventProcessed (). This should not be called by client code.

5.15.3 waitProcessed

boolean IEvent::waitProcessed(
[in] long timeout)

timeout Maximum time to wait for event processeing, in ms; 0 = no wait, -1 = indefinite wait.

Wait until time outs, or this event is processed. Event must be waitable for this operation to
have described semantics, for non-waitable returns true immediately.

5.16 IEventListener

Event listener. An event listener can work in either active or passive mode, depending on the
way it was registered. See IEvent for an introduction to VirtualBox event handling.

5.16.1 handleEvent

void IEventListener::handleEvent(
[in] IEvent event)

event Event available.

Handle event callback for active listeners. It is not called for passive listeners. After
calling handleEvent() on all active listeners and having received acknowledgement from all
passive listeners via IEventSource::eventProcessed(), the event is marked as processed and
[Event::waitProcessed () will return immediately.

71

5 Classes (interfaces)

5.17 IEventSource

Event source. Generally, any object which could generate events can be an event source, or aggre-
gate one. To simplify using one-way protocols such as webservices running on top of HTTP(S),
an event source can work with listeners in either active or passive mode. In active mode it is
up to the [EventSource implementation to call IEventListener::handleEvent(), in passive mode
the event source keeps track of pending events for each listener and returns available events on
demand.

See IEvent for an introduction to VirtualBox event handling.

5.17.1 createAggregator

IEventSource IEventSource::createAggregator(
[in] IEventSource subordinates[])

subordinates Subordinate event source this one aggregatres.

Creates an aggregator event source, collecting events from multiple sources. This way a single
listener can listen for events coming from multiple sources, using a single blocking getEvent()
on the returned aggregator.

5.17.2 createListener

IEventListener IEventSource::createlListener()

Creates a new listener object, useful for passive mode.

5.17.3 eventProcessed

void IEventSource::eventProcessed(
[in] IEventListener listener,
[in] IEvent event)

listener Which listener processed event.
event Which event.

Must be called for waitable events after a particular listener finished its event processing.
When all listeners of a particular event have called this method, the system will then call
IEvent::setProcessed().

5.17.4 fireEvent

boolean IEventSource::fireEvent(
[in] IEvent event,
[in] long timeout)
event Event to deliver.

timeout Maximum time to wait for event processing (if event is waitable), in ms; 0 = no wait,
-1 = indefinite wait.

Fire an event for this source.

72

5 Classes (interfaces)

5.17.5 getEvent

IEvent IEventSource::getEvent(
[in] IEventListener listener,
[in] long timeout)

listener Which listener to get data for.

timeout Maximum time to wait for events, in ms; 0 = no wait, -1 = indefinite wait.

Get events from this peer’s event queue (for passive mode). Calling this method regularly is
required for passive event listeners to avoid system overload; see registerListener() for details.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Listener is not registered, or autounregistered.

5.17.6 registerListener

void IEventSource::registerListener(
[in] IEventListener listener,
[in] VBoxEventType interestingl[],
[in] boolean active)

listener Listener to register.

interesting Event types listener is interested in. One can use wildcards like - Any to specify
wildcards, matching more than one event.

active Which mode this listener is operating in. In active mode, IEventListener::handleEvent()
is called directly. In passive mode, an internal event queue is created for this this
IEventListener. For each event coming in, it is added to queues for all interested
registered passive listeners. It is then up to the external code to call the listener’s
IEventListener::handleEvent() method. When done with an event, the external code must
call eventProcessed().

Register an event listener.

Note: To avoid system overload, the VirtualBox server process checks if pas-
sive event listeners call getEvent() frequently enough. In the current implemen-
tation, if more than 500 pending events are detected for a passive event listener,
it is forcefully unregistered by the system, and further getEvent() calls will return
VBOX_E_OBJECT_NOT_FOUND.

5.17.7 unregisterListener

void IEventSource::unregisterListener(
[in] IEventListener listener)

listener Listener to unregister.

Unregister an event listener. If listener is passive, and some waitable events are still in queue
they are marked as processed automatically.

73

5 Classes (interfaces)

5.18 IEventSourceChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when an event source state changes (listener added or removed).

5.18.1 Attributes
5.18.1.1 listener (read-only)

IEventListener IEventSourceChangedEvent::listener

Event listener which has changed.

5.18.1.2 add (read-only)

boolean IEventSourceChangedEvent::add

Flag whether listener was added or removed.

5.19 IExtPack (IExtPackBase)

’ Note: This interface is not supported in the web service.

Note: This interface extends IExtPackBase and therefore supports all its methods and
attributes as well.

Interface for querying information about an extension pack as well as accessing COM objects
within it.

5.19.1 queryObiject

$unknown IExtPack::queryObject(
[in] wstring objUuid)

objUuid The object ID. What exactly this is

Queries the ITUnknown interface to an object in the extension pack main module. This allows
plug-ins and others to talk directly to an extension pack.

5.20 IExtPackBase

’ Note: This interface is not supported in the web service.

Interface for querying information about an extension pack as well as accessing COM objects
within it.

74

5 Classes (interfaces)

5.20.1 Attributes
5.20.1.1 name (read-only)

wstring IExtPackBase::name

The extension pack name. This is unique.

5.20.1.2 description (read-only)

wstring IExtPackBase::description

The extension pack description.

5.20.1.3 version (read-only)

wstring IExtPackBase::version

The extension pack version string. This is on the same form as other VirtualBox version strings,
ie.: “1.2.37, “1.2.3_BETA1”, “1.2.3-OSE”, “1.2.3r45678”, “1.2.3r45678-0OSE”, “1.2.3 BETA1-
r45678” or “1.2.3 BETA1-r45678-OSE”

5.20.1.4 revision (read-only)

unsigned long IExtPackBase::revision

The extension pack internal revision number.

5.20.1.5 VRDEModule (read-only)

wstring IExtPackBase::VRDEModule

The name of the VRDE module if the extension pack sports one.

5.20.1.6 plugins (read-only)

IExtPackPlugIn IExtPackBase::plugIns|[]

Note: This attribute is not supported in the web service.

Plug-ins provided by this extension pack.

5.20.1.7 usable (read-only)

boolean IExtPackBase::usable

Indicates whether the extension pack is usable or not.
There are a number of reasons why an extension pack might be unusable, typical examples
would be broken installation/file or that it is incompatible with the current VirtualBox version.

5.20.1.8 whyUnusable (read-only)

wstring IExtPackBase::whyUnusable

String indicating why the extension pack is not usable. This is an empty string if usable and
always a non-empty string if not usable.

75

5 Classes (interfaces)

5.20.1.9 showLicense (read-only)

boolean IExtPackBase::showlLicense

Whether to show the license before installation

5.20.1.10 license (read-only)

wstring IExtPackBase::license

The default HTML license text for the extension pack. Same as calling queryLicense with
preferredLocale and preferredLanguage as empty strings and format set to html.

5.20.2 queryLicense

wstring IExtPackBase::querylLicense(
[in] wstring preferredLocale,
[in] wstring preferredLanguage,
[in] wstring format)

preferredLocale The preferred license locale. Pass an empty string to get the default license.

preferredLanguage The preferred license language. Pass an empty string to get the default
language for the locale.

format The license format: html, rtf or txt. If a license is present there will always be an HTML
of it, the rich text format (RTF) and plain text (txt) versions are optional. If

Full feature version of the license attribute.

5.21 IExtPackFile (IExtPackBase)

’ Note: This interface is not supported in the web service.

Note: This interface extends IExtPackBase and therefore supports all its methods and
attributes as well.

Extension pack file (aka tarball, .vbox-extpack) representation returned by IExtPackManager::openExtPackFile().
This provides the base extension pack information with the addition of the file name.

5.21.1 Attributes
5.21.1.1 filePath (read-only)

wstring IExtPackFile::filePath

The path to the extension pack file.

76

5 Classes (interfaces)

5.21.2 install

IProgress IExtPackFile::install(
[in] boolean replace,
[in] wstring displayInfo)

replace Set this to automatically uninstall any existing extension pack with the same name as
the one being installed.

displaylnfo Platform specific display information. Reserved for future hacks.

Install the extension pack.

5.22 IExtPackManager

’ Note: This interface is not supported in the web service.

Interface for managing VirtualBox Extension Packs.

TODO: Describe extension packs, how they are managed and how to create one.
5.22.1 Attributes
5.22.1.1 installedExtPacks (read-only)

IExtPack IExtPackManager::installedExtPacks[]

Note: This attribute is not supported in the web service.

List of the installed extension packs.

5.22.2 cleanup

void IExtPackManager::cleanup()

Cleans up failed installs and uninstalls

5.22.3 find

Note: This method is not supported in the web service.

IExtPack IExtPackManager::find(
[in] wstring name)

name The name of the extension pack to locate.

Returns the extension pack with the specified name if found.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: No extension pack matching name was found.

77

5 Classes (interfaces)

5.22.4 isExtPackUsable

boolean IExtPackManager::isExtPackUsable(
[in] wstring name)

name The name of the extension pack to check for.

Check if the given extension pack is loaded and usable.

5.22.5 openExtPackFile

’ Note: This method is not supported in the web service.

IExtPackFile IExtPackManager: :openExtPackFile(
[in] wstring path)

path The path of the extension pack tarball. This can optionally be followed by a “::SHA-
256=hex-digit” of the tarball.

Attempts to open an extension pack file in preparation for installation.

5.22.6 queryAllPluginsForFrontend

wstring[] IExtPackManager::queryAllPlugInsForFrontend(
[in] wstring frontendName)

frontendName The name of the frontend or component.

Gets the path to all the plug-in modules for a given frontend.
This is a convenience method that is intended to simplify the plug-in loading process for a
frontend.

5.22.7 uninstall

IProgress IExtPackManager::uninstall(
[in] wstring name,
[in] boolean forcedRemoval,
[in] wstring displayInfo)
name The name of the extension pack to uninstall.

forcedRemoval Forced removal of the extension pack. This means that the uninstall hook will
not be called.

displaylnfo Platform specific display information. Reserved for future hacks.

Uninstalls an extension pack, removing all related files.

5.23 IExtPackPlugin

’ Note: This interface is not supported in the web service.

Interface for keeping information about a plug-in that ships with an extension pack.

78

5 Classes (interfaces)

5.23.1 Attributes
5.23.1.1 name (read-only)

wstring IExtPackPlugIn::name
The plug-in name.
5.23.1.2 description (read-only)
wstring IExtPackPlugIn::description
The plug-in description.
5.23.1.3 frontend (read-only)
wstring IExtPackPlugIn::frontend
The name of the frontend or component name this plug-in plugs into.
5.23.1.4 modulePath (read-only)
wstring IExtPackPlugIn::modulePath

The module path.

5.24 |ExtraDataCanChangeEvent (IVetoEvent)

Note: This interface extends IVetoEvent and therefore supports all its methods and
attributes as well.

Notification when someone tries to change extra data for either the given machine or (if null)
global extra data. This gives the chance to veto against changes.

5.24.1 Attributes
5.24.1.1 machineld (read-only)

uuid IExtraDataCanChangeEvent::machineld

ID of the machine this event relates to. Null for global extra data changes.

5.24.1.2 key (read-only)

wstring IExtraDataCanChangeEvent::key

Extra data key that has changed.

5.24.1.3 value (read-only)

wstring IExtraDataCanChangeEvent::value

Extra data value for the given key.

79

5 Classes (interfaces)

5.25 |IExtraDataChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when machine specific or global extra data has changed.

5.25.1 Attributes
5.25.1.1 machineld (read-only)

uuid IExtraDataChangedEvent::machineld

ID of the machine this event relates to. Null for global extra data changes.

5.25.1.2 key (read-only)

wstring IExtraDataChangedEvent::key

Extra data key that has changed.

5.25.1.3 value (read-only)

wstring IExtraDataChangedEvent::value

Extra data value for the given key.

5.26 IFramebuffer

’ Note: This interface is not supported in the web service.

5.26.1 Attributes
5.26.1.1 address (read-only)

octet IFramebuffer::address

Address of the start byte of the frame buffer.

5.26.1.2 width (read-only)

unsigned long IFramebuffer::width

Frame buffer width, in pixels.

5.26.1.3 height (read-only)

unsigned long IFramebuffer::height

Frame buffer height, in pixels.

80

5 Classes (interfaces)

5.26.1.4 bitsPerPixel (read-only)

unsigned long IFramebuffer::bitsPerPixel

Color depth, in bits per pixel. When pixelFormat is FOURCC_RGB, valid values are: 8, 15, 16,
24 and 32.

5.26.1.5 bytesPerLine (read-only)

unsigned long IFramebuffer::bytesPerLine

Scan line size, in bytes. When pixelFormat is FOURCC_RGB, the size of the scan line must be
aligned to 32 bits.

5.26.1.6 pixelFormat (read-only)

unsigned long IFramebuffer::pixelFormat

Frame buffer pixel format. It’s either one of the values defined by FramebufferPixelFormat or
a raw FOURCC code.

Note: This attribute must never return Opaque — the format of the buffer address points
to must be always known.

5.26.1.7 usesGuestVRAM (read-only)

boolean IFramebuffer::usesGuestVRAM

Defines whether this frame buffer uses the virtual video card’s memory buffer (guest VRAM)
directly or not. See requestResize() for more information.

5.26.1.8 heightReduction (read-only)

unsigned long IFramebuffer::heightReduction

Hint from the frame buffer about how much of the standard screen height it wants to use for
itself. This information is exposed to the guest through the VESA BIOS and VMMDev interface
so that it can use it for determining its video mode table. It is not guaranteed that the guest
respects the value.

5.26.1.9 overlay (read-only)

IFramebufferOverlay IFramebuffer::overlay

Note: This attribute is not supported in the web service.

An alpha-blended overlay which is superposed over the frame buffer. The initial purpose is to
allow the display of icons providing information about the VM state, including disk activity, in
front ends which do not have other means of doing that. The overlay is designed to controlled
exclusively by IDisplay. It has no locking of its own, and any changes made to it are not guar-
anteed to be visible until the affected portion of [Framebuffer is updated. The overlay can be
created lazily the first time it is requested. This attribute can also return null to signal that the
overlay is not implemented.

81

5 Classes (interfaces)

5.26.1.10 winld (read-only)
long long IFramebuffer::winId

Platform-dependent identifier of the window where context of this frame buffer is drawn, or
zero if there’s no such window.

5.26.2 getVisibleRegion

’ Note: This method is not supported in the web service.

unsigned long IFramebuffer::getVisibleRegion(
[in] [ptr] octet rectangles,
[in] unsigned long count)

rectangles Pointer to the RTRECT array to receive region data.
count Number of RTRECT elements in the rectangles array.

Returns the visible region of this frame buffer.

If the rectangles parameter is null then the value of the count parameter is ignored and the
number of elements necessary to describe the current visible region is returned in countCopied.

If rectangles is not null but count is less than the required number of elements to store
region data, the method will report a failure. If count is equal or greater than the required
number of elements, then the actual number of elements copied to the provided array will be
returned in countCopied.

Note: The address of the provided array must be in the process space of this IFrame-
buffer object.

’ Note: Method not yet implemented.

5.26.3 lock
void IFramebuffer::lock()

Locks the frame buffer. Gets called by the IDisplay object where this frame buffer is bound to.

5.26.4 notifyUpdate

void IFramebuffer::notifyUpdate(
[in] unsigned long x,
[in] unsigned long vy,
[in] unsigned long width,
[in] unsigned long height)

X
y
width
height

Informs about an update. Gets called by the display object where this buffer is registered.

82

5 Classes (interfaces)

5.26.5 processVHWACommand

’ Note: This method is not supported in the web service.

void IFramebuffer::processVHWACommand (
[in] [ptr] octet command)

command Pointer to VBOXVHWACMD containing the command to execute.

Posts a Video HW Acceleration Command to the frame buffer for processing. The commands
used for 2D video acceleration (DDraw surface creation/destroying, blitting, scaling, color con-
version, overlaying, etc.) are posted from quest to the host to be processed by the host hardware.

Note: The address of the provided command must be in the process space of this
IFramebuffer object.

5.26.6 requestResize

’ Note: This method is not supported in the web service.

boolean IFramebuffer::requestResize(
[in] unsigned long screenId,
[in] unsigned long pixelFormat,
[in] [ptr] octet VRAM,
[in] unsigned long bitsPerPixel,
[in] unsigned long bytesPerLine,
[in] unsigned long width,
[in] unsigned long height)

screenld Logical screen number. Must be used in the corresponding call to IDisplay::resizeCompleted()
if this call is made.

pixelFormat Pixel format of the memory buffer pointed to by VRAM. See also FramebufferPixelFormat.
VRAM Pointer to the virtual video card’s VRAM (may be null).

bitsPerPixel Color depth, bits per pixel.

bytesPerLine Size of one scan line, in bytes.

width Width of the guest display, in pixels.

height Height of the guest display, in pixels.

Requests a size and pixel format change.

There are two modes of working with the video buffer of the virtual machine. The indirect
mode implies that the IFramebuffer implementation allocates a memory buffer for the requested
display mode and provides it to the virtual machine. In direct mode, the IFramebuffer imple-
mentation uses the memory buffer allocated and owned by the virtual machine. This buffer
represents the video memory of the emulated video adapter (so called guest VRAM). The direct
mode is usually faster because the implementation gets a raw pointer to the guest VRAM buffer
which it can directly use for visualizing the contents of the virtual display, as opposed to the

83

5 Classes (interfaces)

indirect mode where the contents of guest VRAM are copied to the memory buffer provided by
the implementation every time a display update occurs.

It is important to note that the direct mode is really fast only when the implementation uses
the given guest VRAM buffer directly, for example, by blitting it to the window representing
the virtual machine’s display, which saves at least one copy operation comparing to the indirect
mode. However, using the guest VRAM buffer directly is not always possible: the format and
the color depth of this buffer may be not supported by the target window, or it may be unknown
(opaque) as in case of text or non-linear multi-plane VGA video modes. In this case, the indirect
mode (that is always available) should be used as a fallback: when the guest VRAM contents
are copied to the implementation-provided memory buffer, color and format conversion is done
automatically by the underlying code.

The pixelFormat parameter defines whether the direct mode is available or not. If
pixelFormat is Opaque then direct access to the guest VRAM buffer is not available — the VRAM,
bitsPerPixel and bytesPerLine parameters must be ignored and the implementation must
use the indirect mode (where it provides its own buffer in one of the supported formats). In all
other cases, pixelFormat together with bitsPerPixel and bytesPerLine define the format of
the video memory buffer pointed to by the VRAM parameter and the implementation is free to
choose which mode to use. To indicate that this frame buffer uses the direct mode, the imple-
mentation of the usesGuestVRAM attribute must return true and address must return exactly
the same address that is passed in the VRAM parameter of this method; otherwise it is assumed
that the indirect strategy is chosen.

The width and height parameters represent the size of the requested display mode in both
modes. In case of indirect mode, the provided memory buffer should be big enough to store
data of the given display mode. In case of direct mode, it is guaranteed that the given VRAM
buffer contains enough space to represent the display mode of the given size. Note that this
frame buffer’s width and height attributes must return exactly the same values as passed to this
method after the resize is completed (see below).

The finished output parameter determines if the implementation has finished resiz-
ing the frame buffer or not. If, for some reason, the resize cannot be finished imme-
diately during this call, finished must be set to false, and the implementation must
call IDisplay::resizeCompleted() after it has returned from this method as soon as pos-
sible. If finished is false, the machine will not call any frame buffer methods until
IDisplay::resizeCompleted() is called.

Note that if the direct mode is chosen, the bitsPerPixel, bytesPerLine and pixelFormat attributes
of this frame buffer must return exactly the same values as specified in the parameters of this
method, after the resize is completed. If the indirect mode is chosen, these attributes must
return values describing the format of the implementation’s own memory buffer address points
to. Note also that the bitsPerPixel value must always correlate with pixelFormat. Note that the
pixelFormat attribute must never return Opaque regardless of the selected mode.

Note: This method is called by the IDisplay object under the lock() provided by this
IFramebuffer implementation. If this method returns false in finished, then this
lock is not released until IDisplay::resizeCompleted() is called.

5.26.7 setVisibleRegion

’ Note: This method is not supported in the web service.

void IFramebuffer::setVisibleRegion(
[in] [ptr] octet rectangles,
[in] unsigned long count)

84

5 Classes (interfaces)

rectangles Pointer to the RTRECT array.

count Number of RTRECT elements in the rectangles array.

Suggests a new visible region to this frame buffer. This region represents the area of the VM
display which is a union of regions of all top-level windows of the guest operating system running
inside the VM (if the Guest Additions for this system support this functionality). This information
may be used by the frontends to implement the seamless desktop integration feature.

Note: The address of the provided array must be in the process space of this IFrame-
buffer object.

Note: The IFramebuffer implementation must make a copy of the provided array of
rectangles.

Note: Method not yet implemented.

5.26.8 unlock

void IFramebuffer::unlock()

Unlocks the frame buffer. Gets called by the IDisplay object where this frame buffer is bound
to.

5.26.9 videoModeSupported

boolean IFramebuffer::videoModeSupported(
[in] unsigned long width,
[in] unsigned long height,
[in] unsigned long bpp)

width
height
bpp

Returns whether the frame buffer implementation is willing to support a given video mode.
In case it is not able to render the video mode (or for some reason not willing), it should return
false. Usually this method is called when the guest asks the VMM device whether a given video
mode is supported so the information returned is directly exposed to the guest. It is important
that this method returns very quickly.

5.27 IFramebufferOverlay (IFramebuffer)

’ Note: This interface is not supported in the web service.

85

5 Classes (interfaces)

Note: This interface extends IFramebuffer and therefore supports all its methods and
attributes as well.

The IFramebufferOverlay interface represents an alpha blended overlay for displaying status
icons above an IFramebuffer. It is always created not visible, so that it must be explicitly shown.
It only covers a portion of the IFramebuffer, determined by its width, height and co-ordinates. It
is always in packed pixel little-endian 32bit ARGB (in that order) format, and may be written to
directly. Do re-read the width though, after setting it, as it may be adjusted (increased) to make
it more suitable for the front end.

5.27.1 Attributes
5.27.1.1 x (read-only)

unsigned long IFramebufferOverlay::x

X position of the overlay, relative to the frame buffer.

5.27.1.2 y (read-only)

unsigned long IFramebufferOverlay::y

Y position of the overlay, relative to the frame buffer.

5.27.1.3 visible (read/write)

boolean IFramebufferOverlay::visible

Whether the overlay is currently visible.

5.27.1.4 alpha (read/write)

unsigned long IFramebufferOverlay::alpha

The global alpha value for the overlay. This may or may not be supported by a given front end.

5.27.2 move

void IFramebufferOverlay: :move(
[in] unsigned long x,
[in] unsigned long y)

Changes the overlay’s position relative to the IFramebuffer.

5.28 IGuest

The IGuest interface represents information about the operating system running inside the virtual
machine. Used in IConsole::guest.

IGuest provides information about the guest operating system, whether Guest Additions are
installed and other OS-specific virtual machine properties.

86

5 Classes (interfaces)

5.28.1 Attributes
5.28.1.1 OSTypeld (read-only)

wstring IGuest::0STypeld

Identifier of the Guest OS type as reported by the Guest Additions. You may use
IVirtualBox::getGuestOSType() to obtain an IGuestOSType object representing details about
the given Guest OS type.

Note: If Guest Additions are not installed, this value will be the same as
IMachine::OSTypeld.

5.28.1.2 additionsRunLevel (read-only)

AdditionsRunLevelType IGuest::additionsRunLevel

Current run level of the Guest Additions.

5.28.1.3 additionsVersion (read-only)

wstring IGuest::additionsVersion

Version of the Guest Additions including the revision (3 decimal numbers separated by dots +
revision number) installed on the guest or empty when the Additions are not installed.

5.28.1.4 facilities (read-only)

IAdditionsFacility IGuest::facilities[]

Array of current known facilities. Only returns facilities where a status is known, e.g. facilities
with an unknown status will not be returned.

5.28.1.5 memoryBalloonSize (read/write)

unsigned long IGuest::memoryBalloonSize

Guest system memory balloon size in megabytes (transient property).

5.28.1.6 statisticsUpdatelnterval (read/write)

unsigned long IGuest::statisticsUpdateInterval

Interval to update guest statistics in seconds.

5.28.2 copyFromGuest

IProgress IGuest::copyFromGuest(
[in] wstring source,
[in] wstring dest,
[in] wstring userName,
[in] wstring password,
[in] unsigned long flags)

source Source file on the guest to copy.

87

5 Classes (interfaces)

dest Destination path on the host.

userName User name under which the copy command will be executed; the user has to exist
and have the appropriate rights to read from the source path.

password Password of the user account specified.

flags CopyFileFlag flags. Not used at the moment and should be set to 0.

Copies files/directories from guest to the host.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Error while copying.

5.28.3 copyToGuest

IProgress IGuest::copyToGuest(
[in] wstring source,
[in] wstring dest,
[in] wstring userName,
[in] wstring password,
[in] unsigned long flags)

source Source file on the host to copy.
dest Destination path on the guest.

userName User name under which the copy command will be executed; the user has to exist
and have the appropriate rights to write to the destination path.

password Password of the user account specified.

flags CopyFileFlag flags. Not used at the moment and should be set to O.

Copies files/directories from host to the guest.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Error while copying.

5.28.4 directoryClose

void IGuest::directoryClose(
[in] unsigned long handle)

handle Handle of opened directory to close.

Closes a formerly opened guest directory.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Error while closing directory.

88

5 Classes (interfaces)

5.28.5 directoryCreate

void IGuest::directoryCreate(
[in] wstring directory,
[in] wstring userName,
[in] wstring password,
[in] unsigned long mode,
[in] unsigned long flags)

directory Directory to create.

userName User name under which the directory creation will be executed; the user has to exist
and have the appropriate rights to create the desired directory.

password Password of the user account specified.
mode File mode.
flags DirectoryCreateFlag flags.

Creates a directory on the guest.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Error while creating directory.

5.28.6 directoryOpen

unsigned long IGuest::directoryOpen(
[in] wstring directory,
[in] wstring filter,
[in] unsigned long flags,
[in] wstring userName,
[in] wstring password)

directory Directory to read.
filter Directory filter (DOS style wildcards). Set to empty string if no filter required.
flags DirectoryOpenFlag flags.

userName User name under which the directory reading will be performed; the user has to
exist and have the appropriate rights to access / read the desired directory.

password Password of the user account specified.

Opens a directory on the guest.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Error while opening / reading directory.

5.28.7 directoryRead

IGuestDirEntry IGuest::directoryRead(
[in] unsigned long handle)

handle Handle of opened directory returned by openDirectory.

Reads the next directory entry of an opened guest directory.
If this method fails, the following error codes may be reported:

e E_ABORT: When the end of the directory has been reached.
e VBOX_E_IPRT_ERROR: Error while opening / reading directory.

89

5 Classes (interfaces)

5.28.8 executeProcess

IProgress IGuest::executeProcess(
[in] wstring execName,
[in] unsigned long flags,
[in] wstring arguments[],
[in] wstring environment[],
[in] wstring userName,
[in] wstring password,
[in] unsigned long timeoutMS,
[out] unsigned long pid)

execName Full path name of the command to execute on the guest; the commands has to exists
in the guest VM in order to be executed.

flags ExecuteProcessFlag flags.
arguments Array of arguments passed to the execution command.

environment Environment variables that can be set while the command is being executed, in
form of “NAME=VALUE”; one pair per entry. To unset a variable just set its name (“NAME”)
without a value.

userName User name under which the command will be executed; has to exist and have the
appropriate rights to execute programs in the VM.

password Password of the user account specified.

timeoutMS The maximum timeout value (in msec) to wait for finished program execution. Pass
0 for an infinite timeout.

pid The PID (process ID) of the started command for later reference.

Executes an existing program inside the guest VM.

Note: Starting at VirtualBox 4.1.8 guest process execution by default is limited to serve
up to 25 guest processes at a time. If all 25 guest processes are still active and running,
starting a new guest process will result in an appropriate error message.

If ExecuteProcessFlag WaitForStdOut and/or respectively = ExecuteProcess-
Flag WaitForStdErr of ExecuteProcessFlag is set, the guest process will not exit
until all data from the specified stream(s) is/are read out.

To raise or lower the guest process execution limit, either the guest property
“/VirtualBox/GuestAdd/VBoxService/—control-procs-max-kept” or VBoxService’ com-
mand line by specifying “~control-procs-max-kept” needs to be modified. A restart
of the guest OS is required afterwards. To serve unlimited guest processes, a value of
“0” needs to be set (not recommended).

If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Could not execute process.

5.28.9 fileExists

boolean IGuest::fileExists(
[in] wstring file,
[in] wstring userName,
[in] wstring password)

90

5 Classes (interfaces)

file Full path of file to check.

userName User name under which the lookup will be performed; the user has to exist and have
the appropriate rights to access / read the desired directory.

password Password of the user account specified.

Checks if the specified file name exists and is a regular file.

If the file name ends with a slash or backslash, the function assumes it’s a directory and will
check if the specified directory exists and is a regular directory.

If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Error while looking up information.

5.28.10 fileQuerySize

long long IGuest::fileQuerySize(
[in] wstring file,
[in] wstring userName,
[in] wstring password)

file Full path of file to query file size for.

userName User name under which the lookup will be performed; the user has to exist and have
the appropriate rights to access / read the desired directory.

password Password of the user account specified.

Queries the size of a file, given the path to it.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Error while looking up information.

5.28.11 getAdditionsStatus

boolean IGuest::getAdditionsStatus(
[in] AdditionsRunLevelType level)

level Status level to check

Retrieve the current status of a certain Guest Additions run level.
If this method fails, the following error codes may be reported:

e VBOX_E_NOT_SUPPORTED: Wrong status level specified.

5.28.12 getFacilityStatus

AdditionsFacilityStatus IGuest::getFacilityStatus(
[in] AdditionsFacilityType facility,
[out] long long timestamp)

facility Facility to check status for.

timestamp Timestamp (in ms) of last status update seen by the host.

Get the current status of a Guest Additions facility.

91

5 Classes (interfaces)

5.28.13 getProcessOutput

octet[] IGuest::getProcessOutput(
[in] unsigned long pid,
[in] unsigned long flags,
[in] unsigned long timeoutMS,
[in] long long size)

pid Process id returned by earlier executeProcess() call.
flags ProcessOutputFlag flags.

timeoutMS The maximum timeout value (in msec) to wait for output data. Pass O for an infinite
timeout.

size Size in bytes to read in the buffer.

Retrieves output of a formerly started and running guest process.

Note: Starting with VirtualBox 4.1.8 this only will return output data from stdout or
stderr if flag ExecuteProcessFlag WaitForStdOut and/or respectively ExecuteProcess-
Flag WaitForStdErr of ExecuteProcessFlag is set in the former executeProcess() call for
this guest process.

If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Could not retrieve output.

5.28.14 getProcessStatus

ExecuteProcessStatus IGuest::getProcessStatus(
[in] unsigned long pid,
[out] unsigned long exitcode,
[out] unsigned long flags)

pid Process id returned by earlier executeProcess() call.
exitcode The exit code (if available).

flags Additional flags of process status. Not used at the moment and must be set to 0.

Retrieves status, exit code and the exit reason of a formerly started guest process. If a guest
process exited or got terminated this function returns its final status and removes this process
from the list of known guest processes for further retrieval.

If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Process with specified PID was not found.

5.28.15 internalGetStatistics

void IGuest::internalGetStatistics(
[out] unsigned long cpuUser,
[out] unsigned long cpuKernel,
[out] unsigned long cpuldle,
[out] unsigned long memTotal,
[out] unsigned long memFree,
[out] unsigned long memBalloon,
[out] unsigned long memShared,

92

5 Classes (interfaces)

[out] unsigned long memCache,

[out] unsigned long pagedTotal,
[out] unsigned long memAllocTotal,
[out] unsigned long memFreeTotal,
[out] unsigned long memBalloonTotal,
[out] unsigned long memSharedTotal)

cpuUser Percentage of processor time spent in user mode as seen by the guest.
cpuKernel Percentage of processor time spent in kernel mode as seen by the guest.
cpuldle Percentage of processor time spent idling as seen by the guest.
memTotal Total amount of physical guest RAM.

memFree Free amount of physical guest RAM.

memBalloon Amount of ballooned physical guest RAM.

memShared Amount of shared physical guest RAM.

memCache Total amount of guest (disk) cache memory.

pagedTotal Total amount of space in the page file.

memAllocTotal Total amount of memory allocated by the hypervisor.
memFreeTotal Total amount of free memory available in the hypervisor.
memBalloonTotal Total amount of memory ballooned by the hypervisor.

memSharedTotal Total amount of shared memory in the hypervisor.

Internal method; do not use as it might change at any time.

5.28.16 setCredentials

void IGuest::setCredentials(
[in] wstring userName,
[in] wstring password,
[in] wstring domain,
[in] boolean allowInteractivelLogon)

userName User name string, can be empty
password Password string, can be empty

domain Domain name (guest logon scheme specific), can be empty

allowinteractiveLogon Flag whether the guest should alternatively allow the user to interac-
tively specify different credentials. This flag might not be supported by all versions of the

Additions.

Store login credentials that can be queried by guest operating systems with Additions installed.
The credentials are transient to the session and the guest may also choose to erase them. Note
that the caller cannot determine whether the guest operating system has queried or made use of

the credentials.
If this method fails, the following error codes may be reported:

e VBOX_E_VM_ERROR: VMM device is not available.

93

5 Classes (interfaces)

5.28.17 setProcessinput

unsigned long IGuest::setProcessInput(
[in] unsigned long pid,
[in] unsigned long flags,
[in] unsigned long timeoutMS,
[in] octet datal[])

pid Process id returned by earlier executeProcess() call.
flags ProcessInputFlag flags.

timeoutMS The maximum timeout value (in msec) to wait for getting the data transfered to the
guest. Pass O for an infinite timeout.

data Buffer of input data to send to the started process to.

Sends input into a formerly started process.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Could not send input.

5.28.18 updateGuestAdditions

IProgress IGuest::updateGuestAdditions(
[in] wstring source,
[in] unsigned long flags)

source Path to the Guest Additions .ISO file to use for the upate.
flags AdditionsUpdateFlag flags.

Updates already installed Guest Additions in a VM (Windows guests only).
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Error while updating.

5.29 IGuestDirEntry

Note: With the web service, this interface is mapped to a structure. Attributes that
return this interface will not return an object, but a complete structure containing the
attributes listed below as structure members.

Structure representing a directory entry on the guest OS.

5.29.1 Attributes
5.29.1.1 nodeld (read-only)

long long IGuestDirEntry::nodeld

The unique identifier (within the guest’s file system) of this file system object.

5.29.1.2 name (read-only)

wstring IGuestDirEntry::name

The filename.

94

5 Classes (interfaces)

5.29.1.3 type (read-only)

GuestDirEntryType IGuestDirEntry::type

The entry type.

5.30 IGuestKeyboardEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when guest keyboard event happens.

5.30.1 Attributes
5.30.1.1 scancodes (read-only)

long IGuestKeyboardEvent::scancodes][]

Array of scancodes.

5.31 IGuestMonitorChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when the guest enables one of its monitors.

5.31.1 Attributes
5.31.1.1 changeType (read-only)

GuestMonitorChangedEventType IGuestMonitorChangedEvent::changeType

What was changed for this guest monitor.

5.31.1.2 screenld (read-only)

unsigned long IGuestMonitorChangedEvent::screenld

The monitor which was changed.

5.31.1.3 originX (read-only)

unsigned long IGuestMonitorChangedEvent::originX

Physical X origin relative to the primary screen. Valid for Enabled and NewOrigin.

5.31.1.4 originY (read-only)

unsigned long IGuestMonitorChangedEvent::originY

Physical Y origin relative to the primary screen. Valid for Enabled and NewOrigin.

95

5 Classes (interfaces)

5.31.1.5 width (read-only)

unsigned long IGuestMonitorChangedEvent::width

Width of the screen. Valid for Enabled.

5.31.1.6 height (read-only)

unsigned long IGuestMonitorChangedEvent::height

Height of the screen. Valid for Enabled.

5.32 IGuestMouseEvent (IReusableEvent)

Note: This interface extends IReusableEvent and therefore supports all its methods and
attributes as well.

Notification when guest mouse event happens.

5.32.1 Attributes
5.32.1.1 absolute (read-only)

boolean IGuestMouseEvent::absolute

If this event is relative or absolute.

5.32.1.2 x (read-only)

long IGuestMouseEvent::x

New X position, or X delta.

5.32.1.3 y (read-only)

long IGuestMouseEvent::y

New Y position, or Y delta.

5.32.1.4 z (read-only)

long IGuestMouseEvent::z

Z delta.

5.32.1.5 w (read-only)

long IGuestMouseEvent::w

W delta.

5.32.1.6 buttons (read-only)

long IGuestMouseEvent::buttons

Button state bitmask.

96

5 Classes (interfaces)

5.33 IGuestOSType

Note: With the web service, this interface is mapped to a structure. Attributes that
return this interface will not return an object, but a complete structure containing the
attributes listed below as structure members.

5.33.1 Attributes
5.33.1.1 familyld (read-only)

wstring IGuestOSType::familyId

Guest OS family identifier string.
5.33.1.2 familyDescription (read-only)
wstring IGuestOSType::familyDescription

Human readable description of the guest OS family.

5.33.1.3 id (read-only)

wstring IGuestOSType::id

Guest OS identifier string.

5.33.1.4 description (read-only)

wstring IGuestOSType::description

Human readable description of the guest OS.

5.33.1.5 is64Bit (read-only)

boolean IGuest0SType::is64Bit

Returns true if the given OS is 64-bit

5.33.1.6 recommendedIOAPIC (read-only)

boolean IGuest0SType::recommendedIOAPIC

Returns true if IO APIC recommended for this OS type.

5.33.1.7 recommendedVirtEx (read-only)

boolean IGuestO0SType::recommendedVirtEx

Returns true if VI-x or AMD-V recommended for this OS type.

5.33.1.8 recommendedRAM (read-only)

unsigned long IGuestOSType::recommendedRAM

Recommended RAM size in Megabytes.

97

5 Classes (interfaces)

5.33.1.9 recommendedVRAM (read-only)
unsigned long IGuestOSType::recommendedVRAM

Recommended video RAM size in Megabytes.

5.33.1.10 recommendedHDD (read-only)
long long IGuestOSType::recommendedHDD

Recommended hard disk size in bytes.

5.33.1.11 adapterType (read-only)

NetworkAdapterType IGuestOSType::adapterType

Returns recommended network adapter for this OS type.

5.33.1.12 recommendedPae (read-only)

boolean IGuest0SType::recommendedPae

Returns true if using PAE is recommended for this OS type.

5.33.1.13 recommendedDvdStorageController (read-only)
StorageControllerType IGuest0SType::recommendedDvdStorageController

Recommended storage controller type for DVD/CD drives.

5.33.1.14 recommendedDvdStorageBus (read-only)

StorageBus IGuest0SType::recommendedDvdStorageBus

Recommended storage bus type for DVD/CD drives.

5.33.1.15 recommendedHdStorageController (read-only)

StorageControllerType IGuest0SType::recommendedHdStorageController

Recommended storage controller type for HD drives.

5.33.1.16 recommendedHdStorageBus (read-only)
StorageBus IGuestOSType::recommendedHdStorageBus

Recommended storage bus type for HD drives.

5.33.1.17 recommendedFirmware (read-only)
FirmwareType IGuest0SType::recommendedFirmware

Recommended firmware type.

5.33.1.18 recommendedUsbHid (read-only)

boolean IGuestO0SType::recommendedUsbHid

Returns true if using USB Human Interface Devices, such as keyboard and mouse recom-
mended.

98

5 Classes (interfaces)

5.33.1.19 recommendedHpet (read-only)

boolean IGuest0SType::recommendedHpet

Returns true if using HPET is recommended for this OS type.

5.33.1.20 recommendedUsbTablet (read-only)

boolean IGuestOSType::recommendedUsbTablet

Returns true if using a USB Tablet is recommended.

5.33.1.21 recommendedRtcUseUtc (read-only)

boolean IGuest0SType::recommendedRtcUseUtc

Returns true if the RTC of this VM should be set to UTC

5.33.1.22 recommendedChipset (read-only)

ChipsetType IGuestOSType::recommendedChipset

Recommended chipset type.

5.33.1.23 recommendedAudioController (read-only)

AudioControllerType IGuestOSType::recommendedAudioController

Recommended audio type.

5.34 IGuestPropertyChangedEvent (IMachineEvent)

Note: This interface extends IMachineEvent and therefore supports all its methods and
attributes as well.

Notification when a guest property has changed.

5.34.1 Attributes
5.34.1.1 name (read-only)

wstring IGuestPropertyChangedEvent: :name

The name of the property that has changed.

5.34.1.2 value (read-only)

wstring IGuestPropertyChangedEvent::value

The new property value.

5.34.1.3 flags (read-only)

wstring IGuestPropertyChangedEvent::flags

The new property flags.

99

5 Classes (interfaces)

5.35 IHost

The [Host interface represents the physical machine that this VirtualBox installation runs on.

An object implementing this interface is returned by the IVirtualBox::host attribute. This inter-
face contains read-only information about the host’s physical hardware (such as what processors
and disks are available, what the host operating system is, and so on) and also allows for ma-
nipulating some of the host’s hardware, such as global USB device filters and host interface
networking.

5.35.1 Attributes
5.35.1.1 DVDDrives (read-only)

IMedium IHost::DVDDrives[]

List of DVD drives available on the host.

5.35.1.2 floppyDrives (read-only)

IMedium IHost::floppyDrives|[]

List of floppy drives available on the host.
5.35.1.3 USBDevices (read-only)
IHostUSBDevice IHost::USBDevices|[]

List of USB devices currently attached to the host. Once a new device is physically attached to
the host computer, it appears in this list and remains there until detached.

Note: If USB functionality is not available in the given edition of VirtualBox, this
method will set the result code to E_NOTIMPL.

5.35.1.4 USBDeviceFilters (read-only)

IHostUSBDeviceFilter IHost::USBDeviceFilters|[]

List of USB device filters in action. When a new device is physically attached to the host
computer, filters from this list are applied to it (in order they are stored in the list). The first
matched filter will determine the action performed on the device.

Unless the device is ignored by these filters, filters of all currently running virtual machines
(IUSBController::deviceFilters[]) are applied to it.

Note: If USB functionality is not available in the given edition of VirtualBox, this
method will set the result code to E_NOTIMPL.

See also: IHostUSBDeviceFilter, USBDeviceState

5.35.1.5 networkinterfaces (read-only)

IHostNetworkInterface IHost::networkInterfaces[]

List of host network interfaces currently defined on the host.

100

5 Classes (interfaces)

5.35.1.6 processorCount (read-only)

unsigned long IHost::processorCount

Number of (logical) CPUs installed in the host system.

5.35.1.7 processorOnlineCount (read-only)

unsigned long IHost::processorOnlineCount

Number of (logical) CPUs online in the host system.

5.35.1.8 processorCoreCount (read-only)

unsigned long IHost::processorCoreCount

Number of physical processor cores installed in the host system.

5.35.1.9 memorySize (read-only)

unsigned long IHost::memorySize
Amount of system memory in megabytes installed in the host system.
5.35.1.10 memoryAvailable (read-only)
unsigned long IHost::memoryAvailable
Available system memory in the host system.
5.35.1.11 operatingSystem (read-only)
wstring IHost::operatingSystem

Name of the host system’s operating system.

5.35.1.12 OSVersion (read-only)

wstring IHost::0SVersion

Host operating system’s version string.

5.35.1.13 UTCTime (read-only)

long long IHost::UTCTime

Returns the current host time in milliseconds since 1970-01-01 UTC.

5.35.1.14 Acceleration3DAvailable (read-only)

boolean IHost::Acceleration3DAvailable

Returns true when the host supports 3D hardware acceleration.

101

5 Classes (interfaces)

5.35.2 createHostOnlyNetworkinterface

IProgress IHost::createHostOnlyNetworkInterface(
[out] IHostNetworkInterface hostInterface)

hostinterface Created host interface object.

Creates a new adapter for Host Only Networking.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Host network interface name already exists.

5.35.3 createUSBDeviceFilter

IHostUSBDeviceFilter IHost::createUSBDeviceFilter(
[in] wstring name)

name Filter name. See IUSBDeviceFilter::name for more information.

Creates a new USB device filter. All attributes except the filter name are set to empty (any
match), active is false (the filter is not active).

The created filter can be added to the list of filters using insertUSBDeviceFilter().

See also: USBDeviceFilters[]

5.35.4 findHostDVDDrive

IMedium IHost::findHostDVDDrive(
[in] wstring name)

name Name of the host drive to search for

Searches for a host DVD drive with the given name.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Given name does not correspond to any host drive.

5.35.5 findHostFloppyDrive

IMedium IHost::findHostFloppyDrive(
[in] wstring name)

name Name of the host floppy drive to search for

Searches for a host floppy drive with the given name.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Given name does not correspond to any host floppy drive.

5.35.6 findHostNetworkinterfaceByld

IHostNetworkInterface IHost::findHostNetworkInterfaceById(
[in] uuid id)

id GUID of the host network interface to search for.

Searches through all host network interfaces for an interface with the given GUID.

Note: The method returns an error if the given GUID does not correspond to any host
network interface.

102

5 Classes (interfaces)

5.35.7 findHostNetworkinterfaceByName

IHostNetworkInterface IHost::findHostNetworkInterfaceByName (
[in] wstring name)

name Name of the host network interface to search for.

Searches through all host network interfaces for an interface with the given name.

Note: The method returns an error if the given name does not correspond to any host
network interface.

5.35.8 findHostNetworkiInterfacesOfType

IHostNetworkInterface[] IHost::findHostNetworkInterfacesOfType(
[in] HostNetworkInterfaceType type)

type type of the host network interfaces to search for.

Searches through all host network interfaces and returns a list of interfaces of the specified
type

5.35.9 findUSBDeviceByAddress

IHostUSBDevice IHost::findUSBDeviceByAddress (
[in] wstring name)

name Address of the USB device (as assigned by the host) to search for.

Searches for a USB device with the given host address.
See also: IUSBDevice::address
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Given name does not correspond to any USB device.

5.35.10 findUSBDeviceByld

IHostUSBDevice IHost::findUSBDeviceById (
[in] uuid id)

id UUID of the USB device to search for.

Searches for a USB device with the given UUID.
See also: IUSBDevice::id
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Given id does not correspond to any USB device.

5.35.11 generateMACAddress

wstring IHost::generateMACAddress()

Generates a valid Ethernet MAC address, 12 hexadecimal characters.

103

5 Classes (interfaces)

5.35.12 getProcessorCPUIDLeaf

void IHost::getProcessorCPUIDLeaf (
[in] unsigned long cpuld,
[in] unsigned long leaf,
[in] unsigned long sublLeaf,
[out] unsigned long valEax,
[out] unsigned long valEbx,
[out] unsigned long valEcx,
[out] unsigned long valEdx)

cpuld Identifier of the CPU. The CPU most be online.

Note: The current implementation might not necessarily return the description for this
exact CPU.

leaf CPUID leaf index (eax).

subLeaf CPUID leaf sub index (ecx). This currently only applies to cache information on Intel
CPUs. Use 0 if retrieving values for IMachine::setCPUIDLeaf().

valEax CPUID leaf value for register eax.
valEbx CPUID leaf value for register ebx.
valEcx CPUID leaf value for register ecx.

valEdx CPUID leaf value for register edx.

Returns the CPU cpuid information for the specified leaf.

5.35.13 getProcessorDescription

wstring IHost::getProcessorDescription(
[in] unsigned long cpuld)

cpuld Identifier of the CPU.

Note: The current implementation might not necessarily return the description for this
exact CPU.

Query the model string of a specified host CPU.

5.35.14 getProcessorFeature

boolean IHost::getProcessorFeature(
[in] ProcessorFeature feature)

feature CPU Feature identifier.

Query whether a CPU feature is supported or not.

104

5 Classes (interfaces)

5.35.15 getProcessorSpeed

unsigned long IHost::getProcessorSpeed(
[in] unsigned long cpuld)

cpuld Identifier of the CPU.

Query the (approximate) maximum speed of a specified host CPU in Megahertz.

5.35.16 insertUSBDeviceFilter

void IHost::insertUSBDeviceFilter(
[in] unsigned long position,
[in] IHostUSBDeviceFilter filter)

position Position to insert the filter to.
filter USB device filter to insert.

Inserts the given USB device to the specified position in the list of filters.
Positions are numbered starting from 0. If the specified position is equal to or greater than the
number of elements in the list, the filter is added at the end of the collection.

Note: Duplicates are not allowed, so an attempt to insert a filter already in the list is
an error.

Note: If USB functionality is not available in the given edition of VirtualBox, this
method will set the result code to E_NOTIMPL.

See also: USBDeviceFilters[]
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_OBJECT_STATE: USB device filter is not created within this VirtualBox
instance.

e E_INVALIDARG: USB device filter already in list.

5.35.17 removeHostOnlyNetworkinterface

IProgress IHost::removeHostOnlyNetworkInterface(
[in] uuid id)

id Adapter GUID.

Removes the given Host Only Networking interface.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: No host network interface matching id found.

105

5 Classes (interfaces)

5.35.18 removeUSBDeviceFilter

void IHost::removeUSBDeviceFilter(
[in] unsigned long position)

position Position to remove the filter from.

Removes a USB device filter from the specified position in the list of filters.
Positions are numbered starting from 0. Specifying a position equal to or greater than the
number of elements in the list will produce an error.

Note: If USB functionality is not available in the given edition of VirtualBox, this
method will set the result code to E_NOTIMPL.

See also: USBDeviceFilters[]
If this method fails, the following error codes may be reported:

e E_INVALIDARG: USB device filter list empty or invalid position.

5.36 IHostNetworkinterface

Represents one of host’s network interfaces. IP V6 address and network mask are strings
of 32 hexdecimal digits grouped by four. Groups are separated by colons. For example,
fe80:0000:0000:0000:021e:c2ff:fed2:b030.

5.36.1 Attributes
5.36.1.1 name (read-only)

wstring IHostNetworkInterface::name

Returns the host network interface name.

5.36.1.2 id (read-only)

uuid IHostNetworkInterface::id

Returns the interface UUID.

5.36.1.3 networkName (read-only)

wstring IHostNetworkInterface::networkName

Returns the name of a virtual network the interface gets attached to.

5.36.1.4 dhcpEnabled (read-only)

boolean IHostNetworkInterface::dhcpEnabled

Specifies whether the DHCP is enabled for the interface.

5.36.1.5 IPAddress (read-only)

wstring IHostNetworkInterface::IPAddress

Returns the IP V4 address of the interface.

106

5 Classes (interfaces)

5.36.1.6 networkMask (read-only)

wstring IHostNetworkInterface::networkMask

Returns the network mask of the interface.

5.36.1.7 IPV6Supported (read-only)

boolean IHostNetworkInterface::IPV6Supported

Specifies whether the IP V6 is supported/enabled for the interface.

5.36.1.8 IPV6Address (read-only)

wstring IHostNetworkInterface::IPV6Address

Returns the IP V6 address of the interface.

5.36.1.9 IPV6NetworkMaskPrefixLength (read-only)

unsigned long IHostNetworkInterface::IPV6NetworkMaskPrefixLength

Returns the length IP V6 network mask prefix of the interface.

5.36.1.10 hardwareAddress (read-only)

wstring IHostNetworkInterface::hardwareAddress

Returns the hardware address. For Ethernet it is MAC address.

5.36.1.11 mediumType (read-only)

HostNetworkInterfaceMediumType IHostNetworkInterface::mediumType

Type of protocol encapsulation used.

5.36.1.12 status (read-only)

HostNetworkInterfaceStatus IHostNetworkInterface::status

Status of the interface.

5.36.1.13 interfaceType (read-only)

HostNetworkInterfaceType IHostNetworkInterface::interfaceType

specifies the host interface type.

5.36.2 dhcpRediscover

void IHostNetworkInterface::dhcpRediscover()

refreshes the IP configuration for dhcp-enabled interface.

5.36.3 enableDynamiclpConfig

void IHostNetworkInterface::enableDynamicIpConfig()

enables the dynamic IP configuration.

107

5 Classes (interfaces)

5.36.4 enableStaticlpConfig

void IHostNetworkInterface::enableStaticIpConfig(
[in] wstring IPAddress,
[in] wstring networkMask)

IPAddress IP address.
networkMask network mask.

sets and enables the static IP V4 configuration for the given interface.

5.36.5 enableStaticlpConfigV6

void IHostNetworkInterface::enableStaticIpConfigV6(
[in] wstring IPV6Address,
[in] unsigned long IPV6NetworkMaskPrefixLength)

IPV6Address IP address.
IPV6NetworkMaskPrefixLength network mask.

sets and enables the static IP V6 configuration for the given interface.

5.37 IHostPciDevicePlugEvent (IMachineEvent)

Note: This interface extends IMachineEvent and therefore supports all its methods and
attributes as well.

Notification when host PCI device is plugged/unplugged. Plugging usually takes place on VM
startup, unplug - when IMachine::detachHostPciDevice() is called.
See also: IMachine::detachHostPciDevice()

5.37.1 Attributes

5.37.1.1 plugged (read-only)

boolean IHostPciDevicePlugEvent: :plugged

If device successfully plugged or unplugged.

5.37.1.2 success (read-only)

boolean IHostPciDevicePlugEvent::success

If operation was successful, if false - 'message’ attribute may be of interest.

5.37.1.3 attachment (read-only)

IPciDeviceAttachment IHostPciDevicePlugEvent::attachment

Attachment info for this device.

5.37.1.4 message (read-only)

wstring IHostPciDevicePlugEvent::message

Optional error message.

108

5 Classes (interfaces)

5.38 IHostUSBDevice (IlUSBDevice)

Note: This interface extends IUSBDevice and therefore supports all its methods and
attributes as well.

The IHostUSBDevice interface represents a physical USB device attached to the host computer.
Besides properties inherited from IUSBDevice, this interface adds the state property that holds
the current state of the USB device.
See also: IHost::USBDevices[], IHost::USBDeviceFilters[]
5.38.1 Attributes
5.38.1.1 state (read-only)
USBDeviceState IHostUSBDevice::state

Current state of the device.

5.39 IHostUSBDeviceFilter (IlUSBDeviceFilter)

Note: This interface extends IUSBDeviceFilter and therefore supports all its methods
and attributes as well.

The IHostUSBDeviceFilter interface represents a global filter for a physical USB device used by
the host computer. Used indirectly in IHost::USBDeviceFilters[].

Using filters of this type, the host computer determines the initial state of the USB device after
it is physically attached to the host’s USB controller.

Note: The IUSBDeviceFilter::remote attribute is ignored by this type of filters, because
it makes sense only for machine USB filters.

See also: IHost::USBDeviceFilters[]

5.39.1 Attributes
5.39.1.1 action (read/write)

USBDeviceFilterAction IHostUSBDeviceFilter::action

Action performed by the host when an attached USB device matches this filter.

5.40 linternalMachineControl

’ Note: This interface is not supported in the web service.

109

5 Classes (interfaces)

5.40.1 adoptSavedState

void IInternalMachineControl::adoptSavedState(
[in] wstring savedStateFile)

savedStateFile Path to the saved state file to adopt.

Gets called by IConsole::adoptSavedState().
If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Invalid saved state file path.

5.40.2 autoCaptureUSBDevices

void IInternalMachineControl::autoCaptureUSBDevices()

Requests a capture all matching USB devices attached to the host. When the request is com-
pleted, the VM process will get a IInternalSessionControl::onUSBDeviceAttach() notification per
every captured device.

5.40.3 beginPowerUp

void IInternalMachineControl::beginPowerUp(
[in] IProgress aProgress)

aProgress

Tells VBoxSVC that IConsole::powerUp() is under ways and gives it the progress object that
should be part of any pending IMachine::launchVMProcess() operations. The progress object
may be called back to reflect an early cancelation, so some care have to be taken with respect to
any cancelation callbacks. The console object will call endPowerUp() to signal the completion of
the progress object.

5.40.4 beginPoweringDown

void IInternalMachineControl::beginPoweringDown (
[out] IProgress progress)

progress Progress object created by VBoxSVC to wait until the VM is powered down.

Called by the VM process to inform the server it wants to stop the VM execution and power
down.

5.40.5 beginSavingState

void IInternalMachineControl::beginSavingState(

[out] IProgress progress,

[out] wstring stateFilePath)
progress Progress object created by VBoxSVC to wait until the state is saved.
stateFilePath File path the VM process must save the execution state to.

Called by the VM process to inform the server it wants to save the current state and stop the
VM execution.

110

5 Classes (interfaces)

5.40.6 beginTakingSnapshot

void IInternalMachineControl::beginTakingSnapshot(
[in] IConsole initiator,
[in] wstring name,
[in] wstring description,
[in] IProgress consoleProgress,
[in] boolean fTakingSnapshotOnline,
[out] wstring stateFilePath)

initiator The console object that initiated this call.
name Snapshot name.
description Snapshot description.

consoleProgress Progress object created by the VM process tracking the snapshot’s progress.
This has the following sub-operations:

e setting up (weight 1);
e one for each medium attachment that needs a differencing image (weight 1 each);

e another one to copy the VM state (if offline with saved state, weight is VM memory
size in MB);

e another one to save the VM state (if online, weight is VM memory size in MB);
e finishing up (weight 1)
fTakingSnapshotOnline Whether this is an online snapshot (i.e. the machine is running).

stateFilePath File path the VM process must save the execution state to.

Called from the VM process to request from the server to perform the server-side actions of
creating a snapshot (creating differencing images and the snapshot object).
If this method fails, the following error codes may be reported:

e VBOX_E_FILE ERROR: Settings file not accessible.

e VBOX_E_XML_ERROR: Could not parse the settings file.

5.40.7 captureUSBDevice

void IInternalMachineControl::captureUSBDevice(
[in] uuid id)
id

Requests a capture of the given host USB device. When the request is completed, the VM
process will get a IInternalSessionControl::onUSBDeviceAttach() notification.

5.40.8 deleteSnapshot

IProgress IInternalMachineControl::deleteSnapshot(
[in] IConsole initiator,
[in] uuid startld,
[in] uuid endId,
[in] boolean deleteAllChildren,
[out] MachineState machineState)

initiator The console object that initiated this call.

111

5 Classes (interfaces)

startld UUID of the first snapshot to delete.

endld UUID of the last snapshot to delete.

deleteAllChildren Whether all children should be deleted.
machineState New machine state after this operation is started.

Gets called by IConsole::deleteSnapshot(), IConsole::deleteSnapshotAndAllChildren() and
IConsole::deleteSnapshotRange().
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID OBJECT_STATE: Snapshot has more than one child snapshot. Only
possible if the delete operation does not delete all children or the range does not meet the
linearity condition.

5.40.9 detachAllUSBDevices

void IInternalMachineControl::detachAllUSBDevices (
[in] boolean done)

done

Notification that a VM that is being powered down. The done parameter indicates whether
which stage of the power down we’re at. When done = false the VM is announcing its inten-
tions, while when done = true the VM is reporting what it has done.

Note: In the done = true case, the server must run its own filters and filters of all VMs
but this one on all detach devices as if they were just attached to the host computer.

5.40.10 detachUSBDevice

void IInternalMachineControl::detachUSBDevice(
[in] uuid id,
[in] boolean done)

id

done

Notification that a VM is going to detach (done = false) or has already detached (done =
true) the given USB device. When the done = true request is completed, the VM process will
get a IInternalSessionControl::onUSBDeviceDetach() notification.

Note: In the done = true case, the server must run its own filters and filters of all VMs
but this one on the detached device as if it were just attached to the host computer.

5.40.11 ejectMedium

IMediumAttachment IInternalMachineControl::ejectMedium(
[in] IMediumAttachment attachment)

attachment The medium attachment where the eject happened.

Tells VBoxSVC that the guest has ejected the medium associated with the medium attachment.

112

5 Classes (interfaces)

5.40.12 endPowerUp

void IInternalMachineControl::endPowerUp(
[in] long result)

result

Tells VBoxSVC that IConsole::powerUp() has completed. This method may query status infor-
mation from the progress object it received in beginPowerUp() and copy it over to any in-progress
IMachine::launchVMProcess() call in order to complete that progress object.

5.40.13 endPoweringDown

void IInternalMachineControl::endPoweringDown (
[in] long result,
[in] wstring errMsg)

result S_OK to indicate success.

errMsg human readable error message in case of failure.

Called by the VM process to inform the server that powering down previously requested by
#beginPoweringDown is either successfully finished or there was a failure.
If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Settings file not accessible.

e VBOX_E_XML_ERROR: Could not parse the settings file.

5.40.14 endSavingState

void IInternalMachineControl::endSavingState(
[in] long result,
[in] wstring errMsg)

result S_OK to indicate success.

errMsg human readable error message in case of failure.

Called by the VM process to inform the server that saving the state previously requested by
#beginSavingState is either successfully finished or there was a failure.
If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Settings file not accessible.

e VBOX_E_XML_ERROR: Could not parse the settings file.

5.40.15 endTakingSnapshot

void IInternalMachineControl::endTakingSnapshot(
[in] boolean success)

success true to indicate success and false otherwise

Called by the VM process to inform the server that the snapshot previously requested by #be-
ginTakingSnapshot is either successfully taken or there was a failure.

113

5 Classes (interfaces)

5.40.16 finishOnlineMergeMedium

void IInternalMachineControl::finishOnlineMergeMedium(
[in] IMediumAttachment mediumAttachment,
[in] IMedium source,
[in] IMedium target,
[in] boolean mergeForward,
[in] IMedium parentForTarget,
[in] IMedium childrenToReparent[])

mediumAttachment The medium attachment which needs to be cleaned up.
source Merge source medium.

target Merge target medium.

mergeForward Merge direction.

parentForTarget For forward merges: new parent for target medium.

childrenToReparent For backward merges: list of media which need their parent UUID up-
dated.

Gets called by IInternalSessionControl::onlineMergeMedium().

5.40.17 getIPCid

wstring IInternalMachineControl::getIPCId()

5.40.18 lockMedia

void IInternalMachineControl::lockMedia()

Locks all media attached to the machine for writing and parents of attached differencing media
(if any) for reading. This operation is atomic so that if it fails no media is actually locked.

This method is intended to be called when the machine is in Starting or Restoring state. The
locked media will be automatically unlocked when the machine is powered off or crashed.

5.40.19 onSessionEnd

IProgress IInternalMachineControl::onSessionEnd(
[in] ISession session)

session Session that is being closed

Triggered by the given session object when the session is about to close normally.

5.40.20 pullGuestProperties

void IInternalMachineControl::pullGuestProperties(
[out] wstring name[],
[out] wstring value[],
[out] long long timestamp[],
[out] wstring flags[])

name The names of the properties returned.

value The values of the properties returned. The array entries match the corresponding entries
in the name array.

114

5 Classes (interfaces)

timestamp The time stamps of the properties returned. The array entries match the correspond-
ing entries in the name array.

flags The flags of the properties returned. The array entries match the corresponding entries in
the name array.

Get the list of the guest properties matching a set of patterns along with their values, time
stamps and flags and give responsibility for managing properties to the console.

5.40.21 pushGuestProperty

void IInternalMachineControl: :pushGuestProperty(
[in] wstring name,
[in] wstring value,
[in] long long timestamp,
[in] wstring flags)

name The name of the property to be updated.
value The value of the property.
timestamp The timestamp of the property.

flags The flags of the property.

Update a single guest property in IMachine.

5.40.22 reportGuestStatistics

void IInternalMachineControl::reportGuestStatistics(
[in] unsigned long validStats,
[in] unsigned long cpuUser,
[in] unsigned long cpuKernel,
[in] unsigned long cpuldle,
[in] unsigned long memTotal,
[in] unsigned long memFree,
[in] unsigned long memBalloon,
[in] unsigned long memShared,
[in] unsigned long memCache,
[in] unsigned long pagedTotal,
[in] unsigned long memAllocTotal,
[in] unsigned long memFreeTotal,
[in] unsigned long memBalloonTotal,
[in] unsigned long memSharedTotal)

validStats Mask defining which parameters are valid. For example: 0x11 means that cpuldle
and XXX are valid. Other parameters should be ignored.

cpuUser Percentage of processor time spent in user mode as seen by the guest.
cpuKernel Percentage of processor time spent in kernel mode as seen by the guest.
cpuldle Percentage of processor time spent idling as seen by the guest.

memTotal Total amount of physical guest RAM.

memFree Free amount of physical guest RAM.

memBalloon Amount of ballooned physical guest RAM.

115

5 Classes (interfaces)

memShared Amount of shared physical guest RAM.

memCache Total amount of guest (disk) cache memory.

pagedTotal Total amount of space in the page file.

memAllocTotal Total amount of memory allocated by the hypervisor.
memFreeTotal Total amount of free memory available in the hypervisor.
memBalloonTotal Total amount of memory ballooned by the hypervisor.
memSharedTotal Total amount of shared memory in the hypervisor.

Passes collected guest statistics to VBoxSVC.

5.40.23 restoreSnapshot

IProgress IInternalMachineControl::restoreSnapshot(
[in] IConsole initiator,
[in] ISnapshot snapshot,
[out] MachineState machineState)

initiator The console object that initiated this call.
snapshot The snapshot to restore the VM state from.
machineState New machine state after this operation is started.

Gets called by IConsole::restoreSnapshot().

5.40.24 runUSBDeviceFilters

void IInternalMachineControl::runUSBDeviceFilters(
[in] IUSBDevice device,
[out] boolean matched,
[out] unsigned long maskedInterfaces)

device
matched
maskedInterfaces

Asks the server to run USB devices filters of the associated machine against the given USB
device and tell if there is a match.

Note: Intended to be used only for remote USB devices. Local ones don’t require to
call this method (this is done implicitly by the Host and USBProxyService).

5.40.25 setRemoveSavedStateFile

void IInternalMachineControl::setRemoveSavedStateFile(
[in] boolean aRemove)

aRemove

Updates the flag whether the saved state file is removed on a machine state change from Saved
to PoweredOff.

116

5 Classes (interfaces)

5.40.26 unlockMedia

void IInternalMachineControl::unlockMedia()

Unlocks all media previously locked using lockMedia().
This method is intended to be used with teleportation so that it is possible to teleport between
processes on the same machine.

5.40.27 updateState

void IInternalMachineControl::updateState(
[in] MachineState state)

state

Updates the VM state.

Note: This operation will also update the settings file with the correct information
about the saved state file and delete this file from disk when appropriate.

5.41 linternalSessionControl

’ Note: This interface is not supported in the web service.

5.41.1 accessGuestProperty

void IInternalSessionControl::accessGuestProperty(
[in] wstring name,
[in] wstring value,
[in] wstring flags,
[in] boolean isSetter,
[out] wstring retValue,
[out] long long retTimestamp,
[out] wstring retFlags)

name
value

flags

isSetter
retValue
retTimestamp
retFlags

Called by IMachine::getGuestProperty() and by IMachine::setGuestProperty() in order to read
and modify guest properties.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Machine session is not open.
e VBOX_E_INVALID_OBJECT_STATE: Session type is not direct.

117

5 Classes (interfaces)

5.41.2 assignMachine

void IInternalSessionControl::assignMachine(
[in] IMachine machine)

machine

Assigns the machine object associated with this direct-type session or informs the session that
it will be a remote one (if machine == null).
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

e VBOX_E_INVALID OBJECT_STATE: Session type prevents operation.

5.41.3 assignRemoteMachine

void IInternalSessionControl::assignRemoteMachine(
[in] IMachine machine,
[in] IConsole console)

machine

console

Assigns the machine and the (remote) console object associated with this remote-type session.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

5.41.4 enableVMMStatistics

void IInternalSessionControl::enableVMMStatistics(
[in] boolean enable)

enable True enables statistics collection.

Enables or disables collection of VMM RAM statistics.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Machine session is not open.

e VBOX_E_INVALID_OBJECT_STATE: Session type is not direct.

5.41.5 enumerateGuestProperties

void IInternalSessionControl::enumerateGuestProperties(
[in] wstring patterns,
[out] wstring key[],
[out] wstring value[],
[out] long long timestampl[],
[out] wstring flags[])

patterns The patterns to match the properties against as a comma-separated string. If this is
empty, all properties currently set will be returned.

key The key names of the properties returned.

118

5 Classes (interfaces)

value The values of the properties returned. The array entries match the corresponding entries
in the key array.

timestamp The time stamps of the properties returned. The array entries match the correspond-
ing entries in the key array.

flags The flags of the properties returned. The array entries match the corresponding entries in
the key array.

Return a list of the guest properties matching a set of patterns along with their values, time
stamps and flags.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_ VM_STATE: Machine session is not open.
e VBOX_E_INVALID_OBJECT_STATE: Session type is not direct.

5.41.6 getPID

unsigned long IInternalSessionControl::getPID()

PID of the process that has created this Session object.

5.41.7 getRemoteConsole

IConsole IInternalSessionControl::getRemoteConsole()

Returns the console object suitable for remote control.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

5.41.8 onBandwidthGroupChange

void IInternalSessionControl::onBandwidthGroupChange(
[in] IBandwidthGroup bandwidthGroup)

bandwidthGroup The bandwidth group which changed.

Notification when one of the bandwidth groups change.

5.41.9 onCPUChange

void IInternalSessionControl::onCPUChange(
[in] unsigned long cpu,
[in] boolean add)

cpu The CPU which changed

add Flag whether the CPU was added or removed

Notification when a CPU changes.

119

5 Classes (interfaces)

5.41.10 onCPUExecutionCapChange

void IInternalSessionControl::onCPUExecutionCapChange(
[in] unsigned long executionCap)

executionCap The new CPU execution cap value. (1-100)

Notification when the CPU execution cap changes.

5.41.11 onMediumChange

void IInternalSessionControl::onMediumChange(
[in] IMediumAttachment mediumAttachment,
[in] boolean force)
mediumAttachment The medium attachment which changed.

force If the medium change was forced.

Triggered when attached media of the associated virtual machine have changed.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

e VBOX_E_INVALID OBJECT_STATE: Session type prevents operation.

5.41.12 onNetworkAdapterChange

void IInternalSessionControl::onNetworkAdapterChange(
[in] INetworkAdapter networkAdapter,
[in] boolean changeAdapter)
networkAdapter
changeAdapter

Triggered when settings of a network adapter of the associated virtual machine have changed.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.
e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

5.41.13 onParallelPortChange

void IInternalSessionControl::onParallelPortChange(
[in] IParallelPort parallelPort)

parallelPort

Triggered when settings of a parallel port of the associated virtual machine have changed.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

120

5 Classes (interfaces)

5.41.14 onSerialPortChange

void IInternalSessionControl::onSerialPortChange(
[in] ISerialPort serialPort)

serialPort

Triggered when settings of a serial port of the associated virtual machine have changed.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.
e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

5.41.15 onSharedFolderChange

void IInternalSessionControl::onSharedFolderChange(
[in] boolean global)

global

Triggered when a permanent (global or machine) shared folder has been created or removed.

Note: We don’t pass shared folder parameters in this notification because the order in
which parallel notifications are delivered is not defined, therefore it could happen that
these parameters were outdated by the time of processing this notification.

If this method fails, the following error codes may be reported:
e VBOX_E_INVALID_VM_STATE: Session state prevents operation.
e VBOX_E_INVALID OBJECT_STATE: Session type prevents operation.

5.41.16 onShowWindow

void IInternalSessionControl::onShowWindow (
[in] boolean check,
[out] boolean canShow,
[out] long long winId)

check
canShow
winld

Called by IMachine::canShowConsoleWindow() and by IMachine::showConsoleWindow() in
order to notify console listeners ICanShowWindowEvent and IShowWindowEvent.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

5.41.17 onStorageControllerChange
void IInternalSessionControl::onStorageControllerChange()

Triggered when settings of a storage controller of the associated virtual machine have changed.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.
e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

121

5 Classes (interfaces)

5.41.18 onStorageDeviceChange

void IInternalSessionControl::onStorageDeviceChange(
[in] IMediumAttachment mediumAttachment,
[in] boolean remove)

mediumAttachment The medium attachment which changed.

remove TRUE if the device is removed, FALSE if it was added.

Triggered when attached storage devices of the associated virtual machine have changed.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.
e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

5.41.19 onUSBControllerChange

void IInternalSessionControl::onUSBControllerChange()

Triggered when settings of the USB controller object of the associated virtual machine have
changed.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.
e VBOX_E_INVALID OBJECT_STATE: Session type prevents operation.

5.41.20 onUSBDeviceAttach

void IInternalSessionControl::onUSBDeviceAttach(
[in] IUSBDevice device,
[in] IVirtualBoxErrorInfo error,
[in] unsigned long maskedInterfaces)

device
error

maskedInterfaces

Triggered when a request to capture a USB device (as a result of matched USB filters or di-
rect call to IConsole::attachUSBDevice()) has completed. A nullerror object means success,
otherwise it describes a failure.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

122

5 Classes (interfaces)

5.41.21 onUSBDeviceDetach

void IInternalSessionControl::onUSBDeviceDetach(
[in] uuid id,
[in] IVirtualBoxErrorInfo error)

id
error

Triggered when a request to release the USB device (as a result of machine termination or
direct call to IConsole::detachUSBDevice()) has completed. A nullerror object means success,
otherwise it describes a failure.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

5.41.22 onVRDEServerChange

void IInternalSessionControl::onVRDEServerChange(
[in] boolean restart)

restart Flag whether the server must be restarted

Triggered when settings of the VRDE server object of the associated virtual machine have
changed.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

e VBOX_E_INVALID OBJECT_STATE: Session type prevents operation.

5.41.23 onlineMergeMedium

void IInternalSessionControl::onlineMergeMedium(
[in] IMediumAttachment mediumAttachment,
[in] unsigned long sourceldx,
[in] unsigned long targetIdx,
[in] IMedium source,
[in] IMedium target,
[in] boolean mergeForward,
[in] IMedium parentForTarget,
[in] IMedium childrenToReparent[],
[in] IProgress progress)

mediumAttachment The medium attachment to identify the medium chain.

sourceldx The index of the source image in the chain. Redundant, but drastically reduces IPC.
targetldx The index of the target image in the chain. Redundant, but drastically reduces IPC.
source Merge source medium.

target Merge target medium.

mergeForward Merge direction.

parentForTarget For forward merges: new parent for target medium.

123

5 Classes (interfaces)

childrenToReparent For backward merges: list of media which need their parent UUID up-
dated.

progress Progress object for this operation.

Triggers online merging of a hard disk. Used internally when deleting a snapshot while a VM
referring to the same hard disk chain is running.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Machine session is not open.
e VBOX_E_INVALID_OBJECT_STATE: Session type is not direct.

5.41.24 uninitialize

void IInternalSessionControl::uninitialize()

Uninitializes (closes) this session. Used by VirtualBox to close the corresponding remote ses-
sion when the direct session dies or gets closed.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.

5.41.25 updateMachineState

void IInternalSessionControl::updateMachineState(
[in] MachineState aMachineState)

aMachineState

Updates the machine state in the VM process. Must be called only in certain cases (see the
method implementation).
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Session state prevents operation.
e VBOX_E_INVALID_OBJECT_STATE: Session type prevents operation.

5.42 IKeyboard

The IKeyboard interface represents the virtual machine’s keyboard. Used in IConsole::keyboard.
Use this interface to send keystrokes or the Ctrl-Alt-Del sequence to the virtual machine.

5.42.1 Attributes
5.42.1.1 eventSource (read-only)
IEventSource IKeyboard::eventSource

Event source for keyboard events.

5.42.2 putCAD
void IKeyboard::putCAD()

Sends the Ctrl-Alt-Del sequence to the keyboard. This function is nothing special, it is just a
convenience function calling putScancodes() with the proper scancodes.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Could not send all scan codes to virtual keyboard.

124

5 Classes (interfaces)

5.42.3 putScancode

void IKeyboard::putScancode(
[in] long scancode)

scancode

Sends a scancode to the keyboard.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Could not send scan code to virtual keyboard.

5.42.4 putScancodes

unsigned long IKeyboard::putScancodes(
[in] long scancodes[])

scancodes

Sends an array of scancodes to the keyboard.
If this method fails, the following error codes may be reported:

e VBOX_E_IPRT_ERROR: Could not send all scan codes to virtual keyboard.

5.43 IKeyboardLedsChangedEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Notification when the guest OS executes the KBD_ CMD_SET LEDS command to alter the state
of the keyboard LEDs.

5.43.1 Attributes
5.43.1.1 numLock (read-only)

boolean IKeyboardLedsChangedEvent::numLock

NumLock status.

5.43.1.2 capsLock (read-only)

boolean IKeyboardLedsChangedEvent::capsLock

CapsLock status.

5.43.1.3 scrollLock (read-only)

boolean IKeyboardLedsChangedEvent::scrollLock

ScrollLock status.

125

5 Classes (interfaces)

5.44 IMachine

The IMachine interface represents a virtual machine, or guest, created in VirtualBox.

This interface is used in two contexts. First of all, a collection of objects implementing this
interface is stored in the IVirtualBox::machines[] attribute which lists all the virtual machines
that are currently registered with this VirtualBox installation. Also, once a session has been
opened for the given virtual machine (e.g. the virtual machine is running), the machine object
associated with the open session can be queried from the session object; see ISession for details.

The main role of this interface is to expose the settings of the virtual machine and provide
methods to change various aspects of the virtual machine’s configuration. For machine objects
stored in the IVirtualBox::machines[] collection, all attributes are read-only unless explicitly
stated otherwise in individual attribute and method descriptions.

In order to change a machine setting, a session for this machine must be opened using one
of the lockMachine() or launchVMProcess() methods. After the machine has been successfully
locked for a session, a mutable machine object needs to be queried from the session object and
then the desired settings changes can be applied to the returned object using IMachine attributes
and methods. See the ISession interface description for more information about sessions.

Note that IMachine does not provide methods to control virtual machine execution (such as
start the machine, or power it down) — these methods are grouped in a separate interface called
IConsole.

See also: ISession, IConsole

5.44.1 Attributes
5.44.1.1 parent (read-only)

IVirtualBox IMachine::parent

Associated parent object.

5.44.1.2 accessible (read-only)

boolean IMachine::accessible

Whether this virtual machine is currently accessible or not.

A machine is always deemed accessible unless it is registered and its settings file cannot be
read or parsed (either because the file itself is unavailable or has invalid XML contents).

Every time this property is read, the accessibility state of this machine is re-evaluated. If
the returned value is false, the accessError property may be used to get the detailed error
information describing the reason of inaccessibility, including XML error messages.

When the machine is inaccessible, only the following properties can be used on it:

e parent

e id

settingsFilePath

accessible

accessError

An attempt to access any other property or method will return an error.
The only possible action you can perform on an inaccessible machine is to unregister it using
the unregister() call (or, to check for the accessibility state once more by querying this property).

126

5 Classes (interfaces)

Note: In the current implementation, once this property returns true, the machine
will never become inaccessible later, even if its settings file cannot be successfully
read/written any more (at least, until the VirtualBox server is restarted). This limi-
tation may be removed in future releases.

5.44.1.3 accessEtrror (read-only)

IVirtualBoxErrorInfo IMachine::accessError

Error information describing the reason of machine inaccessibility.
Reading this property is only valid after the last call to accessible returned false (i.e. the ma-
chine is currently inaccessible). Otherwise, a null IVirtualBoxErrorInfo object will be returned.

5.44.1.4 name (read/write)
wstring IMachine: :name

Name of the virtual machine.

Besides being used for human-readable identification purposes everywhere in VirtualBox, the
virtual machine name is also used as a name of the machine’s settings file and as a name of
the subdirectory this settings file resides in. Thus, every time you change the value of this
property, the settings file will be renamed once you call saveSettings() to confirm the change.
The containing subdirectory will be also renamed, but only if it has exactly the same name as the
settings file itself prior to changing this property (for backward compatibility with previous API
releases). The above implies the following limitations:

e The machine name cannot be empty.

e The machine name can contain only characters that are valid file name characters accord-
ing to the rules of the file system used to store VirtualBox configuration.

e You cannot have two or more machines with the same name if they use the same subdirec-
tory for storing the machine settings files.

e You cannot change the name of the machine if it is running, or if any file in the directory
containing the settings file is being used by another running machine or by any other
process in the host operating system at a time when saveSettings() is called.

If any of the above limitations are hit, saveSettings() will return an appropriate error message
explaining the exact reason and the changes you made to this machine will not be saved.

Starting with VirtualBox 4.0, a “.vbox” extension of the settings file is recommended, but not
enforced. (Previous versions always used a generic “.xml” extension.)

5.44.1.5 description (read/write)
wstring IMachine::description

Description of the virtual machine.

The description attribute can contain any text and is typically used to describe the hardware
and software configuration of the virtual machine in detail (i.e. network settings, versions of the
installed software and so on).
5.44.1.6 id (read-only)

uuid IMachine::id

UUID of the virtual machine.

127

5 Classes (interfaces)

5.44.1.7 OSTypeld (read/write)

wstring IMachine::0STypeld

User-defined identifier of the Guest OS type. You may use IVirtualBox::getGuestOSType() to
obtain an IGuestOSType object representing details about the given Guest OS type.

Note: This value may differ from the value returned by IGuest::OSTypeld if Guest
Additions are installed to the guest OS.

5.44.1.8 hardwareVersion (read/write)

wstring IMachine::hardwareVersion

Hardware version identifier. Internal use only for now.

5.44.1.9 hardwareUUID (read/write)

uuid IMachine: :hardwareUUID

The UUID presented to the guest via memory tables, hardware and guest properties. For most
VMs this is the same as the id, but for VMs which have been cloned or teleported it may be the
same as the source VM. This latter is because the guest shouldn’t notice that it was cloned or
teleported.

5.44.1.10 CPUCount (read/write)

unsigned long IMachine::CPUCount

Number of virtual CPUs in the VM.

5.44.1.11 CPUHotPlugEnabled (read/write)

boolean IMachine::CPUHotPlugEnabled

This setting determines whether VirtualBox allows CPU hotplugging for this machine.

5.44.1.12 CPUExecutionCap (read/write)

unsigned long IMachine::CPUExecutionCap

Means to limit the number of CPU cycles a guest can use. The unit is percentage of host CPU
cycles per second. The valid range is 1 - 100. 100 (the default) implies no limit.

5.44.1.13 memorySize (read/write)

unsigned long IMachine::memorySize

System memory size in megabytes.

5.44.1.14 memoryBalloonSize (read/write)

unsigned long IMachine::memoryBalloonSize

Memory balloon size in megabytes.

128

5 Classes (interfaces)

5.44.1.15 pageFusionEnabled (read/write)

boolean IMachine::pageFusionEnabled

This setting determines whether VirtualBox allows page fusion for this machine (64 bits host
only).

5.44.1.16 VRAMSize (read/write)
unsigned long IMachine::VRAMSize

Video memory size in megabytes.

5.44.1.17 accelerate3DEnabled (read/write)

boolean IMachine::accelerate3DEnabled

This setting determines whether VirtualBox allows this machine to make use of the 3D graphics
support available on the host.

5.44.1.18 accelerate2DVideoEnabled (read/write)

boolean IMachine::accelerate2DVideoEnabled

This setting determines whether VirtualBox allows this machine to make use of the 2D video
acceleration support available on the host.

5.44.1.19 monitorCount (read/write)

unsigned long IMachine::monitorCount

Number of virtual monitors.

Note: Only effective on Windows XP and later guests with Guest Additions installed.

5.44.1.20 BIOSSettings (read-only)

IBIOSSettings IMachine::BIOSSettings
Object containing all BIOS settings.
5.44.1.21 firmwareType (read/write)
FirmwareType IMachine::firmwareType
Type of firmware (such as legacy BIOS or EFI), used for initial bootstrap in this VM.
5.44.1.22 pointingHidType (read/write)
PointingHidType IMachine::pointingHidType

Type of pointing HID (such as mouse or tablet) used in this VM. The default is typically
“PS2Mouse” but can vary depending on the requirements of the guest operating system.

129

5 Classes (interfaces)

5.44.1.23 keyboardHidType (read/write)

KeyboardHidType IMachine::keyboardHidType

Type of keyboard HID used in this VM. The default is typically “PS2Keyboard” but can vary
depending on the requirements of the guest operating system.

5.44.1.24 hpetEnabled (read/write)

boolean IMachine::hpetEnabled

This attribute controls if High Precision Event Timer (HPET) is enabled in this VM. Use this
property if you want to provide guests with additional time source, or if guest requires HPET to
function correctly. Default is false.

5.44.1.25 chipsetType (read/write)

ChipsetType IMachine::chipsetType

Chipset type used in this VM.

5.44.1.26 snapshotFolder (read/write)

wstring IMachine::snapshotFolder

Full path to the directory used to store snapshot data (differencing media and saved state files)
of this machine.

The initial value of this property is < path_to_settings file>/<machine_uuid>.

Currently, it is an error to try to change this property on a machine that has snapshots (because
this would require to move possibly large files to a different location). A separate method will
be available for this purpose later.

Note: Setting this property to null or to an empty string will restore the initial value.

Note: When setting this property, the specified path can be absolute (full path) or
relative to the directory where the machine settings file is located. When reading this
property, a full path is always returned.

Note: The specified path may not exist, it will be created when necessary.

5.44.1.27 VRDEServer (read-only)

IVRDEServer IMachine::VRDEServer

VirtualBox Remote Desktop Extension (VRDE) server object.

5.44.1.28 emulatedUSBWebcameraEnabled (read/write)

boolean IMachine::emulatedUSBWebcameraEnabled

130

5 Classes (interfaces)

5.44.1.29 emulatedUSBCardReaderEnabled (read/write)

boolean IMachine::emulatedUSBCardReaderEnabled

5.44.1.30 mediumAttachments (read-only)

IMediumAttachment IMachine::mediumAttachments|[]

Array of media attached to this machine.

5.44.1.31 USBController (read-only)

IUSBController IMachine::USBController

Associated USB controller object.

Note: If USB functionality is not available in the given edition of VirtualBox, this
method will set the result code to E_NOTIMPL.

5.44.1.32 audioAdapter (read-only)

TAudioAdapter IMachine::audioAdapter

Associated audio adapter, always present.

5.44.1.33 storageControllers (read-only)

IStorageController IMachine::storageControllers|]

Array of storage controllers attached to this machine.

5.44.1.34 settingsFilePath (read-only)

wstring IMachine::settingsFilePath

Full name of the file containing machine settings data.

5.44.1.35 settingsModified (read-only)

boolean IMachine::settingsModified

Whether the settings of this machine have been modified (but neither yet saved nor discarded).

Note: Reading this property is only valid on instances returned by ISession::machine
and on new machines created by IVirtualBox::createMachine() or opened by
IVirtualBox::openMachine() but not yet registered, or on unregistered machines after
calling unregister(). For all other cases, the settings can never be modified.

Note: For newly created unregistered machines, the value of this property is al-
ways true until saveSettings() is called (no matter if any machine settings have been
changed after the creation or not). For opened machines the value is set to false (and
then follows to normal rules).

131

5 Classes (interfaces)

5.44.1.36 sessionState (read-only)
SessionState IMachine::sessionState

Current session state for this machine.

5.44.1.37 sessionType (read-only)
wstring IMachine::sessionType

Type of the session. If sessionState is Spawning or Locked, this attribute contains the same
value as passed to the launchVMProcess() method in the type parameter. If the session was
used with lockMachine(), or if sessionState is SessionClosed, the value of this attribute is an
empty string.
5.44.1.38 sessionPid (read-only)

unsigned long IMachine::sessionPid

Identifier of the session process. This attribute contains the platform-dependent identifier of
the process whose session was used with lockMachine() call. The returned value is only valid if
sessionState is Locked or Unlocking by the time this property is read.
5.44.1.39 state (read-only)

MachineState IMachine::state

Current execution state of this machine.

5.44.1.40 lastStateChange (read-only)
long long IMachine::lastStateChange

Time stamp of the last execution state change, in milliseconds since 1970-01-01 UTC.

5.44.1.41 stateFilePath (read-only)
wstring IMachine::stateFilePath

Full path to the file that stores the execution state of the machine when it is in the Saved state.

Note: When the machine is not in the Saved state, this attribute is an empty string.

5.44.1.42 logFolder (read-only)
wstring IMachine::logFolder

Full path to the folder that stores a set of rotated log files recorded during machine execution.
The most recent log file is named VBox. log, the previous log file is named VBox.log.1 and so
on (up to VBox.log. 3 in the current version).

5.44.1.43 currentSnapshot (read-only)

ISnapshot IMachine::currentSnapshot

Current snapshot of this machine. This is null if the machine currently has no snapshots. If
it is not null, then it was set by one of IConsole::takeSnapshot(), IConsole::deleteSnapshot() or
IConsole::restoreSnapshot(), depending on which was called last. See ISnapshot for details.

132

5 Classes (interfaces)

5.44.1.44 snapshotCount (read-only)

unsigned long IMachine::snapshotCount

Number of snapshots taken on this machine. Zero means the machine doesn’t have any snap-
shots.

5.44.1.45 currentStateModified (read-only)

boolean IMachine::currentStateModified

Returns true if the current state of the machine is not identical to the state stored in the
current snapshot.

The current state is identical to the current snapshot only directly after one of the following
calls are made:

e IConsole::restoreSnapshot()

e IConsole::takeSnapshot() (issued on a “powered off” or “saved” machine, for which
settingsModified returns false)

The current state remains identical until one of the following happens:
e settings of the machine are changed
e the saved state is deleted
e the current snapshot is deleted

e an attempt to execute the machine is made

Note: For machines that don’t have snapshots, this property is always false.

5.44.1.46 sharedFolders (read-only)

ISharedFolder IMachine::sharedFolders[]

Collection of shared folders for this machine (permanent shared folders). These folders are
shared automatically at machine startup and available only to the guest OS installed within this
machine.

New shared folders are added to the collection using createSharedFolder(). Existing shared
folders can be removed using removeSharedFolder().

5.44.1.47 clipboardMode (read/write)
ClipboardMode IMachine::clipboardMode
Synchronization mode between the host OS clipboard and the guest OS clipboard.
5.44.1.48 guestPropertyNotificationPatterns (read/write)
wstring IMachine::guestPropertyNotificationPatterns

A comma-separated list of simple glob patterns. Changes to guest properties whose name
matches one of the patterns will generate an IGuestPropertyChangedEvent signal.

133

5 Classes (interfaces)

5.44.1.49 teleporterEnabled (read/write)

boolean IMachine::teleporterEnabled

When set to true, the virtual machine becomes a target teleporter the next time it is powered
on. This can only set to true when the VM is in the Powered0ff or Aborted state.

5.44.1.50 teleporterPort (read/write)

unsigned long IMachine::teleporterPort

The TCP port the target teleporter will listen for incoming teleportations on.
0 means the port is automatically selected upon power on. The actual value can be read from
this property while the machine is waiting for incoming teleportations.

5.44.1.51 teleporterAddress (read/write)

wstring IMachine::teleporterAddress

The address the target teleporter will listen on. If set to an empty string, it will listen on all
addresses.

5.44.1.52 teleporterPassword (read/write)

wstring IMachine::teleporterPassword

The password to check for on the target teleporter. This is just a very basic measure to prevent
simple hacks and operators accidentally beaming a virtual machine to the wrong place.

5.44.1.53 faultToleranceState (read/write)

FaultToleranceState IMachine::faultToleranceState

Fault tolerance state; disabled, source or target. This property can be changed at any time. If
you change it for a running VM, then the fault tolerance address and port must be set beforehand.

5.44.1.54 faultTolerancePort (read/write)

unsigned long IMachine::faultTolerancePort
The TCP port the fault tolerance source or target will use for communication.
5.44.1.55 faultToleranceAddress (read/write)
wstring IMachine::faultToleranceAddress
The address the fault tolerance source or target.
5.44.1.56 faultTolerancePassword (read/write)
wstring IMachine::faultTolerancePassword

The password to check for on the standby VM. This is just a very basic measure to prevent
simple hacks and operators accidentally choosing the wrong standby VM.

134

5 Classes (interfaces)

5.44.1.57 faultToleranceSyncinterval (read/write)
unsigned long IMachine::faultToleranceSyncInterval

The interval in ms used for syncing the state between source and target.

5.44.1.58 RTCUseUTC (read/write)
boolean IMachine: :RTCUseUTC

When set to true, the RTC device of the virtual machine will run in UTC time, otherwise in
local time. Especially Unix guests prefer the time in UTC.

5.44.1.59 ioCacheEnabled (read/write)

boolean IMachine::ioCacheEnabled

When set to true, the builtin I/0 cache of the virtual machine will be enabled.

5.44.1.60 ioCacheSize (read/write)
unsigned long IMachine::ioCacheSize

Maximum size of the I/O cache in MB.

5.44.1.61 bandwidthControl (read-only)
IBandwidthControl IMachine::bandwidthControl

Bandwidth control manager.

5.44.1.62 pciDeviceAssignments (read-only)
IPciDeviceAttachment IMachine::pciDeviceAssignments]]

Array of PCI devices assigned to this machine, to get list of all PCI devices attached to the
machine use IConsole::attachedPciDevices[] attribute, as this attribute is intended to list only
devices additional to what described in virtual hardware config. Usually, this list keeps host’s
physical devices assigned to the particular machine.

5.44.2 addStorageController

IStorageController IMachine::addStorageController(
[in] wstring name,
[in] StorageBus connectionType)

name
connectionType

Adds a new storage controller (SCSI, SAS or SATA controller) to the machine and returns it as
an instance of IStorageController.
name identifies the controller for subsequent calls such as getStorageControllerByName(),
getStorageControllerByInstance(), removeStorageController(), attachDevice() or mountMedium().
After the controller has been added, you can set its exact type by setting the IStorageController::controllerType.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_IN_USE: A storage controller with given name exists already.
e E_INVALIDARG: Invalid controllerType.

135

5 Classes (interfaces)

5.44.3 attachDevice

void IMachine::attachDevice(
[in] wstring name,
[in] long controllerPort,
[in] long device,
[in] DeviceType type,
[in] IMedium medium)

name Name of the storage controller to attach the device to.

controllerPort Port to attach the device to. For an IDE controller, O specifies the primary con-
troller and 1 specifies the secondary controller. For a SCSI controller, this must range from
0 to 15; for a SATA controller, from 0 to 29; for an SAS controller, from O to 7.

device Device slot in the given port to attach the device to. This is only relevant for IDE con-
trollers, for which 0 specifies the master device and 1 specifies the slave device. For all
other controller types, this must be 0.

type Device type of the attached device. For media opened by IVirtualBox::openMedium(), this
must match the device type specified there.

medium Medium to mount or NULL for an empty drive.

Attaches a device and optionally mounts a medium to the given storage controller
(IStorageController, identified by name), at the indicated port and device.

This method is intended for managing storage devices in general while a machine is powered
off. It can be used to attach and detach fixed and removable media. The following kind of media
can be attached to a machine:

e For fixed and removable media, you can pass in a medium that was previously opened
using IVirtualBox::openMedium().

e Only for storage devices supporting removable media (such as DVDs and floppies), you
can also specify a null pointer to indicate an empty drive or one of the medium objects
listed in the THost::DVDDrives[] and IHost::floppyDrives[] arrays to indicate a host drive.
For removable devices, you can also use mountMedium() to change the media while the
machine is running.

In a VM’s default configuration of virtual machines, the secondary master of the IDE controller
is used for a CD/DVD drive.

After calling this returns successfully, a new instance of IMediumAttachment will appear in the
machine’s list of medium attachments (see mediumAttachments[]).

See IMedium and IMediumAttachment for more information about attaching media.

The specified device slot must not have a device attached to it, or this method will fail.

Note: You cannot attach a device to a newly created machine until this machine’s
settings are saved to disk using saveSettings().

Note: If the medium is being attached indirectly, a new differencing medium will
implicitly be created for it and attached instead. If the changes made to the machine
settings (including this indirect attachment) are later cancelled using discardSettings(),
this implicitly created differencing medium will implicitly be deleted.

If this method fails, the following error codes may be reported:

136

5 Classes (interfaces)

e E_INVALIDARG: SATA device, SATA port, IDE port or IDE slot out of range, or file or UUID
not found.

e VBOX_E_INVALID OBJECT_STATE: Machine must be registered before media can be at-
tached.

e VBOX_E_INVALID_VM_STATE: Invalid machine state.

e VBOX_E_OBJECT_IN_USE: A medium is already attached to this or another virtual ma-
chine.

5.44.4 attachHostPciDevice

void IMachine::attachHostPciDevice(
[in] long hostAddress,
[in] long desiredGuestAddress,
[in] boolean tryToUnbind)

hostAddress Address of the host PCI device.
desiredGuestAddress Desired position of this device on guest PCI bus.

tryToUnbind If VMM shall try to unbind existing drivers from the device before attaching it to
the guest.

Attaches host PCI device with the given (host) PCI address to the PCI bus of the virtual ma-
chine. Please note, that this operation is two phase, as real attachment will happen when VM will
start, and most information will be delivered as IHostPciDevicePlugEvent on IVirtualBox event
source.

See also: THostPciDevicePlugEvent

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine state is not stopped (PCI hotplug not yet
implemented).

e VBOX_E_PDM_ERROR: Virtual machine does not have a PCI controller allowing attachment
of physical devices.

e VBOX_E_NOT_SUPPORTED: Hardware or host OS doesn’t allow PCI device passthrought.

5.44.5 canShowConsoleWindow

boolean IMachine::canShowConsoleWindow()

Returns true if the VM console process can activate the console window and bring it to fore-
ground on the desktop of the host PC.

Note: This method will fail if a session for this machine is not currently open.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Machine session is not open.

137

5 Classes (interfaces)

5.44.6 cloneTo

IProgress IMachine::cloneTo(
[in] IMachine target,
[in] CloneMode mode,
[in] CloneOptions options[])

target Target machine object.
mode Which states should be cloned.

options Options for the cloning operation.

Creates a clone of this machine, either as a full clone (which means creating independent
copies of the hard disk media, save states and so on), or as a linked clone (which uses its own
differencing media, sharing the parent media with the source machine).

The target machine object must have been created previously with IVirtualBox::createMachine(),
and all the settings will be transferred except the VM name and the hardware UUID. You can set
the VM name and the new hardware UUID when creating the target machine. The network MAC
addresses are newly created for all newtwork adapters. You can change that behaviour with the
options parameter. The operation is performed asynchronously, so the machine object will be
not be usable until the progress object signals completion.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: targetisnull.

5.44.7 createSharedFolder

void IMachine::createSharedFolder(
[in] wstring name,
[in] wstring hostPath,
[in] boolean writable,
[in] boolean automount)

name Unique logical name of the shared folder.
hostPath Full path to the shared folder in the host file system.
writable Whether the share is writable or readonly.

automount Whether the share gets automatically mounted by the guest or not.

Creates a new permanent shared folder by associating the given logical name with the given
host path, adds it to the collection of shared folders and starts sharing it. Refer to the description
of ISharedFolder to read more about logical names.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_IN_USE: Shared folder already exists.

e VBOX_E_FILE_ERROR: Shared folder hostPath not accessible.

5.44.8 delete

IProgress IMachine::delete(
[in] IMedium aMedia[])

aMedia List of media to be closed and whose storage files will be deleted.

138

5 Classes (interfaces)

Deletes the files associated with this machine from disk. If medium objects are passed in
with the aMedia argument, they are closed and, if closing was successful, their storage files are
deleted as well. For convenience, this array of media files can be the same as the one returned
from a previous unregister() call.

This method must only be called on machines which are either write-locked (i.e. on instances
returned by ISession::machine) or on unregistered machines (i.e. not yet registered machines
created by IVirtualBox::createMachine() or opened by IVirtualBox::openMachine(), or after hav-
ing called unregister()).

The following files will be deleted by this method:

e If unregister() had been previously called with a cleanupMode argument other than “Un-
registerOnly”, this will delete all saved state files that the machine had in use; possibly one
if the machine was in “Saved” state and one for each online snapshot that the machine had.

e On each medium object passed in the aMedia array, this will call IMedium::close().
If that succeeds, this will attempt to delete the medium’s storage on disk. Since the
IMedium::close() call will fail if the medium is still in use, e.g. because it is still attached
to a second machine; in that case the storage will not be deleted.

e Finally, the machine’s own XML file will be deleted.

Since deleting large disk image files can be a time-consuming I/O operation, this method oper-
ates asynchronously and returns an IProgress object to allow the caller to monitor the progress.
There will be one sub-operation for each file that is being deleted (saved state or medium storage
file).

Note: settingsModified will return true after this method successfully returns.

If this method fails, the following error codes may be reported:
e VBOX_E_INVALID VM_STATE: Machine is registered but not write-locked.

e VBOX_E_IPRT_ERROR: Could not delete the settings file.

5.44.9 detachDevice

void IMachine::detachDevice(
[in] wstring name,
[in] long controllerPort,
[in] long device)

name Name of the storage controller to detach the medium from.
controllerPort Port number to detach the medium from.
device Device slot number to detach the medium from.

Detaches the device attached to a device slot of the specified bus.

Detaching the device from the virtual machine is deferred. This means that the medium re-
mains associated with the machine when this method returns and gets actually de-associated
only after a successful saveSettings() call. See IMedium for more detailed information about
attaching media.

Note: You cannot detach a device from a running machine.

139

5 Classes (interfaces)

Note: Detaching differencing media implicitly created by attachDevice() for the
indirect attachment using this method will not implicitly delete them. The
IMedium::deleteStorage() operation should be explicitly performed by the caller af-
ter the medium is successfully detached and the settings are saved with saveSettings(),
if it is the desired action.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID VM_STATE: Attempt to detach medium from a running virtual machine.
e VBOX_E_OBJECT_NOT_FOUND: No medium attached to given slot/bus.

e VBOX_E_NOT_SUPPORTED: Medium format does not support storage deletion.

5.44.10 detachHostPciDevice

void IMachine::detachHostPciDevice(
[in] long hostAddress)

hostAddress Address of the host PCI device.

Detach host PCI device from the virtual machine. Also HostPciDevicePlugEvent on IVirtualBox
event source will be delivered. As currently we don’t support hot device unplug, IHostPciDevice-
PlugEvent event is delivered immediately.

See also: IHostPciDevicePlugEvent

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine state is not stopped (PCI hotplug not yet
implemented).

e VBOX_E_OBJECT_NOT_FOUND: This host device is not attached to this machine.

e VBOX_E_PDM_ERROR: Virtual machine does not have a PCI controller allowing attachment
of physical devices.

e VBOX_E_NOT_SUPPORTED: Hardware or host OS doesn’t allow PCI device passthrought.

5.44.11 discardSettings

void IMachine::discardSettings()

Discards any changes to the machine settings made since the session has been opened or since
the last call to saveSettings() or discardSettings().

Note: Calling this method is only valid on instances returned by ISession::machine
and on new machines created by IVirtualBox::createMachine() or opened by
IVirtualBox::openMachine() but not yet registered, or on unregistered machines after
calling unregister().

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine is not mutable.

140

5 Classes (interfaces)

5.44.12 enumerateGuestProperties

void IMachine::enumerateGuestProperties(
[in] wstring patterns,
[out] wstring name[],
[out] wstring value[],
[out] long long timestamp[],
[out] wstring flags[])

patterns The patterns to match the properties against, separated by ’|’ characters. If this is
empty or null, all properties will match.

name The names of the properties returned.

value The values of the properties returned. The array entries match the corresponding entries
in the name array.

timestamp The time stamps of the properties returned. The array entries match the correspond-
ing entries in the name array.

flags The flags of the properties returned. The array entries match the corresponding entries in
the name array.

Return a list of the guest properties matching a set of patterns along with their values, time
stamps and flags.

5.44.13 export

IVirtualSystemDescription IMachine::export(
[in] IAppliance aAppliance,
[in] wstring location)

aAppliance Appliance to export this machine to.
location The target location.

Exports the machine to an OVF appliance. See [Appliance for the steps required to export
VirtualBox machines to OVF.

5.44.14 findSnapshot

ISnapshot IMachine::findSnapshot(
[in] wstring nameOrlId)

nameOrld What to search for. Name or UUID of the snapshot to find

Returns a snapshot of this machine with the given name or UUID.

Returns a snapshot of this machine with the given UUID. A null argument can be used to
obtain the first snapshot taken on this machine. To traverse the whole tree of snapshots starting
from the root, inspect the root snapshot’s ISnapshot::children[] attribute and recurse over those
children.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: Virtual machine has no snapshots or snapshot not found.

141

5 Classes (interfaces)

5.44.15 getBootOrder

DeviceType IMachine::getBootOrder(
[in] unsigned long position)

position Position in the boot order (1 to the total number of devices the machine can boot from,
as returned by ISystemProperties::maxBootPosition).

Returns the device type that occupies the specified position in the boot order.

@todo [remove?] If the machine can have more than one device of the returned type (such
as hard disks), then a separate method should be used to retrieve the individual device that
occupies the given position.

If here are no devices at the given position, then Null is returned.

@todo getHardDiskBootOrder(), getNetworkBootOrder()

If this method fails, the following error codes may be reported:

e E_INVALIDARG: Boot position out of range.

5.44.16 getCPUIDLeaf

void IMachine::getCPUIDLeaf (
[in] unsigned long id,
[out] unsigned long valEax,
[out] unsigned long valEbx,
[out] unsigned long valEcx,
[out] unsigned long valEdx)

id CPUID leaf index.

valEax CPUID leaf value for register eax.
valEbx CPUID leaf value for register ebx.
valEcx CPUID leaf value for register ecx.

valEdx CPUID leaf value for register edx.

Returns the virtual CPU cpuid information for the specified leaf.

Currently supported index values for cpuid: Standard CPUID leafs: 0 - 0xA Extended CPUID
leafs: 0x80000000 - 0x8000000A

See the Intel and AMD programmer’s manuals for detailed information about the cpuid in-
struction and its leafs.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid id.

5.44.17 getCPUProperty

boolean IMachine::getCPUProperty (
[in] CPUPropertyType property)

property Property type to query.

Returns the virtual CPU boolean value of the specified property.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid property.

142

5 Classes (interfaces)

5.44.18 getCPUStatus

boolean IMachine::getCPUStatus(
[in] unsigned long cpu)

cpu The CPU id to check for.

Returns the current status of the given CPU.

5.44.19 getExtraData

wstring IMachine::getExtraData(
[in] wstring key)

key Name of the data key to get.

Returns associated machine-specific extra data.

If the requested data key does not exist, this function will succeed and return an empty string
in the value argument.

If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Settings file not accessible.
e VBOX_E_XML_ERROR: Could not parse the settings file.

5.44.20 getExtraDataKeys

wstring[] IMachine::getExtraDataKeys()

Returns an array representing the machine-specific extra data keys which currently have values
defined.

5.44.21 getGuestProperty

void IMachine::getGuestProperty(
[in] wstring name,
[out] wstring value,
[out] long long timestamp,
[out] wstring flags)

name The name of the property to read.
value The value of the property. If the property does not exist then this will be empty.
timestamp The time at which the property was last modified, as seen by the server process.

flags Additional property parameters, passed as a comma-separated list of “name=value” type
entries.

Reads an entry from the machine’s guest property store.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Machine session is not open.

143

5 Classes (interfaces)

5.44.22 getGuestPropertyTimestamp

long long IMachine::getGuestPropertyTimestamp (
[in] wstring property)

property The name of the property to read.

Reads a property timestamp from the machine’s guest property store.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Machine session is not open.

5.44.23 getGuestPropertyValue

wstring IMachine::getGuestPropertyValue(
[in] wstring property)

property The name of the property to read.

Reads a value from the machine’s guest property store.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Machine session is not open.

5.44.24 getHWVirtExProperty

boolean IMachine::getHWVirtExProperty(
[in] HWVirtExPropertyType property)

property Property type to query.

Returns the value of the specified hardware virtualization boolean property.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid property.

5.44.25 getMedium

IMedium IMachine::getMedium(
[in] wstring name,
[in] long controllerPort,
[in] long device)

name Name of the storage controller the medium is attached to.
controllerPort Port to query.

device Device slot in the given port to query.

Returns the virtual medium attached to a device slot of the specified bus.

Note that if the medium was indirectly attached by mountMedium() to the given device slot
then this method will return not the same object as passed to the mountMedium() call. See
IMedium for more detailed information about mounting a medium.

If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: No medium attached to given slot/bus.

144

5 Classes (interfaces)

5.44.26 getMediumAttachment

IMediumAttachment IMachine::getMediumAttachment (
[in] wstring name,
[in] long controllerPort,
[in] long device)

name
controllerPort
device

Returns a medium attachment which corresponds to the controller with the given name, on
the given port and device slot.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: No attachment exists for the given controller/port/device
combination.

5.44.27 getMediumAttachmentsOfController

IMediumAttachment[] IMachine::getMediumAttachmentsOfController(
[in] wstring name)

name

Returns an array of medium attachments which are attached to the the controller with the
given name.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: A storage controller with given name doesn’t exist.

5.44.28 getNetworkAdapter

INetworkAdapter IMachine::getNetworkAdapter(
[in] unsigned long slot)

slot

Returns the network adapter associated with the given slot. Slots are numbered sequen-
tially, starting with zero. The total number of adapters per machine is defined by the
ISystemProperties::getMaxNetworkAdapters() property, so the maximum slot number is one less
than that property’s value.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid slot number.

5.44.29 getParallelPort

IParallelPort IMachine::getParallelPort(
[in] unsigned long slot)

slot

Returns the parallel port associated with the given slot. Slots are numbered sequen-
tially, starting with zero. The total number of parallel ports per machine is defined by the
ISystemProperties::parallelPortCount property, so the maximum slot number is one less than
that property’s value.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid slot number.

145

5 Classes (interfaces)

5.44.30 getSerialPort

ISerialPort IMachine::getSerialPort(
[in] unsigned long slot)

slot

Returns the serial port associated with the given slot. Slots are numbered sequen-
tially, starting with zero. The total number of serial ports per machine is defined by the
ISystemProperties::serialPortCount property, so the maximum slot number is one less than
that property’s value.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid slot number.

5.44.31 getStorageControllerBylnstance

IStorageController IMachine::getStorageControllerByInstance(
[in] unsigned long instance)

instance

Returns a storage controller with the given instance number.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: A storage controller with given instance number doesn’t
exist.

5.44.32 getStorageControllerByName

IStorageController IMachine::getStorageControllerByName (
[in] wstring name)

name

Returns a storage controller with the given name.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: A storage controller with given name doesn’t exist.

5.44.33 hotPlugCPU

void IMachine::hotPlugCPU(
[in] unsigned long cpu)

cpu The CPU id to insert.

Plugs a CPU into the machine.

5.44.34 hotUnplugCPU

void IMachine::hotUnplugCPU(
[in] unsigned long cpu)

cpu The CPU id to remove.

Removes a CPU from the machine.

146

5 Classes (interfaces)

5.44.35 launchVMProcess

IProgress IMachine::launchVMProcess(
[in] ISession session,
[in] wstring type,
[in] wstring environment)

session Client session object to which the VM process will be connected (this must be in “Un-
locked” state).

type Front-end to use for the new VM process. The following are currently supported:

e "gui": VirtualBox Qt GUI front-end
e "headless": VBoxHeadless (VRDE Server) front-end
e "sdl": VirtualBox SDL front-end

e "emergencystop": reserved value, used for aborting the currently running VM or
session owner. In this case the session parameter may be NULL (if it is non-null
it isn’t used in any way), and the progress return value will be always NULL. The
operation completes immediately.

environment Environment to pass to the VM process.

Spawns a new process that will execute the virtual machine and obtains a shared lock on the
machine for the calling session.

If launching the VM succeeds, the new VM process will create its own session and write-lock
the machine for it, preventing conflicting changes from other processes. If the machine is already
locked (because it is already running or because another session has a write lock), launching the
VM process will therefore fail. Reversely, future attempts to obtain a write lock will also fail
while the machine is running.

The caller’s session object remains separate from the session opened by the new VM process.
It receives its own IConsole object which can be used to control machine execution, but it cannot
be used to change all VM settings which would be available after a lockMachine() call.

The caller must eventually release the session’s shared lock by calling ISession::unlockMachine()
on the local session object once this call has returned. However, the session’s state (see
ISession::state) will not return to “Unlocked” until the remote session has also unlocked the
machine (i.e. the machine has stopped running).

Launching a VM process can take some time (a new VM is started in a new process, for which
memory and other resources need to be set up). Because of this, an IProgress object is returned to
allow the caller to wait for this asynchronous operation to be completed. Until then, the caller’s
session object remains in the “Unlocked” state, and its ISession::machine and ISession::console
attributes cannot be accessed. It is recommended to use IProgress::waitForCompletion() or simi-
lar calls to wait for completion. Completion is signalled when the VM is powered on. If launching
the VM fails, error messages can be queried via the progress object, if available.

The progress object will have at least 2 sub-operations. The first operation covers the
period up to the new VM process calls powerUp. The subsequent operations mirror the
IConsole::powerUp() progress object. Because IConsole::powerUp() may require some extra
sub-operations, the IProgress::operationCount may change at the completion of operation.

For details on the teleportation progress operation, see IConsole::powerUp().

The environment argument is a string containing definitions of environment variables in the
following format:

NAME [=VALUE]\n
NAME [=VALUE]\n

147

5 Classes (interfaces)

where \\n is the new line character. These environment variables will be appended to the
environment of the VirtualBox server process. If an environment variable exists both in the server
process and in this list, the value from this list takes precedence over the server’s variable. If the
value of the environment variable is omitted, this variable will be removed from the resulting
environment. If the environment string is null or empty, the server environment is inherited by
the started process as is.

If this method fails, the following error codes may be reported:

E_UNEXPECTED: Virtual machine not registered.

E_INVALIDARG: Invalid session type type.

VBOX_E_OBJECT_NOT_FOUND: No machine matching machineId found.
VBOX_E_INVALID_OBJECT_STATE: Session already open or being opened.
VBOX_E_IPRT_ERROR: Launching process for machine failed.

VBOX_E_VM_ERROR: Failed to assign machine to session.

5.44.36 lockMachine

void

IMachine: :lockMachine(
[in] ISession session,
[in] LockType lockType)

session Session object for which the machine will be locked.

lockType If set to Write, then attempt to acquire an exclusive write lock or fail. If set to Shared,

then either acquire an exclusive write lock or establish a link to an existing session.

Locks the machine for the given session to enable the caller to make changes to the machine
or start the VM or control VM execution.
There are two ways to lock a machine for such uses:

If you want to make changes to the machine settings, you must obtain an exclusive write
lock on the machine by setting LockType to Write.

This will only succeed if no other process has locked the machine to prevent conflicting
changes. Only after an exclusive write lock has been obtained using this method, one
can change all VM settings or execute the VM in the process space of the session object.
(Note that the latter is only of interest if you actually want to write a new front-end for
virtual machines; but this API gets called internally by the existing front-ends such as
VBoxHeadless and the VirtualBox GUI to acquire a write lock on the machine that they are
running.)

On success, write-locking the machine for a session creates a second copy of the IMachine
object. It is this second object upon which changes can be made; in VirtualBox terminology,
the second copy is “mutable”. It is only this second, mutable machine object upon which
you can call methods that change the machine state. After having called this method, you
can obtain this second, mutable machine object using the ISession::machine attribute.

If you only want to check the machine state or control machine execution without actually
changing machine settings (e.g. to get access to VM statistics or take a snapshot or save
the machine state), then set the LockType argument to Shared.

If no other session has obtained a lock, you will obtain an exclusive write lock as described
above. However, if another session has already obtained such a lock, then a link to that
existing session will be established which allows you to control that existing session.

To find out which type of lock was obtained, you can inspect ISession::type, which will
have been set to either WriteLock or Shared.

148

5 Classes (interfaces)

In either case, you can get access to the IConsole object which controls VM execution.

Also in all of the above cases, one must always call ISession::unlockMachine() to release the
lock on the machine, or the machine’s state will eventually be set to “Aborted”.

To change settings on a machine, the following sequence is typically performed:

1. Call this method to obtain an exclusive write lock for the current session.
2. Obtain a mutable IMachine object from ISession::machine.

3. Change the settings of the machine by invoking IMachine methods.

4. Call saveSettings().
5.

Release the write lock by calling ISession::unlockMachine().
If this method fails, the following error codes may be reported:

e E_UNEXPECTED: Virtual machine not registered.
e E_ACCESSDENIED: Process not started by OpenRemoteSession.
e VBOX_E_INVALID_OBJECT_STATE: Session already open or being opened.

e VBOX_E_VM_ERROR: Failed to assign machine to session.

5.44.37 mountMedium

void IMachine: :mountMedium(
[in] wstring name,
[in] long controllerPort,
[in] long device,
[in] IMedium medium,
[in] boolean force)

name Name of the storage controller to attach the medium to.
controllerPort Port to attach the medium to.

device Device slot in the given port to attach the medium to.
medium Medium to mount or NULL for an empty drive.

force Allows to force unmount/mount of a medium which is locked by the device slot in the
given port to attach the medium to.

Mounts a medium (IMedium, identified by the given UUID id) to the given storage controller
(IStorageController, identified by name), at the indicated port and device. The device must
already exist; see attachDevice() for how to attach a new device.

This method is intended only for managing removable media, where the device is fixed but
media is changeable at runtime (such as DVDs and floppies). It cannot be used for fixed media
such as hard disks.

The controllerPort and device parameters specify the device slot and have have the same
meaning as with attachDevice().

The specified device slot can have a medium mounted, which will be unmounted first. Speci-
fying a zero UUID (or an empty string) for medium does just an unmount.

See IMedium for more detailed information about attaching media.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: SATA device, SATA port, IDE port or IDE slot out of range.

149

5 Classes (interfaces)
e VBOX_E_INVALID_OBJECT_STATE: Attempt to attach medium to an unregistered virtual
machine.
e VBOX_E_INVALID_VM_STATE: Invalid machine state.

e VBOX_E_OBJECT_IN_USE: Medium already attached to this or another virtual machine.

5.44.38 nonRotationalDevice

void IMachine::nonRotationalDevice(
[in] wstring name,
[in] long controllerPort,
[in] long device,
[in] boolean nonRotational)

name Name of the storage controller.
controllerPort Storage controller port.
device Device slot in the given port.

nonRotational New value for the non-rotational device flag.

Sets a flag in the device information which indicates that the medium is not based on rotational
technology, i.e. that the access times are more or less independent of the position on the medium.
This may or may not be supported by a particular drive, and is silently ignored in the latter
case. At the moment only hard disks (which is a misnomer in this context) accept this setting.
Changing the setting while the VM is running is forbidden. The device must already exist; see
attachDevice() for how to attach a new device.

The controllerPort and device parameters specify the device slot and have have the same
meaning as with attachDevice().

If this method fails, the following error codes may be reported:

e E_INVALIDARG: SATA device, SATA port, IDE port or IDE slot out of range.
e VBOX_E_INVALID_OBJECT_STATE: Attempt to modify an unregistered virtual machine.
e VBOX_E_INVALID_VM_STATE: Invalid machine state.

5.44.39 passthroughDevice

void IMachine::passthroughDevice(
[in] wstring name,
[in] long controllerPort,
[in] long device,
[in] boolean passthrough)

name Name of the storage controller.
controllerPort Storage controller port.
device Device slot in the given port.

passthrough New value for the passthrough setting.

150

5 Classes (interfaces)

Sets the passthrough mode of an existing DVD device. Changing the setting while the VM is
running is forbidden. The setting is only used if at VM start the device is configured as a host
DVD drive, in all other cases it is ignored. The device must already exist; see attachDevice() for
how to attach a new device.

The controllerPort and device parameters specify the device slot and have have the same
meaning as with attachDevice().

If this method fails, the following error codes may be reported:

e E_INVALIDARG: SATA device, SATA port, IDE port or IDE slot out of range.
e VBOX_E_INVALID_OBJECT_STATE: Attempt to modify an unregistered virtual machine.

e VBOX_E_INVALID_VM_STATE: Invalid machine state.

5.44.40 queryLogFilename

wstring IMachine::querylLogFilename(
[in] unsigned long idx)

idx Which log file name to query. O=current log file.

Queries for the VM log file name of an given index. Returns an empty string if a log file with
that index doesn’t exists.

5.44.41 querySavedGuestSize

void IMachine::querySavedGuestSize(
[in] unsigned long screenId,
[out] unsigned long width,
[out] unsigned long height)

screenld Saved guest screen to query info from.
width Guest width at the time of the saved state was taken.

height Guest height at the time of the saved state was taken.

Returns the guest dimensions from the saved state.

5.44.42 querySavedScreenshotPNGSize

void IMachine::querySavedScreenshotPNGSize(
[in] unsigned long screenId,
[out] unsigned long size,
[out] unsigned long width,
[out] unsigned long height)

screenld Saved guest screen to query info from.

size Size of buffer required to store the PNG binary data.
width Image width.

height Image height.

Returns size in bytes and dimensions of a saved PNG image of screenshot from saved state.

151

5 Classes (interfaces)

5.44.43 querySavedThumbnailSize

void IMachine::querySavedThumbnailSize(
[in] unsigned long screenId,
[out] unsigned long size,
[out] unsigned long width,
[out] unsigned long height)

screenld Saved guest screen to query info from.
size Size of buffer required to store the bitmap.
width Bitmap width.

height Bitmap height.

Returns size in bytes and dimensions in pixels of a saved thumbnail bitmap from saved state.

5.44.44 readlLog

octet[] IMachine::readLog(
[in] unsigned long idx,
[in] long long offset,
[in] long long size)

idx Which log file to read. O=current log file.
offset Offset in the log file.
size Chunk size to read in the log file.

Reads the VM log file. The chunk size is limited, so even if you ask for a big piece there might
be less data returned.

5.44.45 readSavedScreenshotPNGToArray

octet[] IMachine::readSavedScreenshotPNGToArray (
[in] unsigned long screenId,
[out] unsigned long width,
[out] unsigned long height)

screenld Saved guest screen to read from.
width Image width.
height Image height.

Screenshot in PNG format is retrieved to an array of bytes.

5.44.46 readSavedThumbnailPNGToArray

octet[] IMachine::readSavedThumbnailPNGToArray (
[in] unsigned long screenId,
[out] unsigned long width,
[out] unsigned long height)

screenld Saved guest screen to read from.
width Image width.
height Image height.

Thumbnail in PNG format is retrieved to an array of bytes.

152

5 Classes (interfaces)

5.44.47 readSavedThumbnailToArray

octet[] IMachine::readSavedThumbnailToArray (
[in] unsigned long screenId,
[in] boolean BGR,
[out] unsigned long width,
[out] unsigned long height)

screenld Saved guest screen to read from.

BGR How to order bytes in the pixel. A pixel consists of 4 bytes. If this parameter is true, then
bytes order is: B, G, R, OxFF. If this parameter is false, then bytes order is: R, G, B, OxFF.

width Bitmap width.
height Bitmap height.

Thumbnail is retrieved to an array of bytes in uncompressed 32-bit BGRA or RGBA format.

5.44.48 removeAllICPUIDLeaves

void IMachine::removeAllCPUIDLeaves()

Removes all the virtual CPU cpuid leaves

5.44.49 removeCPUIDLeaf

void IMachine::removeCPUIDLeaf (
[in] unsigned long id)

id CPUID leaf index.

Removes the virtual CPU cpuid leaf for the specified index
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid id.

5.44.50 removeSharedFolder

void IMachine::removeSharedFolder(
[in] wstring name)

name Logical name of the shared folder to remove.

Removes the permanent shared folder with the given name previously created by
createSharedFolder() from the collection of shared folders and stops sharing it.
If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_VM_STATE: Virtual machine is not mutable.
e VBOX_E_OBJECT_NOT_FOUND: Shared folder name does not exist.

5.44.51 removeStorageController

void IMachine::removeStorageController(
[in] wstring name)

name

Removes a storage controller from the machine.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: A storage controller with given name doesn’t exist.

153

5 Classes (interfaces)

5.44.52 saveSettings

void IMachine::saveSettings()

Saves any changes to machine settings made since the session has been opened or a new ma-
chine has been created, or since the last call to saveSettings() or discardSettings(). For registered
machines, new settings become visible to all other VirtualBox clients after successful invocation
of this method.

Note: The method sends IMachineDataChangedEvent notification event after the con-
figuration has been successfully saved (only for registered machines).

Note: Calling this method is only valid on instances returned by ISession::machine and
on new machines created by IVirtualBox::createMachine() but not yet registered, or on
unregistered machines after calling unregister().

If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Settings file not accessible.
e VBOX_E_XML_ERROR: Could not parse the settings file.
e E_ACCESSDENIED: Modification request refused.

5.44.53 setBandwidthGroupForDevice

void IMachine::setBandwidthGroupForDevice(
[in] wstring name,
[in] long controllerPort,
[in] long device,
[in] IBandwidthGroup bandwidthGroup)

name Name of the storage controller.
controllerPort Storage controller port.
device Device slot in the given port.

bandwidthGroup New value for the bandwidth group or NULL for no group.

Sets the bandwidth group of an existing storage device. The device must already exist; see
attachDevice() for how to attach a new device.

The controllerPort and device parameters specify the device slot and have have the same
meaning as with attachDevice().

If this method fails, the following error codes may be reported:

e E_INVALIDARG: SATA device, SATA port, IDE port or IDE slot out of range.
e VBOX_E_INVALID OBJECT_STATE: Attempt to modify an unregistered virtual machine.
e VBOX_E_INVALID_VM_STATE: Invalid machine state.

154

5 Classes (interfaces)

5.44.54 setBootOrder

void IMachine::setBootOrder(
[in] unsigned long position,
[in] DeviceType device)

position Position in the boot order (1 to the total number of devices the machine can boot from,
as returned by ISystemProperties::maxBootPosition).

device The type of the device used to boot at the given position.

Puts the given device to the specified position in the boot order.

To indicate that no device is associated with the given position, Null should be used.
@todo setHardDiskBootOrder(), setNetworkBootOrder()

If this method fails, the following error codes may be reported:

e E_INVALIDARG: Boot position out of range.

e E_NOTIMPL: Booting from USB device currently not supported.

5.44.55 setCPUIDLeaf

void IMachine::setCPUIDLeaf (
[in] unsigned long id,
[in] unsigned long valEax,
[in] unsigned long valEbx,
[in] unsigned long valEcx,
[in] unsigned long valEdx)

id CPUID leaf index.

valEax CPUID leaf value for register eax.
valEbx CPUID leaf value for register ebx.
valEcx CPUID leaf value for register ecx.

valEdx CPUID leaf value for register edx.

Sets the virtual CPU cpuid information for the specified leaf. Note that these values are not
passed unmodified. VirtualBox clears features that it doesn’t support.

Currently supported index values for cpuid: Standard CPUID leafs: 0 - OxA Extended CPUID
leafs: 0x80000000 - 0x8000000A

See the Intel and AMD programmer’s manuals for detailed information about the cpuid in-
struction and its leafs.

Do not use this method unless you know exactly what you'’re doing. Misuse can lead to random
crashes inside VMs.

If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid id.

5.44.56 setCPUProperty

void IMachine::setCPUProperty/(
[in] CPUPropertyType property,
[in] boolean value)

property Property type to query.

155

5 Classes (interfaces)

value Property value.

Sets the virtual CPU boolean value of the specified property.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid property.

5.44.57 setExtraData

void IMachine::setExtraData(
[in] wstring key,
[in] wstring value)

key Name of the data key to set.

value Value to assign to the key.

Sets associated machine-specific extra data.
If you pass null or an empty string as a key value, the given key will be deleted.

Note: Before performing the actual data change, this method will ask all registered
listeners using the IExtraDataCanChangeEvent notification for a permission. If one of
the listeners refuses the new value, the change will not be performed.

Note: On success, the IExtraDataChangedEvent notification is called to inform all reg-
istered listeners about a successful data change.

Note: This method can be called outside the machine session and therefore it’s a caller’s
responsibility to handle possible race conditions when several clients change the same
key at the same time.

If this method fails, the following error codes may be reported:

e VBOX_E_FILE_ERROR: Settings file not accessible.

e VBOX_E_XML_ERROR: Could not parse the settings file.

5.44.58 setGuestProperty

void IMachine::setGuestProperty(
[in] wstring property,
[in] wstring value,
[in] wstring flags)

property The name of the property to set, change or delete.

value The new value of the property to set, change or delete. If the property does not yet exist
and value is non-empty, it will be created. If the value is null or empty, the property will
be deleted if it exists.

flags Additional property parameters, passed as a comma-separated list of “name=value” type
entries.

156

5 Classes (interfaces)

Sets, changes or deletes an entry in the machine’s guest property store.
If this method fails, the following error codes may be reported:

e E_ACCESSDENIED: Property cannot be changed.

e E_INVALIDARG: Invalid flags.

e VBOX_E_INVALID_VM_STATE: Virtual machine is not mutable or session not open.

e VBOX_E_INVALID OBJECT_STATE: Cannot set transient property when machine not run-

ning.

5.44.59 setGuestPropertyValue

void IMachine::setGuestPropertyValue(
[in] wstring property,
[in] wstring value)
property The name of the property to set, change or delete.

value The new value of the property to set, change or delete. If the property does not yet exist
and value is non-empty, it will be created. If the value is null or empty, the property will
be deleted if it exists.

Sets, changes or deletes a value in the machine’s guest property store. The flags field will be
left unchanged or created empty for a new property.
If this method fails, the following error codes may be reported:

e E_ACCESSDENIED: Property cannot be changed.
e VBOX_E_INVALID VM_STATE: Virtual machine is not mutable or session not open.
e VBOX_E_INVALID OBJECT_STATE: Cannot set transient property when machine not run-

ning.

5.44.60 setHWVirtExProperty

void IMachine::setHWVirtExProperty(
[in] HWVirtExPropertyType property,
[in] boolean value)

property Property type to set.
value New property value.

Sets a new value for the specified hardware virtualization boolean property.
If this method fails, the following error codes may be reported:

e E_INVALIDARG: Invalid property.

5.44.61 setStorageControllerBootable

void IMachine::setStorageControllerBootable(
[in] wstring name,
[in] boolean bootable)

name

bootable

157

5 Classes (interfaces)

Sets the bootable flag of the storage controller with the given name.
If this method fails, the following error codes may be reported:

e VBOX_E_OBJECT_NOT_FOUND: A storage controller with given name doesn’t exist.

e VBOX_E_OBJECT_IN_USE: Another storage controller is marked as bootable already.

5.44.62 showConsoleWindow

long long IMachine::showConsoleWindow()

Activates the console window and brings it to foreground on the desktop of the host PC. Many
modern window managers on many platforms implement some sort of focus stealing prevention
logic, so that it may be impossible to activate a window without the help of the currently active
application. In this case, this method will return a non-zero identifier that represents the top-
level window of the VM console process. The caller, if it represents a currently active process,
is responsible to use this identifier (in a platform-dependent manner) to perform actual window
activation.

Note: This method will fail if a session for this machine is not currently open.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID VM_STATE: Machine session is not open.

5.44.63 temporaryEjectDevice

void IMachine::temporaryEjectDevice(
[in] wstring name,
[in] long controllerPort,
[in] long device,
[in] boolean temporaryEject)

name Name of the storage controller.
controllerPort Storage controller port.
device Device slot in the given port.

temporaryEject New value for the eject behavior.

Sets the behavior for guest-triggered medium eject. In some situations it is desirable that such
ejects update the VM configuration, and in others the eject should keep the VM configuration.
The device must already exist; see attachDevice() for how to attach a new device.

The controllerPort and device parameters specify the device slot and have have the same
meaning as with attachDevice().

If this method fails, the following error codes may be reported:

e E_INVALIDARG: SATA device, SATA port, IDE port or IDE slot out of range.
e VBOX_E_INVALID_OBJECT_STATE: Attempt to modify an unregistered virtual machine.

e VBOX_E_INVALID_VM_STATE: Invalid machine state.

158

5 Classes (interfaces)

5.44.64 unregister

IMedium[] IMachine::unregister(
[in] CleanupMode cleanupMode)

cleanupMode How to clean up after the machine has been unregistered.

Unregisters a machine previously registered with IVirtualBox::registerMachine() and option-
ally do additional cleanup before the machine is unregistered.

This method does not delete any files. It only changes the machine configuration and the list of
registered machines in the VirtualBox object. To delete the files which belonged to the machine,
including the XML file of the machine itself, call delete(), optionally with the array of IMedium
objects which was returned from this method.

How thoroughly this method cleans up the machine configuration before unregistering the
machine depends on the cleanupMode argument.

e With “UnregisterOnly”, the machine will only be unregistered, but no additional cleanup
will be performed. The call will fail if the machine is in “Saved” state or has any snapshots
or any media attached (see IMediumAttachment). It is the responsibility of the caller to
delete all such configuration in this mode. In this mode, the API behaves like the former
IVirtualBox::unregisterMachine() API which it replaces.

e With “DetachAllReturnNone”, the call will succeed even if the machine is in “Saved” state
or if it has snapshots or media attached. All media attached to the current machine state
or in snapshots will be detached. No medium objects will be returned; all of the machine’s
media will remain open.

e With “DetachAllReturnHardDisksOnly”, the call will behave like with “DetachAllReturn-
None”, except that all the hard disk medium objects which were detached from the ma-
chine will be returned as an array. This allows for quickly passing them to the delete() API
for closing and deletion.

e With “Full”, the call will behave like with “DetachAllReturnHardDisksOnly”, except that all
media will be returned in the array, including removable media like DVDs and floppies.
This might be useful if the user wants to inspect in detail which media were attached to the
machine. Be careful when passing the media array to delete() in that case because users
will typically want to preserve ISO and RAW image files.

A typical implementation will use “DetachAllReturnHardDisksOnly” and then pass the result-
ing IMedium array to delete(). This way, the machine is completely deleted with all its saved
states and hard disk images, but images for removable drives (such as ISO and RAW files) will
remain on disk.

This API does not verify whether the media files returned in the array are still attached to other
machines (i.e. shared between several machines). If such a shared image is passed to delete()
however, closing the image will fail there and the image will be silently skipped.

This API may, however, move media from this machine’s media registry to other media reg-
istries (see IMedium for details on media registries). For machines created with VirtualBox 4.0 or
later, if media from this machine’s media registry are also attached to another machine (shared
attachments), each such medium will be moved to another machine’s registry. This is because
without this machine’s media registry, the other machine cannot find its media any more and
would become inaccessible.

This API implicitly calls saveSettings() to save all current machine settings before unregister-
ing it. It may also silently call saveSettings() on other machines if media are moved to other
machines’ media registries.

After successful method invocation, the IMachineRegisteredEvent event is fired.

The call will fail if the machine is currently locked (see ISession).

159

5 Classes (interfaces)

Note: If the given machine is inaccessible (see accessible), it will be unregistered and
fully uninitialized right afterwards. As a result, the returned machine object will be
unusable and an attempt to call any method will return the “Object not ready” error.

If this method fails, the following error codes may be reported:

e VBOX_E_INVALID_OBJECT_STATE: Machine is currently locked for a session.

5.45 IMachineDataChangedEvent (IMachineEvent)

Note: This interface extends IMachineEvent and therefore supports all its methods and
attributes as well.

Any of the settings of the given machine has changed.

5.45.1 Attributes
5.45.1.1 temporary (read-only)

boolean IMachineDataChangedEvent::temporary

true if the settings change is temporary. All permanent settings changes will trigger an event,
and only temporary settings changes for running VMs will trigger an event. Note: sending events
for temporary changes is NOT IMPLEMENTED.

5.46 IMachineDebugger

’ Note: This interface is not supported in the web service.

5.46.1 Attributes
5.46.1.1 singlestep (read/write)

boolean IMachineDebugger::singlestep

Switch for enabling singlestepping.

5.46.1.2 recompileUser (read/write)

boolean IMachineDebugger::recompileUser

Switch for forcing code recompilation for user mode code.

5.46.1.3 recompileSupervisor (read/write)

boolean IMachineDebugger::recompileSupervisor

Switch for forcing code recompilation for supervisor mode code.

160

5 Classes (interfaces)

5.46.1.4 PATMEnabled (read/write)

boolean IMachineDebugger: :PATMEnabled

Switch for enabling and disabling the PATM component.

5.46.1.5 CSAMEnabled (read/write)

boolean IMachineDebugger: :CSAMEnabled

Switch for enabling and disabling the CSAM component.

5.46.1.6 logEnabled (read/write)

boolean IMachineDebugger: :logEnabled

Switch for enabling and disabling the debug logger.

5.46.1.7 logFlags (read-only)

wstring IMachineDebugger::logFlags
The debug logger flags.
5.46.1.8 logGroups (read-only)
wstring IMachineDebugger: :logGroups
The debug logger’s group settings.
5.46.1.9 logDestinations (read-only)
wstring IMachineDebugger::logDestinations

The debug logger’s destination settings.

5.46.1.10 HWVirtExEnabled (read-only)

boolean IMachineDebugger: :HWVirtExEnabled

Flag indicating whether the VM is currently making use of CPU hardware virtualization exten-
sions.

5.46.1.11 HWVirtExNestedPagingEnabled (read-only)
boolean IMachineDebugger: :HWVirtExNestedPagingEnabled

Flag indicating whether the VM is currently making use of the nested paging CPU hardware
virtualization extension.

5.46.1.12 HWVirtExVPIDEnabled (read-only)

boolean IMachineDebugger: :HWVirtExVPIDEnabled

Flag indicating whether the VM is currently making use of the VPID VT-x extension.

161

5 Classes (interfaces)

5.46.1.13 OSName (read-only)

wstring IMachineDebugger: :0SName

Query the guest OS kernel name as detected by the DBGF.
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

5.46.1.14 OSVersion (read-only)

wstring IMachineDebugger: :0SVersion

Query the guest OS kernel version string as detected by the DBGF.
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

5.46.1.15 PAEEnabled (read-only)

boolean IMachineDebugger: :PAEEnabled

Flag indicating whether the VM is currently making use of the Physical Address Extension CPU
feature.

5.46.1.16 virtualTimeRate (read/write)

unsigned long IMachineDebugger::virtualTimeRate

The rate at which the virtual time runs expressed as a percentage. The accepted range is 2%
to 20000%.

5.46.1.17 VM (read-only)

long long IMachineDebugger::VM

Gets the VM handle. This is only for internal use while we carve the details of this interface.

5.46.2 detectOS

wstring IMachineDebugger: :detect0S()

Tries to (re-)detect the guest OS kernel.
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

5.46.3 dumpGuestCore

void IMachineDebugger: :dumpGuestCore(
[in] wstring filename,
[in] wstring compression)
filename The name of the output file. The file must not exist.

compression Reserved for future compression method indicator.

Takes a core dump of the guest.
See include/VBox/dbgfcorefmt.h for details on the file format.

162

5 Classes (interfaces)

5.46.4 dumpGuestStack

wstring IMachineDebugger: :dumpGuestStack(
[in] unsigned long cpuld)

cpuld The identifier of the Virtual CPU.

Produce a simple stack dump using the current guest state.
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

5.46.5 dumpHostProcessCore

void IMachineDebugger: :dumpHostProcessCore(
[in] wstring filename,
[in] wstring compression)

filename The name of the output file. The file must not exist.
compression Reserved for future compression method indicator.

Takes a core dump of the VM process on the host.
This feature is not implemented in the 4.0.0 release but it may show up in a dot release.

5.46.6 dumpStats

void IMachineDebugger: :dumpStats(
[in] wstring pattern)

pattern The selection pattern. A bit similar to filename globbing.

Dumps VM statistics.

5.46.7 getRegister

wstring IMachineDebugger: :getRegister(
[in] unsigned long cpuld,
[in] wstring name)

cpuld The identifier of the Virtual CPU.
name The register name, case is ignored.

Gets one register.
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

5.46.8 getRegisters

void IMachineDebugger: :getRegisters(
[in] unsigned long cpuld,
[out] wstring names[],
[out] wstring values[])

cpuld The identifier of the Virtual CPU.
names Array containing the lowercase register names.

values Array paralell to the names holding the register values as if the register was returned by
getRegister().

Gets all the registers for the given CPU.
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

163

5 Classes (interfaces)

5.46.9 getStats

void IMachineDebugger: :getStats/(
[in] wstring pattern,
[in] boolean withDescriptions,
[out] wstring stats)
pattern The selection pattern. A bit similar to filename globbing.
withDescriptions Whether to include the descriptions.
stats The XML document containing the statistics.

Get the VM statistics in a XMLish format.

5.46.10 info

wstring IMachineDebugger::info(
[in] wstring name,
[in] wstring args)

name The name of the info item.

args Arguments to the info dumper.

Interfaces with the info dumpers (DBGFInfo).
This feature is not implemented in the 4.0.0 release but it may show up in a dot release.

5.46.11 injectNMI

void IMachineDebugger::injectNMI()

Inject an NMI into a running VI-x/AMD-V VM.

5.46.12 modifyLogDestinations

void IMachineDebugger: :modifylLogDestinations(
[in] wstring settings)

settings The destination settings string. See iprt/log.h for details. To target the release logger,
prefix the string with “release:“.

Modifies the debug or release logger destinations.

5.46.13 modifyLogFlags

void IMachineDebugger: :modifyLogFlags(
[in] wstring settings)

settings The flags settings string. See iprt/log.h for details. To target the release logger, prefix
the string with “release:“.

Modifies the debug or release logger flags.

164

5 Classes (interfaces)

5.46.14 modifyLogGroups

void IMachineDebugger: :modifyLogGroups (
[in] wstring settings)

settings The group settings string. See iprt/log.h for details. To target the release logger, prefix
the string with “release:“.

Modifies the group settings of the debug or release logger.

5.46.15 readPhysicalMemory

octet[] IMachineDebugger::readPhysicalMemory (
[in] long long address,
[in] unsigned long size)

address The guest physical address.

size The number of bytes to read.

Reads guest physical memory, no side effects (MMIO+ +).
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

5.46.16 readVirtualMemory

octet[] IMachineDebugger::readVirtualMemory (
[in] unsigned long cpuld,
[in] long long address,
[in] unsigned long size)
cpuld The identifier of the Virtual CPU.
address The guest virtual address.

size The number of bytes to read.

Reads guest virtual memory, no side effects (MMIO+ +).
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

5.46.17 resetStats

void IMachineDebugger::resetStats(
[in] wstring pattern)

pattern The selection pattern. A bit similar to filename globbing.

Reset VM statistics.

5.46.18 setRegister

void IMachineDebugger::setRegister(
[in] unsigned long cpuld,
[in] wstring name,
[in] wstring value)
cpuld The identifier of the Virtual CPU.

name The register name, case is ignored.

165

5 Classes (interfaces)

value The new register value. Hexadecimal, decimal and octal formattings are supported in
addition to any special formattings returned by the getters.

Gets one register.
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

5.46.19 setRegisters

void IMachineDebugger::setRegisters(
[in] unsigned long cpuld,
[in] wstring names[],
[in] wstring values[])

cpuld The identifier of the Virtual CPU.
names Array containing the register names, case ignored.

values Array paralell to the names holding the register values. See setRegister() for formatting
guidelines.

Sets zero or more registers atomically.
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

5.46.20 writePhysicalMemory

void IMachineDebugger: :writePhysicalMemory (
[in] long long address,
[in] unsigned long size,
[in] octet bytes[])

address The guest physical address.
size The number of bytes to read.

bytes The bytes to write.

Writes guest physical memory, access handles (MMIO+ +) are ignored.
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

5.46.21 writeVirtualMemory

void IMachineDebugger: :writeVirtualMemory(
[in] unsigned long cpuld,
[in] long long address,
[in] unsigned long size,
[in] octet bytes[])

cpuld The identifier of the Virtual CPU.
address The guest virtual address.
size The number of bytes to read.

bytes The bytes to write.

Writes guest virtual memory, access handles (MMIO+ +) are ignored.
This feature is not implemented in the 4.0.0 release but may show up in a dot release.

166

5 Classes (interfaces)

5.47 IMachineEvent (IEvent)

Note: This interface extends IEvent and therefore supports all its methods and at-
tributes as well.

Base abstract interface for all machine events.

5.47.1 Attributes
5.47.1.1 machineld (read-only)

uuid IMachineEvent::machineld

ID of the machine this event relates to.

5.48 IMachineRegisteredEvent (IMachineEvent)

Note: This interface extends IMachineEvent and therefore supports all its methods and
attributes as well.

The given machine was registered or unregistered within this VirtualBox installation.

5.48.1 Attributes
5.48.1.1 registered (read-only)

boolean IMachineRegisteredEvent::registered

If true, the machine was registered, otherwise it was unregistered.

5.49 IMachineStateChangedEvent (IMachineEvent)

Note: This interface extends IMachineEvent and therefore supports all its methods and
attributes as well.

Machine state change event.

5.49.1 Attributes
5.49.1.1 state (read-only)

MachineState IMachineStateChangedEvent::state

New execution state.

167

5 Classes (interfaces)

5.50 IManagedObjectRef

’ Note: This interface is supported in the web service only, not in COM/XPCOM.

Managed object reference.

Only within the webservice, a managed object reference (which is really an opaque number)
allows a webservice client to address an object that lives in the address space of the webservice
server.

Behind each managed object reference, there is a COM object that lives in the webser-
vice server’s address space. The COM object is not freed until the managed object refer-
ence is released, either by an explicit call to release() or by logging off from the webservice
(IWebsessionManager::logoff()), which releases all objects created during the webservice ses-
sion.

Whenever a method call of the VirtualBox API returns a COM object, the webservice represen-
tation of that method will instead return a managed object reference, which can then be used to
invoke methods on that object.

5.50.1 getinterfaceName

wstring IManagedObjectRef::getInterfaceName()

Returns the name of the interface that this managed object represents, for example, “IMa-
chine”, as a string.

5.50.2 release

void IManagedObjectRef::release()

Releases this managed object reference and frees the resources that were allocated for it in the
webservice server process. After calling this method, the identifier of the reference can no longer
be used.

5.51 IMedium

The IMedium interface represents virtual storage for a machine’s hard disks, CD/DVD or floppy
drives. It will typically represent a disk image on the host, for example a VDI or VMDK file
representing a virtual hard disk, or an ISO or RAW file representing virtual removable media,
but can also point to a network location (e.g. for iSCSI targets).

Instances of IMedium are connected to virtual machines by way of medium attachments, which
link the storage medium to a particular device slot of a storage controller of the virtual machine.
In the VirtualBox API, virtual storage is therefore always represented by the following chain of
object links:

e IMachine::storageControllers[] contains an array of storage controllers (IDE, SATA, SCSI,
SAS or a floppy controller; these are instances of IStorageController).

e IMachine::mediumAttachments[] contains an array of medium attachments (instances of
IMediumAttachment created by IMachine::attachDevice()), each containing a storage con-
troller from the above array, a port/device specification, and an instance of IMedium rep-
resenting the medium storage (image file).

For removable media, the storage medium is optional; a medium attachment with no
medium represents a CD/DVD or floppy drive with no medium inserted. By contrast, hard
disk attachments will always have an IMedium object attached.

168

5 Classes (interfaces)

e Each IMedium in turn points to a storage unit (such as a file on the host computer or
a network resource) that holds actual data. This location is represented by the location
attribute.

Existing media are opened using IVirtualBox::openMedium(); new hard disk media can be
created with the VirtualBox API using the IVirtualBox::createHardDisk() method. Differencing
hard disks (see below) are usually implicitly created by VirtualBox as needed, but may also be
created explicitly using createDiffStorage(). VirtualBox cannot create CD/DVD or floppy images
(ISO and RAW files); these should be created with external tools and then opened from within
VirtualBox.

Only for CD/DVDs and floppies, an IMedium instance can also represent a host drive. In
that case the id attribute contains the UUID of one of the drives in IHost::DVDDrives[] or
[Host::floppyDrives[].

Media registries

When a medium has been opened or created using one of the aforementioned APIs, it be-
comes “known” to VirtualBox. Known media can be attached to virtual machines and accessed
through IVirtualBox::findMedium(). They also appear in the global IVirtualBox::hardDisks[],
IVirtualBox::DVDImages[] and IVirtualBox::floppylmages[] arrays.

Prior to VirtualBox 4.0, opening a medium added it to a global media registry in the
VirtualBox.xml file, which was shared between all machines and made transporting machines
and their media from one host to another difficult.

Starting with VirtualBox 4.0, media are only added to a registry when they are attached to a
machine using IMachine::attachDevice(). For backwards compatibility, which registry a medium
is added to depends on which VirtualBox version created a machine:

e If the medium has first been attached to a machine which was created by VirtualBox 4.0
or later, it is added to that machine’s media registry in the machine XML settings file. This
way all information about a machine’s media attachments is contained in a single file and
can be transported easily.

e For older media attachments (i.e. if the medium was first attached to a machine which was
created with a VirtualBox version before 4.0), media continue to be registered in the global
VirtualBox settings file, for backwards compatibility.

See IVirtualBox::openMedium() for more information.

Media are removed from media registries by the close(), deleteStorage() and mergeTo() meth-
ods.

Accessibility checks

VirtualBox defers media accessibility checks until the refreshState() method is called explicitly
on a medium. This is done to make the VirtualBox object ready for serving requests as fast as
possible and let the end-user application decide if it needs to check media accessibility right away
or not.

As a result, when VirtualBox starts up (e.g. the VirtualBox object gets created for the first time),
all known media are in the “Inaccessible” state, but the value of the lastAccessError attribute is
an empty string because no actual accessibility check has been made yet.

After calling refreshState(), a medium is considered accessible if its storage unit can be read.
In that case, the state attribute has a value of “Created”. If the storage unit cannot be read
(for example, because it is located on a disconnected network resource, or was accidentally
deleted outside VirtualBox), the medium is considered inaccessible, which is indicated by the
“Inaccessible” state. The exact reason why the medium is inaccessible can be obtained by reading
the lastAccessError attribute.

Medium types

There are five types of medium behavior which are stored in the type attribute (see
MediumType) and which define the medium’s behavior with attachments and snapshots.

169

5 Classes (interfaces)

All media can be also divided in two groups: base media and differencing media. A base
medium contains all sectors of the medium data in its own storage and therefore can be used
independently. In contrast, a differencing medium is a “delta” to some other medium and con-
tains only those sectors which differ from that other medium, which is then called a parent. The
differencing medium is said to be linked to that parent. The parent may be itself a differencing
medium, thus forming a chain of linked media. The last element in that chain must always be a
base medium. Note that several differencing media may be linked to the same parent medium.

Differencing media can be distinguished from base media by querying the parent attribute:
base media do not have parents they would depend on, so the value of this attribute is always
null for them. Using this attribute, it is possible to walk up the medium tree (from the child
medium to its parent). It is also possible to walk down the tree using the children[] attribute.

Note that the type of all differencing media is “normal”; all other values are meaningless for
them. Base media may be of any type.

Automatic composition of the file name part

Another extension to the location attribute is that there is a possibility to cause VirtualBox to
compose a unique value for the file name part of the location using the UUID of the hard disk.
This applies only to hard disks in NotCreated state, e.g. before the storage unit is created, and
works as follows. You set the value of the location attribute to a location specification which only
contains the path specification but not the file name part and ends with either a forward slash or
a backslash character. In response, VirtualBox will generate a new UUID for the hard disk and
compose the file name using the following pattern:

<path>/{<uuid>}.<ext>

where <path> is the supplied path specification, <uuid> is the newly generated UUID and
<ext> is the default extension for the storage format of this hard disk. After that, you may call
any of the methods that create a new hard disk storage unit and they will use the generated
UUID and file name.

5.51.1 Attributes
5.51.1.1 id (read-only)

uuid IMedium::id

UUID of the medium. For a newly created medium, this value is a randomly generated UUID.

Note: For media in one of MediumState NotCreated, MediumState Creating or Medi-
umState Deleting states, the value of this property is undefined and will most likely be
an empty UUID.

5.51.1.2 description (read/write)

wstring IMedium::description
Optional description of the medium. For a newly created medium the value of this attribute is
an empty string.

Medium types that don’t support this attribute will return E_ NOTIMPL in attempt to get or set
this attribute’s value.

170

5 Classes (interfaces)

Note: For some storage types, reading this attribute may return an outdated (last
known) value when state is Inaccessible or LockedWrite because the value of this at-
tribute is stored within the storage unit itself. Also note that changing the attribute
value is not possible in such case, as well as when the medium is the LockedRead state.

5.51.1.3 state (read-only)

MediumState IMedium::state

Returns the current medium state, which is the last state set by the accessibility check per-
formed by refreshState(). If that method has not yet been called on the medium, the state is
“Inaccessible”; as opposed to truly inaccessible media, the value of lastAccessError will be an
empty string in that case.

Note: As of version 3.1, this no longer performs an accessibility check automatically;
call refreshState() for that.

5.51.1.4 variant (read-only)

unsigned long IMedium::variant

Returns the storage format variant information for this medium as a combination of the flags
described at MediumVariant. Before refreshState() is called this method returns an undefined
value.

5.51.1.5 location (read/write)

wstring IMedium::location

Location of the storage unit holding medium data.

The format of the location string is medium type specific. For medium types using regular files
in a host’s file system, the location string is the full file name.

Some medium types may support changing the storage unit location by simply changing
the value of this property. If this operation is not supported, the implementation will return
E_NOTIMPL in attempt to set this attribute’s value.

When setting a value of the location attribute which is a regular file in the host’s file system,
the given file name may b